Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = metabolic and nutritional disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1746 KiB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 - 1 Aug 2025
Viewed by 308
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 246
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
18 pages, 1782 KiB  
Review
Nutrition and Micronutrient Interactions in Autoimmune Thyroid Disorders: Implications for Cardiovascular Health
by Michał Mazur, Magdalena Szymańska, Agnieszka Malik, Wojciech Szlasa and Joanna Popiołek-Kalisz
Pathophysiology 2025, 32(3), 37; https://doi.org/10.3390/pathophysiology32030037 - 1 Aug 2025
Viewed by 141
Abstract
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role [...] Read more.
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role of these nutrients in reducing cardiovascular disease (CVD) risk in autoimmune thyroid disorders remains insufficiently understood. This review explores the influence of specific micronutrients—including selenium, iodine, and zinc—and dietary patterns, particularly the Mediterranean diet, on the pathophysiology of hypothyroidism and Hashimoto’s thyroiditis. We introduce a novel framework that integrates emerging data on sex-specific micronutrient interactions and nutritional immunomodulation. Unlike the existing literature, this review introduces original hypotheses related to sex-specific nutritional immunomodulation and proposes a novel framework for micronutrient-driven dietary intervention in Hashimoto’s thyroiditis. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

25 pages, 7131 KiB  
Article
Spatiotemporal Patterns of Non-Communicable Disease Mortality in the Metropolitan Area of the Valley of Mexico, 2000–2019
by Constantino González-Salazar, Kathia Gasca-Gómez and Omar Cordero-Saldierna
Diseases 2025, 13(8), 241; https://doi.org/10.3390/diseases13080241 - 1 Aug 2025
Viewed by 254
Abstract
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal [...] Read more.
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal patterns of NCD mortality in the Metropolitan Area of the Valley of Mexico (MAVM) from 2000 to 2019 for five International Classification of Diseases chapters (4, 5, 6, 9, and 10) at two spatial scales: the municipal level and metropolitan region. Methods: Mortality rates were calculated for the total population and stratified by sex and age groups at both spatial scales. In addition, the relative risk (RR) of mortality was estimated to identify vulnerable population groups and regions with a high risk of mortality, using women and the 25–34 age group as reference categories for population-level analysis, and the overall MAVM mortality rate as the reference for municipal-level analysis. Results: Mortality trends showed that circulatory-system diseases (Chapter 9) are emerging as a concerning health issue, with 45 municipalities showing increasing mortality trends, especially among older adults. Respiratory-system diseases (Chapter 10), mental and behavioral disorders (Chapter 5) and nervous-system diseases (Chapter 6) predominantly did not exhibit a consistent general mortality trend. However, upon disaggregating by sex and age groups, specific negative or positive trends emerged at the municipal level for some of these chapters or subgroups. Endocrine, nutritional, and metabolic diseases (Chapter 4) showed a complex pattern, with some age groups presenting increasing mortality trends, and 52 municipalities showing increasing trends overall. The RR showed men and older age groups (≥35 years) exhibiting higher mortality risks. The temporal trend of RR allowed us to identify spatial mortality hotspots mainly in chapters related to circulatory, endocrine, and respiratory diseases, forming four geographical clusters in Mexico City that show persistent high risk of mortality. Conclusions: The spatiotemporal analysis highlights municipalities and vulnerable populations with a consistently elevated mortality risk. These findings emphasize the need for monitoring NCD mortality patterns at both the municipal and metropolitan levels to address disparities and guide the implementation of health policies aimed at reducing mortality risk in vulnerable populations. Full article
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Vitamin D and Sarcopenia: Implications for Muscle Health
by Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Lissé Angarita-Davila, Diana Rojas-Gómez, Miguel Alarcón-Rivera, Olga López-Soto, Juan Maureira-Sánchez, Valmore Bermúdez, Diego Rivera-Porras and Julio Cesar Contreras-Velázquez
Biomedicines 2025, 13(8), 1863; https://doi.org/10.3390/biomedicines13081863 - 31 Jul 2025
Viewed by 309
Abstract
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond [...] Read more.
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond its classical functions in bone metabolism. This review aims to critically analyze the relationship between serum Vit D levels and sarcopenia in older adults, focusing on pathophysiological mechanisms, diagnostic criteria, clinical evidence, and preventive strategies. An integrative narrative review of observational studies, randomized controlled trials, and meta-analyses published in the last decade was conducted. The analysis incorporated international diagnostic criteria for sarcopenia (EWGSOP2, AWGS, FNIH, IWGS), current guidelines for Vit D sufficiency, and molecular mechanisms related to Vit D receptor (VDR) signaling in muscle tissue. Low serum 25-hydroxyvitamin D levels are consistently associated with decreased muscle strength, reduced physical performance, and increased prevalence of sarcopenia. Although interventional trials using Vit D supplementation report variable results, benefits are more evident in individuals with baseline deficiency and when combined with protein intake and resistance training. Mechanistically, Vit D influences muscle health via genomic and non-genomic pathways, regulating calcium homeostasis, mitochondrial function, oxidative stress, and inflammatory signaling. Vit D deficiency represents a modifiable risk factor for sarcopenia and functional impairment in older adults. While current evidence supports its role in muscular health, future high-quality trials are needed to establish optimal serum thresholds and dosing strategies for prevention and treatment. An individualized, multimodal approach involving supplementation, exercise, and nutritional optimization appears most promising. Full article
(This article belongs to the Special Issue Vitamin D: Latest Scientific Discoveries in Health and Disease)
Show Figures

Figure 1

24 pages, 2509 KiB  
Review
Potential Applications and Risks of Supranutritional Selenium Supplementation in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Critical Review
by Chuanming Liu, Ke Chen, Zijian Xu, Lianshun Wang, Yinhua Zhu, Zhengquan Yu, Tong Li and Jiaqiang Huang
Nutrients 2025, 17(15), 2484; https://doi.org/10.3390/nu17152484 - 30 Jul 2025
Viewed by 498
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays a critical role in antioxidation, regulation of inflammation, anticancer activity, and so on. Recent studies have reported that supplementation with selenium could alleviate MASLD and associated hepatic disorders, while excessive consumption may result in insulin resistance or even selenosis. Therefore, supranutritional selenium supplementation can be more suitable for the therapy and prevention of MASLD. This paper comprehensively reviews research about selenium and MASLD to highlight the potential applications and risks of supranutritional selenium supplementation in MASLD, following three steps: conducting a search, reviewing research articles and reviews, and discussing results. The keywords for the search include but are not limited to selenium, MASLD, supranutritional, hepatic diseases, selenoproteions, and selenium nanoparticles (SeNPs). We have reached the following conclusions: supranutritional selenium supplementation exhibits promising potential as a strategy to treat MASLD, but there are still some risks, depending on the dose and form of selenium; evaluating MASLD severity and selenium nutritional status accurately, as well as supplementing with superior forms of selenium (e.g., organic selenium and SeNPs), can further ensure the safety and efficacy of selenium supplementation. However, relationships between selenium homeostasis disorders and the occurrence and development of MASLD have not been fully elucidated. Methods for comprehensively assessing selenium status and mechanisms of selenosis require further investigation and research. Full article
Show Figures

Figure 1

27 pages, 4050 KiB  
Article
The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study
by Malgorzata Ostrowska, Elwira Komoń-Janczara, Bozena Mikoluc, Katarzyna Iłowiecka, Justyna Jarczak, Justyna Zagórska, Paulina Zambrzycka, Silvia Turroni and Hubert Szczerba
Nutrients 2025, 17(15), 2405; https://doi.org/10.3390/nu17152405 - 23 Jul 2025
Viewed by 232
Abstract
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and [...] Read more.
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and dietary profiles of paediatric PKU patients and healthy controls, stratified by age (<10 and 10–18 years). Methods: Stool samples from 20 children (10 PKU, 10 controls) were analysed using ITS1/ITS2 amplicon sequencing. Nutritional status was assessed using Body Mass Index percentiles (Polish standards), and nutrient intake was evaluated from three-day dietary records compared to national reference values. Correlations between fungal taxa and dietary factors were explored. Results: Although alpha diversity did not differ significantly, beta diversity and LEfSe analyses revealed distinct fungal profiles between PKU patients and controls, indicating a trend toward group separation (PERMANOVA: F = 1.54646, p = 0.09; ANOVA: p = 0.0609). PKU patients showed increased Eurotiales (p = 0.029), Aspergillaceae (p = 0.029), and Penicillium (p = 0.11) and decreased Physalacriaceae (0% vs. 5.84% in controls) and Malassezia (p = 0.13). Spearman’s analysis showed significant correlations between Geotrichum and intake of protein (ρ = 0.55, p = 0.0127) and phenylalanine (ρ = 0.70, p = 0.0005). Conclusions: Dietary treatment in PKU is associated with age-dependent shifts in the gut mycobiome, notably increasing the abundance of taxa such as Eurotiales, Aspergillaceae, and Penicillium, involved in carbohydrate/lipid metabolism and mucosal inflammation. These findings highlight the potential of gut fungi as nutritional and clinical biomarkers in PKU. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

17 pages, 582 KiB  
Article
Dietary and Genetic Aspects of Polycystic Ovary Syndrome (PCOS) in Polish Women—Part I: Nutritional Status and Dietary Intake
by Karolina Nowosad, Małgorzata Ostrowska, Paweł Glibowski, Katarzyna Iłowiecka and Wojciech Koch
Nutrients 2025, 17(14), 2377; https://doi.org/10.3390/nu17142377 - 21 Jul 2025
Cited by 1 | Viewed by 754
Abstract
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations between the habitual nutrient intake and bioelectrical impedance analysis parameters in Polish women with PCOS and healthy controls, in order to identify potential nutritional targets for a non-pharmacological intervention. Methods: This study involved 50 women aged 18–45 years (25 with PCOS and 25 healthy). Participants kept 7-day food diaries and their body composition was assessed using the SECA mBCA 515 analyzer. The nutrient intake was compared with EFSA recommendations. Results: Women with PCOS had a higher body weight, waist circumference and body mass index, visceral adipose tissue, and fat mass index, despite no difference in their total energy intake. They consumed more omega-3 fatty acids (EPA + DHA) than the control group. Vitamin D deficiency and irregular supplementation were common in both groups. Body composition parameters such as the phase angle and ECW/TBW ratio correlated with the diet quality—especially with protein; fiber; and vitamin B2, B12, and folate levels. Conclusions: The obtained results showed significant differences in body compositions and the presence of a relationship between the nutrient intake and bioimpedance parameters in women with PCOS. These results emphasize the importance of a comprehensive nutritional and body composition assessment in planning dietary interventions in this group of patients. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

36 pages, 914 KiB  
Review
Gut Microbiota in Women with Eating Disorders: A New Frontier in Pathophysiology and Treatment
by Giuseppe Marano, Sara Rossi, Greta Sfratta, Mariateresa Acanfora, Maria Benedetta Anesini, Gianandrea Traversi, Francesco Maria Lisci, Lucio Rinaldi, Roberto Pola, Antonio Gasbarrini, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Nutrients 2025, 17(14), 2316; https://doi.org/10.3390/nu17142316 - 14 Jul 2025
Viewed by 1512
Abstract
Emerging evidence highlights the critical role of the gut microbiota in the development and progression of eating disorders (EDs), particularly in women, who are more frequently affected by these conditions. Women with anorexia nervosa, bulimia nervosa, and binge eating disorder exhibit distinct alterations [...] Read more.
Emerging evidence highlights the critical role of the gut microbiota in the development and progression of eating disorders (EDs), particularly in women, who are more frequently affected by these conditions. Women with anorexia nervosa, bulimia nervosa, and binge eating disorder exhibit distinct alterations in gut microbiota composition compared to healthy controls. These alterations, collectively termed dysbiosis, involve reduced microbial diversity and shifts in key bacterial populations responsible for regulating metabolism, inflammation, and gut–brain signaling. The gut microbiota is known to influence appetite regulation, mood, and stress responses—factors closely implicated in the pathogenesis of EDs. In women, hormonal fluctuations related to menstruation, pregnancy, and menopause may further modulate gut microbial profiles, potentially compounding vulnerabilities to disordered eating. Moreover, the restrictive eating patterns, purging behaviors, and altered dietary intake often observed in women with EDs exacerbate microbial imbalances, contributing to intestinal permeability, low-grade inflammation, and disturbances in neurotransmitter production. This evolving understanding suggests that microbiota-targeted therapies, such as probiotics, prebiotics, dietary modulation, and fecal microbiota transplantation (FMT), could complement conventional psychological and pharmacological treatments in women with EDs. Furthermore, precision nutrition and personalized microbiome-based interventions tailored to an individual’s microbial and metabolic profile offer promising avenues for improving treatment efficacy, even though these approaches remain exploratory and their clinical applicability has yet to be fully validated. Future research should focus on sex-specific microbial signatures, causal mechanisms, and microbiota-based interventions to enhance personalized treatment for women struggling with eating disorders. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

19 pages, 1030 KiB  
Review
Mineral Homeostasis and Depression: Implications for Prevention and Therapeutic Support—A Narrative Review
by Zuzanna Majewska and Karolina Orywal
Int. J. Mol. Sci. 2025, 26(14), 6637; https://doi.org/10.3390/ijms26146637 - 10 Jul 2025
Viewed by 377
Abstract
Depression affects approximately 280 million people worldwide and is becoming increasingly prevalent, particularly among young people. Despite numerous studies on the pathogenesis of this disorder, many factors remain unclear. New data in the literature suggest that proper concentrations of essential macro- and micronutrients [...] Read more.
Depression affects approximately 280 million people worldwide and is becoming increasingly prevalent, particularly among young people. Despite numerous studies on the pathogenesis of this disorder, many factors remain unclear. New data in the literature suggest that proper concentrations of essential macro- and micronutrients play an important role in maintaining mental health and that disturbances in the metabolism of mineral compounds may contribute to the development and progression of depressive disorders. Numerous clinical and epidemiological studies have shown that low concentrations of these elements are associated with impaired neurotransmitter activity, increased exposure to oxidative stress, and neuroinflammation, all of which may contribute to the onset or exacerbation of depression. Additionally, some macro- and micronutrients may contribute to metabolic and hormonal disorders, thereby exacerbating their impact on mood regulation. A comprehensive literature search of the PubMed database covering the period from 2020 to 2025 yielded relevant human studies on calcium, magnesium, iron, zinc, copper, selenium, and iodine in relation to depression, which were selected based on predefined inclusion and exclusion criteria. This review summarizes the effects of calcium, magnesium, iron, zinc, copper, selenium, and iodine on supporting prevention, slowing progression, and helping treatment of depression. Understanding the impact of proper nutrition, including ensuring optimal concentrations of minerals, can help develop dietary strategies or proper supplementation of macronutrients and micronutrients aimed at preventing and improving the functioning of patients with depression. Full article
(This article belongs to the Special Issue New Trends and Challenges in Chronic Diseases)
Show Figures

Figure 1

18 pages, 309 KiB  
Article
The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa
by Joanna Rog, Kaja Karakuła, Zuzanna Rząd, Karolina Niedziałek-Serafin, Dariusz Juchnowicz, Anna Rymuszka and Hanna Karakula-Juchnowicz
Nutrients 2025, 17(14), 2260; https://doi.org/10.3390/nu17142260 - 9 Jul 2025
Viewed by 369
Abstract
Background/Objectives: Anorexia nervosa (AN) is a chronic eating disorder with the highest mortality rate among psychiatric conditions. Malnutrition and starvation lead to long-term impairments in metabolic processes, hormonal regulation, and immune function, offering potential diagnostic and prognostic value. This study aimed to [...] Read more.
Background/Objectives: Anorexia nervosa (AN) is a chronic eating disorder with the highest mortality rate among psychiatric conditions. Malnutrition and starvation lead to long-term impairments in metabolic processes, hormonal regulation, and immune function, offering potential diagnostic and prognostic value. This study aimed to identify immune–metabolic–hormonal markers associated with treatment response and nutritional rehabilitation. Methods: Fifty hospitalized female patients with AN were included. Anthropometric measurements and venous blood samples were collected at admission and discharge, following partial nutritional recovery. Blood analyses included complete blood count, serum levels of total cholesterol, LDL and HDL, triglycerides, glucose, NT-pro-BNP, TSH, free thyroxine (fT4), sodium, chloride, potassium, calcium, iron, and vitamin D. Composite immune-inflammatory indices calculated were neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte (PLR); neutrophil-to-high-density lipoprotein (NHR), monocyte-to-high-density lipoprotein (MHR), platelet-to-high-density lipoprotein (PHR) and lymphocyte-to-high-density lipoprotein (LHR) ratios; systemic immune-inflammation (SII), and systemic inflammation response (SIRI) indexes. Results: Responders (R) and non-responders (NR) differed significantly at baseline in levels of sodium, chloride, fT4, monocyte count, MCV, NLR, MLR, SII, and SIRI (all: R < NR; p < 0.05). Predictive ability for treatment response was confirmed by AUC values (95%CI): sodium = 0.791 (0.622–0.960), chloride = 0.820 (0.690–0.950), fT4 = 0.781 (0.591–0.972), monocytes = 0.785 (0.643–0.927), MCV = 0.721 (0.549–0.892), NLR = 0.745 (0.578–0.913), MLR = 0.785 (0.643–0.927), SII = 0.736 (0.562–0.911), SIRI = 0.803 (0.671–0.935). The lower levels of inflammation and chloride are particularly predictive of better nutritional recovery, accounting for 26% of the variability in treatment response. Conclusions: The study demonstrated important insights into the hematological, metabolic, hormonal, and immune-inflammatory mechanisms associated with nutritional recovery in AN. Full article
(This article belongs to the Section Nutrition and Public Health)
22 pages, 1183 KiB  
Review
Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health
by Manuel Garrido-Romero, Marina Díez-Municio and Francisco Javier Moreno
Foods 2025, 14(14), 2413; https://doi.org/10.3390/foods14142413 - 8 Jul 2025
Viewed by 1171
Abstract
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or [...] Read more.
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or tyrosol), triterpenes and other phytochemicals on gut microbiota composition and function. These compounds have been shown to enhance beneficial bacterial populations such as Lactobacillus and Bifidobacterium, reduce potentially pathogenic taxa, and promote the production of short-chain fatty acids and other health microbial metabolites, reinforcing intestinal barrier integrity. In vitro, in vivo, and clinical studies also reveal the potential of olive bioactives to ameliorate metabolic, inflammatory, and neurocognitive disorders through gut-microbiota-brain axis modulation. Despite promising results, key challenges remain, including interindividual microbiota variability, lack of standardized intervention protocols, and limited human clinical trials. Addressing these gaps through robust translational research could pave the way for microbiota-targeted, personalized nutritional strategies based on olive-derived compounds. Full article
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 897
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

17 pages, 2986 KiB  
Article
Modulatory Role of Hesperetin–Copper(II) on Gut Microbiota in Type 2 Diabetes Mellitus Mice
by Xi Peng, Yushi Wei, Deming Gong and Guowen Zhang
Foods 2025, 14(13), 2390; https://doi.org/10.3390/foods14132390 - 6 Jul 2025
Viewed by 491
Abstract
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural [...] Read more.
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural and functional properties. Methods: In this study, the effect of hesperetin–copper(II) complex [Hsp–Cu(II)] on the gut microbiota of mice with T2DM was investigated by the 16S rRNA high-throughput sequencing. Results: The analyses of α and β diversity indicated that the richness and diversity of gut microbiota in the T2DM mice decreased and the community structure was significantly different from the normal mice. Hsp–Cu(II) increased the abundances of the beneficial bacteria (Lactobacillus, Ligilactobacillus, Romboutsia, Faecalibaculum, and Dubosiella), and decreased the amounts of the harmful bacteria (Desulfobacterota, Corynebacterium, and Desulfovibrio) and the ratio of Firmicutes/Bacteroidetes (from 44.5 to 5.8) in the T2DM mice, which was beneficial for regulating the composition of intestinal microbiota. The linear discriminant analysis effect size analysis showed that the intervention of Hsp–Cu(II) made the short-chain fatty acid (SCFA) producers (o_Lachnospirales, f_Lachnospiraceae, g_Faecalibaculum, g_Romboutsia, and g_Turicibacter) and the lactic acid bacteria producers (f_Lactobacillaceae and o_Lactobacillales) highly enriched, and the production of its metabolite SCFAs (acetic acid, propionic acid, butyric acid, and valeric acid) were increased in a dose-dependent manner, promoting the SCFA metabolism. Conclusions: Hsp–Cu(II) may improve glucose metabolic disorders and alleviate T2DM by modulating gut microbiota composition, promoting probiotics proliferation and SCFAs production, restoring intestinal barrier integrity, and suppressing local inflammation. These research findings may provide a theoretical basis for developing Hsp–Cu(II) as a new hypoglycemic nutritional supplement, and offer new ideas for the dietary food nutritional regulation to alleviate T2DM. Full article
Show Figures

Figure 1

20 pages, 2843 KiB  
Review
Neural Mechanisms and Alterations of Sweet Sensing: Insights from Functional Magnetic Resonance Imaging Studies
by Tobias Long, Colette C. Milbourn, Alison Smith, Kyaw Linn Su Khin, Amanda J. Page, Iskandar Idris, Qian Yang, Richard L. Young and Sally Eldeghaidy
Life 2025, 15(7), 1075; https://doi.org/10.3390/life15071075 - 5 Jul 2025
Viewed by 691
Abstract
Sweet sensing is a fundamental sensory experience that plays a critical role not only in food preference, reward and dietary behaviour but also in glucose metabolism. Sweet taste receptors (STRs), composed of a heterodimer of taste receptor type 1 member 2 (T1R2) and [...] Read more.
Sweet sensing is a fundamental sensory experience that plays a critical role not only in food preference, reward and dietary behaviour but also in glucose metabolism. Sweet taste receptors (STRs), composed of a heterodimer of taste receptor type 1 member 2 (T1R2) and member 3 (T1R3), are now recognised as being widely distributed throughout the body, including the gastrointestinal tract. Preclinical studies suggest these receptors are central to nutrient and glucose sensing, detecting energy availability and triggering metabolic and behavioural responses to maintain energy balance. Both internal and external factors tightly regulate their signalling pathways, and dysfunction within these systems may contribute to the development of metabolic disorders such as obesity and type 2 diabetes (T2D). Functional magnetic resonance imaging (fMRI) has provided valuable insights into the neural mechanisms underlying sweet sensing by mapping brain responses to both lingual/oral and gastrointestinal sweet stimuli. This review highlights key findings from fMRI studies and explores how these neural responses are modulated by metabolic state and individual characteristics such as body mass index, habitual intake and metabolic health. By integrating current evidence, this review advances our understanding of the complex interplay between sweet sensing, brain responses, and health and identifies key gaps and directions for future research in nutritional neuroscience. Full article
(This article belongs to the Special Issue New Advances in Neuroimaging and Brain Functions: 2nd Edition)
Show Figures

Figure 1

Back to TopTop