The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa
Highlights
- Baseline levels of chloride and systemic inflammation (measured using SIRI) were closely associated with better nutritional recovery in patients with anorexia nervosa.
- Inflammatory indices (SIRI, SII, MLR, and NLR) proved to be more informative than single blood count parameters in predicting treatment response.
- Routinely available laboratory markers may offer underrecognized yet valuable prognostic insight; clinicians and researchers should pay closer attention to these simple, cost-effective indicators when monitoring and supporting treatment progress.
- Low-grade inflammation may hinder nutritional rehabilitation in anorexia nervosa, highlighting the potential benefit of anti-inflammatory strategies in treatment planning.
Abstract
1. Introduction
1.1. Hematological Indicators of Inflammation
1.1.1. Complete Blood Count
1.1.2. Neutrophil-to-Lymphocyte Ratio
1.1.3. Monocyte-to-Lymphocyte Ratio
1.1.4. Platelet-to-Lymphocyte Ratio
1.1.5. Systemic Immune-Inflammation Index
1.1.6. Systemic Inflammation Response Index
1.2. Hematological-Lipid Indices
1.2.1. Neutrophil-to-High-Density Lipoprotein Cholesterol Ratio
1.2.2. Monocyte-to-High-Density Lipoprotein Cholesterol Ratio
1.2.3. Platelet-to-High-Density Lipoprotein Cholesterol Ratio
1.2.4. Lymphocyte-to-High-Density Lipoprotein Cholesterol Ratio
- Hematological parameters, such as complete blood count indices including white blood cells (with differentials), red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), and platelet count.
- Immune-inflammatory indices, calculated composite markers such as NLR, MLR, PLR, SII, SIRI, NHR, MHR, PHR, and LHR.
- Metabolic parameters, including glucose, vitamin D, and electrolytes (sodium, chloride, potassium, calcium, and iron).
- Hormonal parameters, specifically thyroid-stimulating hormone (TSH) and free triiodothyronine (fT3) and thyroxine (fT4).
2. Materials and Methods
2.1. Participants
- -
- provision of informed consent by the participant or their legal guardian;
- -
- female inpatient;
- -
- age between 12 and 30 years;
- -
- diagnosis of Anorexia Nervosa (F50) confirmed by a psychiatrist;
- -
- diagnosis of an eating disorder other than AN that prevented clear classification.
- -
- lack of informed consent.
- -
- coexisting somatic diseases significantly affecting immune-inflammatory function (such as autoimmune disorders, malignancies, or acute infections), endocrine disorders in a decompensated state and other somatic conditions affecting electrolyte balance;
- -
- pharmacological treatment known to alter hematological or lipid parameters (such as corticosteroids or immunosuppressants) within one month prior to hospitalization;
- -
- diagnosed severe psychiatric disorders (e.g., psychosis, acute manic episodes, severe depression with suicidality), neurological diseases (e.g., epilepsy, neurodegenerative disorders, history of traumatic brain injury), or substance use disorders (including alcohol or illicit drugs).
2.2. Biochemical Analysis
- -
- Complete blood count (CBC);
- -
- Metabolic parameters: serum levels of total cholesterol, lipoproteins (low-density and high-density), triglycerides, glucose;
- -
- Endocrine and cardiovascular markers: TSH, fT4, N-Terminal pro b-type natriuretic peptide (NT-proBP);
- -
- Nutritional status indicators: electrolytes (sodium, chloride, potassium), calcium, iron, and vitamin D concentration.
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Participants
3.2. Relationship Between Nutritional Status, Blood Parameters, and Sociodemographic Data
3.3. Potential Blood Indicators of Response to Nutritional Rehabilitation
3.4. The Effect of Blood Indicators of Response to Treatment on BMI Changes
4. Discussion
5. Strengths and Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AN | Anorexia Nervosa |
CBC | Complete blood count |
RBC | Red blood cells |
WBC | White blood cells |
PLT | Platelets |
BMI | Body mass index |
TNF-α | Tumor necrosis factor-alpha |
NLR | Neutrophil-to-lymphocyte ratio |
MLR | Monocyte-to-lymphocyte ratio |
LGI | Low-grade inflammation |
PLR | Platelet-to-lymphocyte ratio |
SII | Systemic immune-inflammation index |
SIRI | Systemic inflammation response index |
SNRIs | Selective norepinephrine and serotonin reuptake inhibitors |
SSRIs | Selective serotonin reuptake inhibitors |
NHR | Neutrophil-to-high-density lipoprotein cholesterol ratio |
MHR | Monocyte-to-high-density lipoprotein cholesterol ratio |
PHR | Platelet-to-high-density lipoprotein cholesterol ratio |
LHR | Lymphocyte-to-high-density lipoprotein cholesterol ratio |
THS | Thyroid stimulating hormone |
fT4 | free Thyroxine |
NT-ptoBNP | N-terminal pro b-type natriuretic peptide |
ICD | International Classification of Diseases |
PCC | Pearson correlation coefficient |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
R | Responder group |
NR | Non-responder group |
References
- Caldiroli, A.; La Tegola, D.; Affaticati, L.M.; Manzo, F.; Cella, F.; Scalia, A.; Capuzzi, E.; Nicastro, M.; Colmegna, F.; Buoli, M. Clinical and Peripheral Biomarkers in Female Patients Affected by Anorexia: Does the Neutrophil/Lymphocyte Ratio (NLR) Affect Severity? Nutrients 2023, 15, 1133. [Google Scholar] [CrossRef] [PubMed]
- Silén, Y.; Keski-Rahkonen, A. Worldwide Prevalence of DSM-5 Eating Disorders among Young People. Curr. Opin. Psychiatry 2022, 35, 362–371. [Google Scholar]
- Pastore, M.; Indrio, F.; Bali, D.; Vural, M.; Giardino, I.; Pettoello-Mantovani, M. Alarming Increase of Eating Disorders in Children and Adolescents. J. Pediatr. 2023, 263, 113733. [Google Scholar] [PubMed]
- Søeby, M.; Gribsholt, S.B.; Clausen, L.; Richelsen, B. Overall and Cause-Specific Mortality in Anorexia Nervosa; Impact of Psychiatric Comorbidity and Sex in a 40-Year Follow-up Study. Int. J. Eat. Disord. 2024, 57, 1842–1853. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Watson, H.J.; Del Re, A.C.; Finch, J.E.; Hardin, S.L.; Dumain, A.S.; Brownley, K.A.; Baker, J.H. Peripheral Biomarkers of Anorexia Nervosa: A Meta-Analysis. Nutrients 2024, 16, 2095. [Google Scholar] [CrossRef] [PubMed]
- Usdan, L.S.; Khaodhiar, L.; Apovian, C.M. The Endocrinopathies of Anorexia Nervosa. Endocr. Pract. 2008, 14, 1055–1063. [Google Scholar] [CrossRef]
- Yanai, H.; Yoshida, H.; Tomono, Y.; Tada, N. Severe Hypoglycemia in a Patient with Anorexia Nervosa. Eat. Weight. Disord. 2008, 13, e1–e3. [Google Scholar] [CrossRef]
- Divasta, A.D.; Feldman, H.A.; Brown, J.N.; Giancaterino, C.; Holick, M.F.; Gordon, C.M. Bioavailability of Vitamin D in Malnourished Adolescents with Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2011, 96, 2575–2580. [Google Scholar] [CrossRef]
- Dalton, B.; Leppanen, J.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. A Longitudinal Analysis of Cytokines in Anorexia Nervosa. Brain Behav. Immun. 2020, 85, 88–95. [Google Scholar] [CrossRef]
- Tefferi, A.; Hanson, C.A.; Inwards, D.J. How to Interpret and Pursue an Abnormal Complete Blood Cell Count in Adults. Mayo Clin. Proc. 2005, 80, 923–936. [Google Scholar] [CrossRef]
- Ünver, H.; Gökçe Ceylan, B.; Erdoğdu Yıldırım, A.B.; Perdahlı Fiş, N. Serum Peripheral Markers for Inflammation in Adolescents with Anorexia Nervosa. Int. J. Psychiatry Clin. Pract. 2024, 28, 68–72. [Google Scholar]
- Sabel, A.L.; Gaudiani, J.L.; Statland, B.; Mehler, P.S. Hematological Abnormalities in Severe Anorexia Nervosa. Ann. Hematol. 2013, 92, 605–613. [Google Scholar] [CrossRef]
- Palla, B.; Litt, I.F. Medical Complications of Eating Disorders in Adolescents. Pediatrics 1988, 81, 613–623. [Google Scholar] [PubMed]
- Hütter, G.; Ganepola, S.; Hofmann, W.-K. The Hematology of Anorexia Nervosa. Int. J. Eat. Disord. 2009, 42, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.; Mehler, P.S. Anorexia Nervosa and the Immune System—A Narrative Review. J. Clin. Med. 2019, 8, 1915. [Google Scholar] [CrossRef]
- O’Brien, C.E.; Price, E.T. The Blood Neutrophil to Lymphocyte Ratio Correlates with Clinical Status in Children with Cystic Fibrosis: A Retrospective Study. PLoS ONE 2013, 8, e77420. [Google Scholar] [CrossRef]
- Jaszczura, M.; Góra, A.; Grzywna-Rozenek, E.; Barć-Czarnecka, M.; Machura, E. Analysis of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio and Mean Platelet Volume to Platelet Count Ratio in Children with Acute Stage of Immunoglobulin A Vasculitis and Assessment of Their Suitability for Predicting the Course of the Disease. Rheumatol. Int. 2019, 39, 869–878. [Google Scholar] [CrossRef]
- Forget, P.; Khalifa, C.; Defour, J.-P.; Latinne, D.; Van Pel, M.-C.; De Kock, M. What Is the Normal Value of the Neutrophil-to-Lymphocyte Ratio? BMC Res. Notes 2017, 10, 12. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-Lymphocyte Ratio, Past, Present and Future Perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef]
- SciELO Brazil—Neutrophil-Lymphocyte Ratio in Cardiovascular Disease Risk Assessment Neutrophil-Lymphocyte Ratio in Cardiovascular Disease Risk Assessment. Available online: https://www.scielo.br/j/ijcs/a/65QcFXFTMTdns5dSGygyWZL/?lang=en (accessed on 25 June 2025).
- Azab, B.; Bhatt, V.R.; Phookan, J.; Murukutla, S.; Kohn, N.; Terjanian, T.; Widmann, W.D. Usefulness of the Neutrophil-to-Lymphocyte Ratio in Predicting Short- and Long-Term Mortality in Breast Cancer Patients. Ann. Surg. Oncol. 2012, 19, 217–224. [Google Scholar] [CrossRef]
- Adamstein, N.H.; MacFadyen, J.G.; Rose, L.M.; Glynn, R.J.; Dey, A.K.; Libby, P.; Tabas, I.A.; Mehta, N.N.; Ridker, P.M. The Neutrophil-Lymphocyte Ratio and Incident Atherosclerotic Events: Analyses from Five Contemporary Randomized Trials. Eur. Heart J. 2021, 42, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M. Neutrophil-to-Lymphocyte Ratio in Trauma Patients. J. Trauma. Acute Care Surg. 2017, 82, 225–226. [Google Scholar] [CrossRef]
- Ishizuka, M.; Shimizu, T.; Kubota, K. Neutrophil-to-Lymphocyte Ratio Has a Close Association with Gangrenous Appendicitis in Patients Undergoing Appendectomy. Int. Surg. 2012, 97, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Fest, J.; Ruiter, T.R.; Groot Koerkamp, B.; Rizopoulos, D.; Ikram, M.A.; van Eijck, C.H.J.; Stricker, B.H. The Neutrophil-to-Lymphocyte Ratio Is Associated with Mortality in the General Population: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 463–470. [Google Scholar] [CrossRef]
- Brinn, A.; Stone, J. Neutrophil-Lymphocyte Ratio across Psychiatric Diagnoses: A Cross-Sectional Study Using Electronic Health Records. BMJ Open 2020, 10, e036859. [Google Scholar] [CrossRef] [PubMed]
- Inagawa, Y.; Kurata, K.; Obi, S.; Onuki, Y.; Monden, Y.; Kurane, K.; Furukawa, R.; Mitani, T.; Nakamura, H.; Suda, S.; et al. Monitoring Neutrophil-to-Lymphocyte Ratio Dynamics for Personalized Treatment in Adolescent Eating Disorders: A Retrospective Cohort Study. J. Eat. Disord. 2025, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.B.; Souaiby, L.; Farès, N. The Importance of the Hypothalamo-Pituitary-Adrenal Axis as a Therapeutic Target in Anorexia Nervosa. Physiol. Behav. 2017, 171, 13–20. [Google Scholar]
- Morawiecka-Pietrzak, M.; Malczyk, Ż.; Dąbrowska, E.; Blaska, M.; Pietrzak, M.; Gliwińska, A.; Góra, A.; Ziora, K.; Pluskiewicz, W.; Ostrowska, Z. The relationship of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with bone mineral density in adolescent girls suffering from anorexia nervosa. Endokrynol. Pol. 2021, 72, 336–346. [Google Scholar] [CrossRef]
- Buttle, T.S.; Hummerstone, C.Y.; Billahalli, T.; Ward, R.J.B.; Barnes, K.E.; Marshall, N.J.; Spong, V.C.; Bothamley, G.H. The Monocyte-to-Lymphocyte Ratio: Sex-Specific Differences in the Tuberculosis Disease Spectrum, Diagnostic Indices and Defining Normal Ranges. PLoS ONE 2021, 16, e0247745. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Lu, P.; Zhou, H.; Yang, M.; Xiang, L. The Prognostic Value of Monocyte-to-Lymphocyte Ratio in Peritoneal Dialysis Patients. Eur. J. Med. Res. 2023, 28, 152. [Google Scholar] [CrossRef]
- Hammadah, M.; Hazen, S.L.; Tang, W.H.W. Monocyte to Lymphocyte Ratio Is Associated with Adverse Long Term Outcomes in Patients with Heart Failure. J. Card. Fail. 2016, 22, S32. [Google Scholar] [CrossRef]
- Kamiya, N.; Ishikawa, Y.; Kotani, K.; Hatakeyama, S.; Matsumura, M. Monocyte-to-Lymphocyte Ratio in the Diagnosis of Lymphoma in Adult Patients. Int. J. Gen. Med. 2022, 15, 4221–4226. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.-Q.; Lai, Z.-H.; Zhang, Y.; Yang, G.-Y.; He, J.-R.; Zeng, L.-L. Monocyte-to-Lymphocyte Ratio Is Associated with Depression 3 Months After Stroke. Neuropsychiatr. Dis. Treat. 2021, 17, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Thombare, D.; Bhalerao, A.; Dixit, P.; Joshi, S.; Dapkekar, P. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Antenatal Women with Pre-Eclampsia: A Case-Control Study. Cureus 2023, 15, e40338. [Google Scholar] [CrossRef]
- Wu, L.; Zou, S.; Wang, C.; Tan, X.; Yu, M. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratio in Chinese Han Population from Chaoshan Region in South China. BMC Cardiovasc. Disord. 2019, 19, 125. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Mukanova, U.; Yessirkepov, M.; Kitas, G.D. The Platelet-to-Lymphocyte Ratio as an Inflammatory Marker in Rheumatic Diseases. Ann. Lab. Med. 2019, 39, 345–357. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, G.G. Platelet-to-Lymphocyte Ratio as a Biomarker of Systemic Inflammation in Systemic Lupus Erythematosus: A Meta-Analysis and Systematic Review. PLoS ONE 2024, 19, e0303665. [Google Scholar] [CrossRef]
- Karatoprak, S.; Uzun, N.; Akıncı, M.A.; Dönmez, Y.E. Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios among Adolescents with Substance Use Disorder: A Preliminary Study. Clin. Psychopharmacol. Neurosci. 2021, 19, 669–676. [Google Scholar] [CrossRef]
- Inanc, I.H.; Sabanoglu, C. Systemic Immune-Inflammation Index as a Predictor of Asymptomatic Organ Damage in Patients with Newly Diagnosed Treatment-Naive Hypertension. Rev. Investig. Clin. 2022, 74, 258–267. [Google Scholar] [CrossRef]
- Li, C.; Tian, W.; Zhao, F.; Li, M.; Ye, Q.; Wei, Y.; Li, T.; Xie, K. Systemic Immune-Inflammation Index, SII, for Prognosis of Elderly Patients with Newly Diagnosed Tumors. Oncotarget 2018, 9, 35293–35299. [Google Scholar] [CrossRef]
- Feng, J.-F.; Chen, S.; Yang, X. Systemic Immune-Inflammation Index (SII) Is a Useful Prognostic Indicator for Patients with Squamous Cell Carcinoma of the Esophagus. Medicine 2017, 96, e5886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-X.; Li, W.-C.; Xia, S.-H.; Xiang, T.; Tang, C.; Luo, J.-L.; Lin, M.-J.; Xia, X.-W.; Wang, W.-B. Predictive Value of the Systemic Immune Inflammation Index for Adverse Outcomes in Patients with Acute Ischemic Stroke. Front. Neurol. 2022, 13, 836595. [Google Scholar] [CrossRef]
- Han, X.-X.; Zhang, H.-Y.; Kong, J.-W.; Liu, Y.-X.; Zhang, K.-R.; Ren, W.-Y. Systemic Immune Inflammation Index Is a Valuable Marker for Predicting Hemodialysis Patients with Depression: A Cross-Sectional Study. Front. Psychiatry 2024, 15, 1423200. [Google Scholar] [CrossRef]
- Wang, R.-H.; Wen, W.-X.; Jiang, Z.-P.; Du, Z.-P.; Ma, Z.-H.; Lu, A.-L.; Li, H.-P.; Yuan, F.; Wu, S.-B.; Guo, J.-W.; et al. The Clinical Value of Neutrophil-to-Lymphocyte Ratio (NLR), Systemic Immune-Inflammation Index (SII), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Inflammation Response Index (SIRI) for Predicting the Occurrence and Severity of Pneumonia in Patients with Intracerebral Hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, K.; Lu, H.; Xue, D.; Fan, M.; Zhuang, Q.; Yin, S.; He, X.; Xu, R. Systemic Inflammation Response Index Predicts Prognosis in Patients with Clear Cell Renal Cell Carcinoma: A Propensity Score-Matched Analysis. Cancer Manag. Res. 2019, 11, 909–919. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Komosa, A.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Tykarski, A.; Jemielity, M. Predictive Value of Systemic Inflammatory Response Index (SIRI) for Complex Coronary Artery Disease Occurrence in Patients Presenting with Angina Equivalent Symptoms. Cardiol. J. 2024, 31, 583–595. [Google Scholar] [CrossRef]
- Ninla-aesong, P.; Kietdumrongwong, P.; Neupane, S.P.; Puangsri, P.; Jongkrijak, H.; Chotipong, P.; Kaewpijit, P. Relative Value of Novel Systemic Immune-Inflammatory Indices and Classical Hematological Parameters in Predicting Depression, Suicide Attempts and Treatment Response. Sci. Rep. 2024, 14, 19018. [Google Scholar] [CrossRef]
- Murata, S.; Baig, N.; Decker, K.; Halaris, A. Systemic Inflammatory Response Index (SIRI) at Baseline Predicts Clinical Response for a Subset of Treatment-Resistant Bipolar Depressed Patients. J. Pers. Med. 2023, 13, 1408. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, B.; Zhao, Z.; Li, Y.; Deng, G.; Wang, Z.; Ma, B.; Feng, Y.; Zhang, Z.; Zhao, X.; et al. Neutrophil to High-Density Lipoprotein Cholesterol Ratio as the Risk Mark in Patients with Type 2 Diabetes Combined with Acute Coronary Syndrome: A Cross-Sectional Study. Sci. Rep. 2023, 13, 7836. [Google Scholar] [CrossRef]
- Kou, T.; Luo, H.; Yin, L. Relationship between Neutrophils to HDL-C Ratio and Severity of Coronary Stenosis. BMC Cardiovasc. Disord. 2021, 21, 127. [Google Scholar] [CrossRef]
- Li, X.; Gao, D. GW29-E0445 The Value of Neutrophil to High-Density Lipoprotein-Cholesterol Ratio in the Assessment of the Severity of Coronary Atherosclerosis. JACC 2018, 72, C207. [Google Scholar] [CrossRef]
- Huang, J.-B.; Chen, Y.-S.; Ji, H.-Y.; Xie, W.-M.; Jiang, J.; Ran, L.-S.; Zhang, C.-T.; Quan, X.-Q. Neutrophil to High-Density Lipoprotein Ratio Has a Superior Prognostic Value in Elderly Patients with Acute Myocardial Infarction: A Comparison Study. Lipids Health Dis. 2020, 19, 59. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, D.; Tao, H.; Ge, P.; Duan, Q. Neutrophils to High-Density Lipoprotein Cholesterol Ratio as a New Prognostic Marker in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Retrospective Study. BMC Cardiovasc. Disord. 2022, 22, 434. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Kheirandish, M.; Rafati, S.; Ghazalgoo, A.; Amini-Salehi, E.; Keivanlou, M.-H.; Abbaszadeh, S.; Saberian, P.; Rahimi, A. The Association between Neutrophil and Lymphocyte to High-Density Lipoprotein Cholesterol Ratio and Metabolic Syndrome among Iranian Population, Finding from Bandare Kong Cohort Study. Lipids Health Dis. 2024, 23, 393. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Koseska, K.; Karol, M.; Czestkowska, E.; Pawlińska, K.; Kochman, W. The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease. J. Clin. Med. 2024, 13, 6597. [Google Scholar] [CrossRef]
- Shi, K.; Hou, J.; Zhang, Q.; Bi, Y.; Zeng, X.; Wang, X. Neutrophil-to-High-Density-Lipoprotein-Cholesterol Ratio and Mortality among Patients with Hepatocellular Carcinoma. Front. Nutr. 2023, 10, 1127913. [Google Scholar] [CrossRef]
- Onalan, E. The Relationship between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Diabetic Nephropathy. Pak. J. Med. Sci. 2019, 35, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pang, Y.; Li, X.; Zha, B.; He, T.; Ding, H. Monocyte to High-Density Lipoprotein Cholesterol Ratio as an Independent Risk Factor for Papillary Thyroid Carcinoma. J. Clin. Lab. Anal. 2021, 35, e24014. [Google Scholar] [CrossRef]
- Xu, L.; Li, D.; Song, Z.; Liu, J.; Zhou, Y.; Yang, J.; Wen, P. The Association between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Chronic Kidney Disease in a Chinese Adult Population: A Cross-Sectional Study. Ren. Fail. 2024, 46, 2331614. [Google Scholar] [CrossRef]
- Kılıç, N.; Tasci, G.; Yılmaz, S.; Öner, P.; Korkmaz, S. Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia. J. Pers. Med. 2023, 13, 276. [Google Scholar] [CrossRef]
- Öztürk, O.; Doğru Balakbabalar, A.P.; Okuyucu, M.; Göktepe, M.E. The Potential Use of Monocyte-to-High-Density Lipoprotein Ratio as a Chronic Inflammatory Marker in Major Depressive Disorder. Psychiatry Clin. Psychopharmacol. 2023, 33, 187–192. [Google Scholar] [CrossRef]
- Korkmaz, Ş.A.; Kızgın, S. Neutrophil/High-Density Lipoprotein Cholesterol (HDL), Monocyte/HDL and Platelet/HDL Ratios Are Increased in Acute Mania as Markers of Inflammation, even after Controlling for Confounding Factors. Curr. Med. Res. Opin. 2023, 39, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Hu, X.; Wu, S.; Zhao, S. Association of Platelet to High-Density Lipoprotein Cholesterol Ratio with Hyperuricemia. Sci. Rep. 2024, 14, 15641. [Google Scholar] [CrossRef]
- Chen, P.; Zhu, M.; Guo, M.; Shi, D.; Chen, Z.; Du, J. Platelet to High Density Lipoprotein Cholesterol Ratio Is Associated with Diabetes and Prediabetes in NHANES 2005 to 2018. Sci. Rep. 2024, 14, 30082. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Liu, C.; Hu, X. The Potential of Platelet to High-Density Lipoprotein Cholesterol Ratio (PHR) as a Novel Biomarker for Heart Failure. Sci. Rep. 2024, 14, 23283. [Google Scholar] [CrossRef]
- Ni, J.; Wu, P.; Lu, X.; Xu, C. Examining the Cross-Sectional Relationship of Platelet/High-Density Lipoprotein Cholesterol Ratio with Depressive Symptoms in Adults in the United States. BMC Psychiatry 2024, 24, 427. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, R.; Zhang, S.; Qin, H.; Jin, H.; Teng, Y.; Ma, S.; Zhang, M. Association between Platelet-to-High-Density Lipoprotein Cholesterol Ratio and Cognitive Function in Older Americans: Insights from a Cross-Sectional Study. Sci. Rep. 2024, 14, 25769. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Li, X. The Association between Lymphocyte to High-Density Lipoprotein Ratio and Depression: Data from NHANES 2015–2018. Brain Behav. 2024, 14, e3467. [Google Scholar] [CrossRef] [PubMed]
- Cândido, F.G.; da Silva, A.; Zanirate, G.A.; Oliveira, N.M.C.E.; Hermsdorff, H.H.M. Lymphocyte to High-Density Lipoprotein Cholesterol Ratio Is Positively Associated with Pre-Diabetes, Metabolic Syndrome, and Non-Traditional Cardiometabolic Risk Markers: A Cross-Sectional Study at Secondary Health Care. Inflammation 2025, 48, 276–287. [Google Scholar] [CrossRef]
- Liu, W.; Tao, Q.; Xiao, J.; Du, Y.; Pan, T.; Wang, Y.; Zhong, X. Low Lymphocyte to High-Density Lipoprotein Ratio Predicts Mortality in Sepsis Patients. Front. Immunol. 2023, 14, 1279291. [Google Scholar] [CrossRef]
- Fagerland, M.W. T-Tests, Non-Parametric Tests, and Large Studies—A Paradox of Statistical Practice? BMC Med. Res. Methodol. 2012, 12, 78. [Google Scholar] [CrossRef]
- Arain, M.; Haque, M.; Johal, L.; Mathur, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the Adolescent Brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Gunnar, M.R.; Wewerka, S.; Frenn, K.; Long, J.D.; Griggs, C. Developmental Changes in Hypothalamus–Pituitary–Adrenal Activity over the Transition to Adolescence: Normative Changes and Associations with Puberty. Dev. Psychopathol. 2009, 21, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Tabilas, C.; Smith, N.L.; Rudd, B.D. Shaping Immunity for Life: Layered Development of CD8+ T Cells. Immunol. Rev. 2023, 315, 108–125. [Google Scholar] [CrossRef]
- Quadflieg, N.; Naab, S.; Fichter, M.; Voderholzer, U. Long-Term Outcome and Mortality in Adolescent Girls 8 Years After Treatment for Anorexia Nervosa. Int. J. Eat. Disord. 2024, 57, 2497–2503. [Google Scholar] [CrossRef]
- Marcolini, F.; Ravaglia, A.; Tempia Valenta, S.; Bosco, G.; Marconi, G.; De Ronchi, D.; Atti, A.R. Severe Enduring Anorexia Nervosa (SE-AN) Treatment Options and Their Effectiveness: A Review of Literature. J. Eat. Disord. 2024, 12, 48. [Google Scholar]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory Cytokines and Anorexia Nervosa: A Meta-Analysis of Cross-Sectional and Longitudinal Studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef]
- Gomez-Casado, G.; Jimenez-Gonzalez, A.; Rodriguez-Muñoz, A.; Tinahones, F.J.; González-Mesa, E.; Murri, M.; Ortega-Gomez, A. Neutrophils as Indicators of Obesity-associated Inflammation: A Systematic Review and Meta-analysis. Obes. Rev. 2025, 26, e13868. [Google Scholar]
- Gerriets, V.A.; MacIver, N.J. Role of T Cells in Malnutrition and Obesity. Front. Immunol. 2014, 5, 379. [Google Scholar] [CrossRef]
- Barker, T.; Fulde, G.; Moulton, B.; Nadauld, L.D.; Rhodes, T. An Elevated Neutrophil-to-Lymphocyte Ratio Associates with Weight Loss and Cachexia in Cancer. Sci. Rep. 2020, 10, 7535. [Google Scholar] [CrossRef]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef]
- Wunderle, C.; Martin, E.; Wittig, A.; Tribolet, P.; Lutz, T.A.; Köster-Hegmann, C.; Stanga, Z.; Mueller, B.; Schuetz, P. Comparison of the Inflammatory Biomarkers IL- 6, TNF-α, and CRP to Predict the Effect of Nutritional Therapy on Mortality in Medical Patients at Risk of Malnutrition. J. Inflamm. 2025, 22, 16. [Google Scholar] [CrossRef]
- Burfeind, K.G.; Michaelis, K.A.; Marks, D.L. The Central Role of Hypothalamic Inflammation in the Acute Illness Response and Cachexia. Semin. Cell Dev. Biol. 2016, 54, 42–52. [Google Scholar] [CrossRef]
- Patel, S. Danger-Associated Molecular Patterns (DAMPs): The Derivatives and Triggers of Inflammation. Curr. Allergy Asthma Rep. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.; Jokela, M.; Batty, G.D.; Cadar, D.; Steptoe, A.; Kivimäki, M. Association Between Systemic Inflammation and Individual Symptoms of Depression: A Pooled Analysis of 15 Population-Based Cohort Studies. Am. J. Psychiatry 2021, 178, 1107–1118. [Google Scholar] [CrossRef]
- Dani, C.; Tarchi, L.; Cassioli, E.; Rossi, E.; Merola, G.P.; Ficola, A.; Cordasco, V.Z.; Ricca, V.; Castellini, G. A Transdiagnostic and Diagnostic-Specific Approach on Inflammatory Biomarkers in Eating Disorders: A Meta-Analysis and Systematic Review. Psychiatry Res. 2024, 340, 116115. [Google Scholar]
- Brooks, S.J.; Dahl, K.; Dudley-Jones, R.; Schiöth, H.B. A Neuroinflammatory Compulsivity Model of Anorexia Nervosa (NICAN). Neurosci. Biobehav. Rev. 2024, 159, 105580. [Google Scholar] [CrossRef]
- Keeler, J.L.; Kan, C.; Treasure, J.; Himmerich, H. Novel Treatments for Anorexia Nervosa: Insights from Neuroplasticity Research. Eur. Eat. Disord. Rev. 2024, 32, 1069–1084. [Google Scholar]
- Schaible, U.E.; Kaufmann, S.H.E. Malnutrition and Infection: Complex Mechanisms and Global Impacts. PLoS Med. 2007, 4, e115. [Google Scholar]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The Effects of Acute Psychological Stress on Circulating and Stimulated Inflammatory Markers: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [PubMed]
- Sirufo, M.M.; Ginaldi, L.; De Martinis, M. Peripheral Vascular Abnormalities in Anorexia Nervosa: A Psycho-Neuro-Immune-Metabolic Connection. Int. J. Mol. Sci. 2021, 22, 5043. [Google Scholar] [PubMed]
- Jindal, J.; Hill, J.; Harte, J.; Dunachie, S.J.; Kronsteiner, B. Starvation and Infection: The Role of Sickness-Associated Anorexia in Metabolic Adaptation during Acute Infection. Metabolism 2024, 161, 156035. [Google Scholar] [PubMed]
- Thavaraputta, S.; Ungprasert, P.; Witchel, S.F.; Fazeli, P.K. Anorexia Nervosa and Adrenal Hormones: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2023, 189, S65–S74. [Google Scholar]
- Maunder, K.; Molloy, E.; Jenkins, E.; Hayden, J.; Adamis, D.; McNicholas, F. Anorexia Nervosa in Vivo Cytokine Production: A Systematic Review. Psychoneuroendocrinology 2023, 158, 106390. [Google Scholar]
Variable | N | Mean | Min–Max |
---|---|---|---|
Age [years] | 50 | 14.76 ± 2.67 | 12–27 |
BMI before recovery [kg/m2] | 49 | 15.12 ± 1.08 | 12.66–17.26 |
BMI after recovery [kg/m2] | 44 | 17.36 ± 0.93 | 15.02–18.90 |
Duration of illness [months] | 47 | 22 ± 31.5 | 3–180 |
Hospital stays duration [days] | 50 | 87 ± 33 | 15–161 |
N | % | ||
Medication intake | 43 | 86 | |
Menstrual status | Primary amenorrhea | 9 | 18 |
Secondary amenorrhea | 40 | 50 | |
Menstruating | 1 | 2 |
Variable | AUC | SE | Lower Limit | Upper Limit | z | p-Value |
---|---|---|---|---|---|---|
Sodium | 0.791 | 0.086 | 0.622 | 0.96 | 3.382 | 0.001 |
Chlorides | 0.82 | 0.066 | 0.69 | 0.95 | 4.822 | <0.001 |
fT4 | 0.781 | 0.097 | 0.591 | 0.972 | 2.891 | 0.004 |
Monocyte count | 0.785 | 0.072 | 0.643 | 0.927 | 3.933 | <0.001 |
MCV | 0.721 | 0.088 | 0.549 | 0.892 | 2.52 | 0.012 |
NLR | 0.745 | 0.086 | 0.578 | 0.913 | 2.869 | 0.004 |
MLR | 0.785 | 0.072 | 0.643 | 0.927 | 3.933 | <0.001 |
SII | 0.736 | 0.089 | 0.562 | 0.911 | 2.652 | 0.008 |
SIRI | 0.803 | 0.067 | 0.671 | 0.935 | 4.51 | <0.001 |
Variable | Proposed Cut-Off Point | Younden Index |
---|---|---|
Sodium | 141 mmol/L | 0.54 |
Chlorides | 104.4 mmol/L | 0.56 |
fT4 | 14.96 ng/L | 0.49 |
Monocyte count | 0.31 | 0.42 |
MCV | 87.1 fl | 0.46 |
NLR | 1.10 | 0.56 |
MLR | 0.18 | 0.51 |
SII | 266.32 | 0.50 |
SIRI | 0.45 | 0.57 |
β-Coefficient | Mean Square | F | p | |
---|---|---|---|---|
Constant term | 9.57 | 11.35 | 0.002 | |
SIRI | −0.34 | 4.95 | 5.87 | 0.021 |
Chlorides | −0.41 | 7.01 | 8.32 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rog, J.; Karakuła, K.; Rząd, Z.; Niedziałek-Serafin, K.; Juchnowicz, D.; Rymuszka, A.; Karakula-Juchnowicz, H. The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa. Nutrients 2025, 17, 2260. https://doi.org/10.3390/nu17142260
Rog J, Karakuła K, Rząd Z, Niedziałek-Serafin K, Juchnowicz D, Rymuszka A, Karakula-Juchnowicz H. The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa. Nutrients. 2025; 17(14):2260. https://doi.org/10.3390/nu17142260
Chicago/Turabian StyleRog, Joanna, Kaja Karakuła, Zuzanna Rząd, Karolina Niedziałek-Serafin, Dariusz Juchnowicz, Anna Rymuszka, and Hanna Karakula-Juchnowicz. 2025. "The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa" Nutrients 17, no. 14: 2260. https://doi.org/10.3390/nu17142260
APA StyleRog, J., Karakuła, K., Rząd, Z., Niedziałek-Serafin, K., Juchnowicz, D., Rymuszka, A., & Karakula-Juchnowicz, H. (2025). The Prognostic Value of Hematological, Immune-Inflammatory, Metabolic, and Hormonal Biomarkers in the Treatment Response of Hospitalized Patients with Anorexia Nervosa. Nutrients, 17(14), 2260. https://doi.org/10.3390/nu17142260