Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health
Abstract
1. Introduction
2. Olive and Its Main Bioactive Compounds
- Olive leaves: they are a by-product of olive cultivation and pruning, and are rich in secoiridioids such as oleuropein and its derivatives, along with flavonoids. These compounds exhibit antioxidant and anti-inflammatory properties and are being explored for use in functional foods and gut microbiota modulation [11,12].
- Olive pomace: is the solid residue from oil extraction and is a particularly rich source that contains not only residual oil but also substantial amounts of dietary fiber, lignans, and a wide spectrum of phenolic compounds that often mirror those found in the oil but may include unique derivatives [13].
- Olive mill wastewater: is a notable reservoir of water-soluble phenolics, including hydroxytyrosol. Despite being traditionally considered an agro-industrial by-product, it has attracted growing interest for its antioxidant, antimicrobial, and anti-inflammatory potential, making it a valuable source for the recovery of functional ingredients in the context of circular economy and sustainable bioproduct development [14].
2.1. Understanding Olive’s Bioactive Components
- Oleuropein: is a molecule characterized by a hydroxyphenyl group attached to a secoiridoid aglycone. It is known to exert a broad spectrum of beneficial effects, including anti-inflammatory, anticancer, antimicrobial, and neuroprotective actions [25]. Additionally, oleuropein has been shown to modulate beneficial skin-associated [26] and gut microbiota [27].
- Hydroxytyrosol: is a phenylethanoid compound that is well known for its strong antioxidant capacity, which is largely attributed to its catechol structure bearing hydroxyls groups at the 3- and 4- positions, functional groups that play a key role in neutralizing free radicals [28]. In addition, hydroxytyrosol demonstrates an exceptional bioavailability of 99% [12], ensuring efficient absorption and systemic distribution within the human body and in 2012 the EFSA approved its role in the prevention of atherosclerosis [29].
- Tyrosol: is a simple phenolic compound characterized by a single hydroxyl group at the 4-position of the phenol ring and is prominent in olive oil and wine. Although its low bioavailability it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory and antimicrobial effects and it has been recognized for its cardioprotective and neuroprotective properties [28,30].
- Oleocanthal: is a phenolic compound structurally characterized by a phenolic aglycone linked to an aromatic aldehyde group and although it represents approximately 10% of the total polyphenols in olive oil it has notable anti-inflammatory and antioxidant properties [31]. It is also responsible for the distinctive pungent, throat-irritating sensation of extra virgin olive oil, an effect that closely resembles the sensation caused by ibuprofen, with which it shares a similar mechanism of action (i.e., inhibition of cyclooxygenase (COX) enzymes) [32].
- Oleacein: is the second most abundant secoiridoid in extra virgin olive oil and it has attracted attention due to its strong antioxidant and anti-inflammatory properties, which are attributed to its structure, similar to that of oleuropein but with a simpler aglycone moiety [33].
- Elenolic acid: is a key phenolic compound derived from the hydrolysis of secoiridoids such as oleuropein and ligstroside, and it plays a crucial role in the biosynthesis of various olive-derived bioactives. Structurally, it features a carboxylic acid group and an enolic moiety, which contribute to its chemical reactivity and its role as a building block in the formation of complex phenolics. Although less studied than other olive polyphenols, elenolic acid has shown promising antioxidant and antimicrobial properties [34].
2.2. Determinants of Olive Oil’s Bioactive Profile
- Agronomic practices (e.g., olive variety, climate, soil composition or irrigation): these factors directly impact the biosynthesis of phenolic compounds in the fruit. For example, drought stress can increase the accumulation of certain antioxidants, while specific cultivars like ‘Picual’ (Spain) or ‘Koroneiki’ (Greece) are known for their high polyphenol content [44].
- Ripeness stage of the olives at harvest: it affects the profile and abundance of phenolics, as they tend to decrease as olives ripen, with unripe or early-harvested fruits generally containing higher levels of oleuropein and related secoiridoids. The choice of harvest time thus balances yield and bioactive richness [45].
- Extraction methods: they play a crucial role in determining both the quantity and quality of recovered bioactive compounds. The choice and optimization of extraction techniques are essential to minimize the degradation of sensitive phenolics while maximizing yield. Conventional methods, such as solvent or mechanical extraction, may not fully recover all valuable compounds or could lead to their alteration. Therefore, newer, greener technologies, like enzyme-assisted or ultrasounds are being developed to enhance selectivity and efficiency, particularly for valorizing olive by-products [46].
- Thermal treatment: this is arguably the most critical factor. High temperatures, often encountered during cooking or certain refining processes, can lead to the degradation of heat-sensitive compounds. This includes many polyphenols and fat-soluble vitamins, potentially reducing the oil’s overall nutritional and health-promoting properties [47]. Conversely, some studies suggest that mild thermal processing might, in certain cases, enhance the release or bioavailability of some bound phenolic compounds [48].
3. Gut Microbiota
3.1. Composition and Associated Effects of the Gut Microbiota
- Mucin production and renewal: for example, Akkermansia muciniphila uses mucin as a substrate and, by degrading it, stimulates mucin secretion by goblet cells, reinforcing the mucus layer that lines the intestine [55]. Other genera (e.g., Lactobacillus and Bifidobacterium) also contribute to maintaining the integrity of the mucosal layer and regulating genes involved in mucin secretion [56].
- Production of antimicrobial peptides such as bacteriocins and other peptides, that inhibit the growth of harmful microorganisms, helping to maintain a balanced gut microbiota [57].
- Colonisation resistance: for example, Lactobacillus competes with pathogenic bacteria for nutrients and adhesion sites on the intestinal mucosa, thereby preventing harmful microbes from establishing themselves in the gut [58].
- IgA production due to it influences the immune system by promoting the production of IgA, that plays a crucial role in mucosal immunity and pathogen neutralization [59].
- Maintenance of the intestinal epithelial cells as these bacteria contribute to the integrity and function of the intestinal epithelial barrier by supporting cell renewal and tight junctions, which are essential for preventing the translocation of harmful substances [20].
- Production of SCFAs such as lactic acid, acetate, propionate, and butyrate, which support gut health by nourishing colonocytes, maintaining intestinal barrier integrity, reducing inflammation, and promoting a balanced gut microbiota [60].
- Synthesis of proteins: certain gut bacteria, particularly Bifidobacterium and Lactobacillus, are capable of synthesizing essential vitamins such as those from the B group (e.g., B12, B9 or folate, B6, B2) and vitamin K, which play key roles in metabolic processes and blood coagulation [61].
- Modulation of the gut-brain axis through the production of neurotransmitters like gamma-aminobutyric acid (GABA), serotonin and dopamine, the gut microbiota can influence the central nervous system, affecting mood, behavior and cognitive functions [62].
- Degradation of xenobiotics: some microbes can metabolize xenobiotic compounds and pharmaceuticals, potentially altering their toxicity or effectiveness [2].
3.2. Microbial Influence on Brain and Behavior: The Gut–Brain Connection
4. Impact of Olive Oil and Its Components in Gut Microbiota
- Oleanolic acid has been shown in mice to restore microbiota balance, increase SCFAs production, and enhance the expression of intestinal tight junction proteins. These effects are partly mediated by the modulation of key signalling pathways, including downregulation of the NLRP3 inflammasome and activation of the bile acid receptor TGR5, both of which contribute to reduced intestinal inflammation and improved barrier integrity [91].
- Maslinic acid, at both high and low doses, has demonstrated protective effects against Parkinson’s disease and has alleviated damage in alcoholic liver injury models through mechanisms involving the modulation of the gut microbiota [116]. These effects are partly mediated by the modulation of key signalling pathways, including downregulation of the NLRP3 inflammasome and activation of the bile acid receptor TGR5, both of which contribute to reduced intestinal inflammation and improved barrier integrity. Additionally, maslinic acid lowers circulating levels of lipopolysaccharides, leading to a subsequent reduction in pro-inflammatory cytokines, further supporting its anti-inflammatory role in gut homeostasis [90].
- Ursolic acid, has shown potential immunomodulatory and hepatoprotective effects, possibly mediated by modulation of the gut microbiota. Preclinical studies suggest that ursolic acid can increase the abundance of beneficial bacterial genera such as Odoribacter and Parabacteroides; however, the underlying mechanisms remain poorly understood, and further research is needed to confirm these effects and their physiological relevance in humans [117].
5. Current Challenges and Future Directions
5.1. Harnessing the Collective Power of Olive’s Bioactives in Gut Health
5.2. Challenges in Translating Animal Model Findings to Human Microbiota Research
5.3. Complexities and Challenges in Studying Olive Impact on the Microbiota-Gut-Brain Axis
5.4. Limitation of Epidemiological Studies
5.5. Study of Microbial Metabolites Beyond SCFAs
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cryan, J.F.; Mazmanian, S.K. Microbiota-Brain Axis: Context and Causality Gut Bacteria Influence the Brain and Behavior, but Causation in Humans Remains Unclear. Science 2022, 376, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Romero, M.; Pazos, F.; Sánchez-Martínez, E.; Benito, C.; Gómez-Ruiz, J.Á.; Borrego-Yaniz, G.; Bowes, C.; Broll, H.; Caminero, A.; Caro, E.; et al. Relevance of Gut Microbiome Research in Food Safety Assessment. Gut Microbes 2024, 16, 2410476. [Google Scholar] [CrossRef] [PubMed]
- Temple, N.J. A Rational Definition for Functional Foods: A Perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef]
- Wang, D.D.; Nguyen, L.H.; Li, Y.; Yan, Y.; Ma, W.; Rinott, E.; Ivey, K.L.; Shai, I.; Willett, W.C.; Hu, F.B.; et al. The Gut Microbiome Modulates the Protective Association between a Mediterranean Diet and Cardiometabolic Disease Risk. Nat. Med. 2021, 27, 333–343. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; et al. Applications of By-Products from the Olive Oil Processing: Revalorization Strategies Based on Target Molecules and Green Extraction Technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Mousavi, S.; Stanzione, V.; Mariotti, R.; Mastio, V.; Azariadis, A.; Passeri, V.; Valeri, M.C.; Baldoni, L.; Bufacchi, M. Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. Antioxidants 2022, 11, 672. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Lozano-Sánchez, J.; Borras-Linares, I.; Emanuelli, T.; Menendez, J.A.; Segura-Carretero, A. Polyphenols in Olive Oil: The Importance of Phenolic Compounds in the Chemical Composition of Olive Oil. In Olives and Olive Oil in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 111–122. [Google Scholar] [CrossRef]
- Sánchez-Quesada, C.; López-Biedma, A.; Warleta, F.; Campos, M.; Beltrán, G.; Gaforio, J.J. Bioactive Properties of the Main Triterpenes Found in Olives, Virgin Olive Oil, and Leaves of Olea europaea. J. Agric. Food Chem. 2013, 61, 12173–12182. [Google Scholar] [CrossRef]
- Schaffer, S.; Müller, W.E.; Eckert, G.P. Cytoprotective Effects of Olive Mill Wastewater Extract and Its Main Constituent Hydroxytyrosol in PC12 Cells. Pharmacol. Res. 2010, 62, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Biltekin, S.İ.; Göğüş, F.; Yanık, D.K. Valorization of Olive Pomace: Extraction of Maslinic and Oleanolic by Using Closed Vessel Microwave Extraction System. Waste Biomass Valorization 2022, 13, 1599–1608. [Google Scholar] [CrossRef]
- Foti, P.; Romeo, F.V.; Russo, N.; Pino, A.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C.L. Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. Appl. Sci. 2021, 11, 7511. [Google Scholar] [CrossRef]
- Garrido-Romero, M.; Díez-Municio, M.; Moreno, F.J. Global Status, Recent Trends, and Knowledge Mapping of Olive Bioactivity Research Through Bibliometric Analysis (2000–2024). Foods 2025, 14, 1349. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A Critical Look at Challenges and Future Scopes of Bioactive Compounds and Their Incorporations in the Food, Energy, and Pharmaceutical Sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Soares Mateus, A.R.; Pena, A.; Sanches-Silva, A. Unveiling the Potential of Bioactive Compounds in Vegetable and Fruit By-Products: Exploring Phytochemical Properties, Health Benefits, and Industrial Opportunities. Curr. Opin. Green. Sustain. Chem. 2024, 48, 100938. [Google Scholar] [CrossRef]
- Benameur, T.; Porro, C.; Twfieg, M.-E.; Benameur, N.; Panaro, M.A.; Filannino, F.M.; Hasan, A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci. 2023, 13, 1226. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The Gut Microbiota: A Key Factor in the Therapeutic Effects of (Poly)Phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Vaiserman, A.M.; Koliada, A.K.; Marotta, F. Gut Microbiota: A Player in Aging and a Target for Anti-Aging Intervention. Ageing Res. Rev. 2017, 35, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and Evolution of Phenolic Compounds in Olive during Growth and Maturation. J. Agric. Food Chem. 1986, 34, 823–826. [Google Scholar] [CrossRef]
- Haris Omar, S. Oleuropein in Olive and Its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; González-Acedo, A.; Illescas-Montes, R.; García-Recio, E.; Ramos-Torrecillas, J.; Costela-Ruiz, V.J.; García-Martínez, O. Biological Effects of the Olive Tree and Its Derivatives on the Skin. Food Funct. 2022, 13, 11410–11424. [Google Scholar] [CrossRef]
- Zang, R.; Zhou, R.; Li, Y.; Liu, Z.; Wu, H.; Lu, L.; Xu, H. Oleuropein Regulates Bile Acid Metabolism via Modulating the Gut Microbiota, Thereby Alleviating DSS-Induced Ulcerative Colitis in Mice. Foods 2025, 14, 1863. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, Toxicity, and Clinical Applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Substantiation of a Health Claim Related to Polyphenols in Olive and Maintenance of Normal Blood HDL Cholesterol Concentrations (ID 1639, Further Assessment) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2848. [Google Scholar] [CrossRef]
- Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Y.; Li, B.; Liu, F.; Ryder, J.W.; Wu, X.; Gonzalez-DeWhitt, P.A.; Gelfanova, V.; Hale, J.E.; May, P.C.; et al. Nonsteroidal Anti-Inflammatory Drugs Can Lower Amyloidogenic Aß42 by Inhibiting Rho. Science (1979) 2003, 302, 1215–1217. [Google Scholar] [CrossRef]
- Segura-Carretero, A.; Curiel, J.A. Current Disease-Targets for Oleocanthal as Promising Natural Therapeutic Agent. Int. J. Mol. Sci. 2018, 19, 2899. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, I.Y.; Habibie, H.; Bahar, M.A.; Budán, F.; Csupor, D. Anticancer Effects of Secoiridoids—A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024, 16, 2755. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, A.; Almodóvar, P.; Jarama, I.; González-Hedström, D.; Prodanov, M.; Inarejos-García, A.M. Anti-Influenza Virus Activity of the Elenolic Acid Rich Olive Leaf (Olea europaea L.) Extract Isenolic®. Antivir. Chem. Chemother. 2021, 29, 1–9. [Google Scholar] [CrossRef]
- Kitsati, N.; Mantzaris, M.D.; Galaris, D. Hydroxytyrosol Inhibits Hydrogen Peroxide-Induced Apoptotic Signaling via Labile Iron Chelation. Redox Biol. 2016, 10, 233–242. [Google Scholar] [CrossRef]
- Parkinson, L.; Keast, R. Oleocanthal, a Phenolic Derived from Virgin Olive Oil: A Review of the Beneficial Effects on Inflammatory Disease. Int. J. Mol. Sci. 2014, 15, 12323–12334. [Google Scholar] [CrossRef]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021, 10, 1507. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’Abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv. Nutr. 2023, 14, 238–255. [Google Scholar] [CrossRef]
- Cabral, C.E.; Klein, M.R.S.T. Phytosterols in the Treatment of Hypercholesterolemia and Prevention of Cardiovascular Diseases. Arq. Bras. Cardiol. 2017, 109, 475–482. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Berry, E.M. The Biological Properties of Oleic Acid. In Handbook of Essential Fatty Acid Biology; Humana Press: Totowa, NJ, USA, 1997; pp. 89–101. [Google Scholar]
- Debbabi, M.; Nury, T.; Zarrouk, A.; Mekahli, N.; Bezine, M.; Sghaier, R.; Grégoire, S.; Martine, L.; Durand, P.; Camus, E.; et al. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int. J. Mol. Sci. 2016, 17, 1973. [Google Scholar] [CrossRef] [PubMed]
- Pierantozzi, P.; Torres, M.; Contreras, C.; Stanzione, V.; Tivani, M.; Gentili, L.; Mastio, V.; Searles, P.; Brizuela, M.; Fernández, F.; et al. Phenolic Content and Profile of Olive Fruits: Impact of Contrasting Thermal Regimes in Non-Mediterranean Growing Environments. Eur. J. Agron. 2025, 164, 127506. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening Indices and Harvesting Times of Different Olive Cultivars for Continuous Harvest. Sci. Hortic. 2013, 151, 1–10. [Google Scholar] [CrossRef]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; De la Torre, M.C.; López-Sabater, M.C. The Effects of Harvest and Extraction Methods on the Antioxidant Content (Phenolics, α-Tocopherol, and β-Carotene) in Virgin Olive Oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- Malvis, A.; Šimon, P.; Dubaj, T.; Sládková, A.; Ház, A.; Jablonský, M.; Sekretár, S.; Schmidt, Š.; Kreps, F.; Burčová, Z.; et al. Determination of the Thermal Oxidation Stability and the Kinetic Parameters of Commercial Extra Virgin Olive Oils from Different Varieties. J. Chem. 2019, 2019, 4567973. [Google Scholar] [CrossRef]
- Krichene, D.; Allalout, A.; Mancebo-Campos, V.; Salvador, M.D.; Zarrouk, M.; Fregapane, G. Stability of Virgin Olive Oil and Behaviour of Its Natural Antioxidants under Medium Temperature Accelerated Storage Conditions. Food Chem. 2010, 121, 171–177. [Google Scholar] [CrossRef]
- El Morabit, Y.; El Maadoudi, M.; Alahlah, N.; Salhi, A.; Amhamdi, H.; Ahari, M. A Comprehensive Review of Advanced Analytical Techniques and Chemometric Methods for Assessing Olive Oil Quality and Authenticity. Food Anal. Methods 2025, 1–34. [Google Scholar] [CrossRef]
- Jandhyala, S.M. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Guiducci, L.; Nicolini, G.; Forini, F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023, 13, 760. [Google Scholar] [CrossRef]
- Tamayo, M.; Olivares, M.; Ruas-Madiedo, P.; Margolles, A.; Espín, J.C.; Medina, I.; Moreno-Arribas, M.V.; Canals, S.; Mirasso, C.R.; Ortín, S.; et al. How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging. Annu. Rev. Food Sci. Technol. 2024, 15, 283–305. [Google Scholar] [CrossRef] [PubMed]
- Gacesa, R.; Kurilshikov, A.; Vich Vila, A.; Sinha, T.; Klaassen, M.A.Y.; Bolte, L.A.; Andreu-Sánchez, S.; Chen, L.; Collij, V.; Hu, S.; et al. Environmental Factors Shaping the Gut Microbiome in a Dutch Population. Nature 2022, 604, 732–739. [Google Scholar] [CrossRef]
- Liu, M.-J.; Yang, J.-Y.; Yan, Z.-H.; Hu, S.; Li, J.-Q.; Xu, Z.-X.; Jian, Y.-P. Recent Findings in Akkermansia Muciniphila-Regulated Metabolism and Its Role in Intestinal Diseases. Clin. Nutr. 2022, 41, 2333–2344. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, K.; Sugiyama, M.; Mukai, T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms 2016, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.; Tiwari, S.K. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front. Cell Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef]
- Jia, J.; Bao, P.; Yu, Q.; Li, N.; Ren, H.; Chen, Q.; Yan, P. Lactobacillus Re-Engineers Gut Microbiota to Overcome E. Coli Colonization Resistance in Mice. Vet. Sci. 2025, 12, 484. [Google Scholar] [CrossRef]
- Pabst, O.; Slack, E. IgA and the Intestinal Microbiota: The Importance of Being Specific. Mucosal Immunol. 2020, 13, 12–21. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, H.; Liu, R.; Huang, C.; Li, H.; Deng, Z.; Tsao, R. Do Short Chain Fatty Acids and Phenolic Metabolites of the Gut Have Synergistic Anti-Inflammatory Effects?–New Insights from a TNF-α-Induced Caco-2 Cell Model. Food Res. Int. 2021, 139, 109833. [Google Scholar] [CrossRef]
- Tarracchini, C.; Lugli, G.A.; Mancabelli, L.; van Sinderen, D.; Turroni, F.; Ventura, M.; Milani, C. Exploring the Vitamin Biosynthesis Landscape of the Human Gut Microbiota. mSystems 2024, 9, e0092924. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological Mechanisms of Inflammatory Diseases Caused by Gut Microbiota Dysbiosis: A Review. Biomed. Pharmacother. 2023, 164, 114985. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef]
- Winter, S.E.; Bäumler, A.J. Gut Dysbiosis: Ecological Causes and Causative Effects on Human Disease. Proc. Natl. Acad. Sci. USA 2023, 120, e2316579120. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.-J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [Google Scholar] [CrossRef]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; et al. Impact of Commonly Used Drugs on the Composition and Metabolic Function of the Gut Microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–Gut–Brain Axis and Its Therapeutic Applications in Neurodegenerative Diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Barrera-Chamorro, L.; Fernandez-Prior, A.; Claro-Cala, C.M.; del Rio-Vazquez, J.L.; Rivero-Pino, F.; Montserrat-de la Paz, S. Unveiling the Neuroprotective Impact of Virgin Olive Oil Ingestion via the Microbiota–Gut–Brain Axis. Food Funct. 2025, 16, 24–39. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13, 2099. [Google Scholar] [CrossRef]
- Schneider, E.; O’Riordan, K.J.; Clarke, G.; Cryan, J.F. Feeding Gut Microbes to Nourish the Brain: Unravelling the Diet–Microbiota–Gut–Brain Axis. Nat. Metab. 2024, 6, 1454–1478. [Google Scholar] [CrossRef]
- Ansari, F.; Neshat, M.; Pourjafar, H.; Jafari, S.M.; Samakkhah, S.A.; Mirzakhani, E. The Role of Probiotics and Prebiotics in Modulating of the Gut-Brain Axis. Front. Nutr. 2023, 10, 1173660. [Google Scholar] [CrossRef] [PubMed]
- Millman, J.F.; Okamoto, S.; Teruya, T.; Uema, T.; Ikematsu, S.; Shimabukuro, M.; Masuzaki, H. Extra-Virgin Olive Oil and the Gut-Brain Axis: Influence on Gut Microbiota, Mucosal Immunity, and Cardiometabolic and Cognitive Health. Nutr. Rev. 2021, 79, 1362–1374. [Google Scholar] [CrossRef]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.M.; Moschetta, A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Huang, B.; Lu, Q.; Liu, R. 3,4-Dihydroxyphenylacetic Acid Ameliorates Gut Barrier Dysfunction via Regulation of MAPK-MLCK Pathway in Type 2 Diabetes Mice. Life Sci. 2022, 305, 120742. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Mattes, W.B. In Vitro to In Vivo Translation. Curr. Opin. Toxicol. 2020, 23–24, 114–118. [Google Scholar] [CrossRef]
- Chioccioli, S.; Rocchetti, G.; Ruzzolini, J.; Urciuoli, S.; Vitali, F.; Bartolucci, G.; Pallecchi, M.; Caderni, G.; De Filippo, C.; Nediani, C.; et al. Changes in Faecal Microbiota Profile and Plasma Biomarkers Following the Administration of an Antioxidant Oleuropein-Rich Leaf Extract in a Rat Model Mimicking Colorectal Cancer. Antioxidants 2024, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Negm, M.H.; Aldhalmi, A.K.; Ashour, E.A.; Mohamed, L.A.; Youssef, I.M.; Kamal, M.; Elolimy, A.A.; Mahgoub, S.A.; Abd El-Hack, M.E.; Swelum, A.A. Consequences of Dietary Olive Leaf Powder Supplementation on Growth Performance, Carcass Traits, Blood Biochemical Parameters and Gut Microbiota in Broilers. Poult. Sci. 2025, 104, 105087. [Google Scholar] [CrossRef] [PubMed]
- Ferlisi, F.; Mecocci, S.; Cappelli, K.; Acuti, G.; Tang, J.; Giglia, G.; Rampacci, E.; Mourtzinos, I.; Kyriakoudi, A.; Pietrucci, D.; et al. Gastrointestinal Health Evaluation through Amplicon-Based Metagenomics, Histopathology and Morphometry in Finishing Pigs Fed an Olive Mill Wastewater Polyphenol Extract. Ital. J. Anim. Sci. 2025, 24, 1107–1124. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Abdullah; Tian, W.; Qiu, Z.; Song, M.; Cao, Y.; Xiao, J. Hydroxytyrosol Alleviates Dextran Sulfate Sodium-Induced Colitis by Modulating Inflammatory Responses, Intestinal Barrier, and Microbiome. J. Agric. Food Chem. 2022, 70, 2241–2252. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Zhong, R.; Chen, L.; Zhang, H. Hydroxytyrosol Alleviates Intestinal Oxidative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int. J. Mol. Sci. 2024, 25, 5590. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, M.; Wang, J.; Zhang, H.; Wang, Z.; Lei, Z.; Wang, C.; Chen, W. Hydroxytyrosol Ameliorates Colon Inflammation: Mechanistic Insights into Anti-Inflammatory Effects, Inhibition of the TLR4/NF-ΚB Signaling Pathway, Gut Microbiota Modulation, and Liver Protection. Foods 2025, 14, 1270. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Ma, Y.; Wen, D. Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. Front. Microbiol. 2019, 10, 390. [Google Scholar] [CrossRef]
- Su, J.; Dai, Y.; Wu, X.; Zhou, X.; Fang, X.; Ge, X.; Zhao, L. Maslinic Acid Alleviates Alcoholic Liver Injury in Mice and Regulates Intestinal Microbiota via the Gut–Liver Axis. J. Sci. Food Agric. 2024, 104, 7928–7938. [Google Scholar] [CrossRef]
- Xue, C.; Lv, H.; Li, Y.; Dong, N.; Wang, Y.; Zhou, J.; Shi, B.; Shan, A. Oleanolic Acid Reshapes the Gut Microbiota and Alters Immune-related Gene Expression of Intestinal Epithelial Cells. J. Sci. Food Agric. 2022, 102, 764–773. [Google Scholar] [CrossRef]
- Rocchetti, G.; Luisa Callegari, M.; Senizza, A.; Giuberti, G.; Ruzzolini, J.; Romani, A.; Urciuoli, S.; Nediani, C.; Lucini, L. Oleuropein from Olive Leaf Extracts and Extra-Virgin Olive Oil Provides Distinctive Phenolic Profiles and Modulation of Microbiota in the Large Intestine. Food Chem. 2022, 380, 132187. [Google Scholar] [CrossRef]
- Valenti, B.; Scicutella, F.; Viti, C.; Daghio, M.; Mannelli, F.; Gigante, D.; Buccioni, A.; Bolletta, V.; Morbidini, L.; Turini, L.; et al. Olive Tree Leaves in Dairy Sheep Diet: Effects on Rumen Metabolism, Microbiota Composition and Milk Quality. Animal 2025, 19, 101435. [Google Scholar] [CrossRef]
- Yu, F.; Hu, X.; Ren, H.; Wang, X.; Shi, R.; Guo, J.; Chang, J.; Zhou, X.; Jin, Y.; Li, Y.; et al. Protective Effect of Synbiotic Combination of Lactobacillus plantarum SC-5 and Olive Oil Extract Tyrosol in a Murine Model of Ulcerative Colitis. J. Transl. Med. 2024, 22, 308. [Google Scholar] [CrossRef] [PubMed]
- Qusa, M.H.; Abdelwahed, K.S.; Hill, R.A.; El Sayed, K.A. S-(−)-Oleocanthal Ex Vivo Modulatory Effects on Gut Microbiota. Nutrients 2023, 15, 618. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Miranda, B.; Gallardo, I.; Melliou, E.; Cabero, I.; Álvarez, Y.; Hernández, M.; Magiatis, P.; Hernández, M.; Nieto, M.L. Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int. J. Mol. Sci. 2023, 24, 4977. [Google Scholar] [CrossRef]
- Li, X.; Wei, T.; Li, J.; Yuan, Y.; Wu, M.; Chen, F.; Deng, Z.; Luo, T. Tyrosol Ameliorates the Symptoms of Obesity, Promotes Adipose Thermogenesis, and Modulates the Composition of Gut Microbiota in HFD Fed Mice. Mol. Nutr. Food Res. 2022, 66, e2101015. [Google Scholar] [CrossRef]
- Chen, W.; Yu, Y.; Liu, Y.; Song, C.; Chen, H.; Tang, C.; Song, Y.; Zhang, X. Ursolic Acid Regulates Gut Microbiota and Corrects the Imbalance of Th17/Treg Cells in T1DM Rats. PLoS ONE 2022, 17, e0277061. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Chiarello, E.; Di Nunzio, M.; Bordoni, A.; Gianotti, A. Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients 2021, 13, 787. [Google Scholar] [CrossRef]
- Lauwers, S.; Weyns, A.-S.; Breynaert, A.; Van Rillaer, T.; Van Huynegem, V.; Fransen, E.; Bittremieux, W.; Lebeer, S.; Tuenter, E.; Hermans, N. Comparison of In Vitro Biotransformation of Olive Polyphenols Between Healthy Young and Elderly. Metabolites 2025, 15, 26. [Google Scholar] [CrossRef]
- Aliyah, R.; Taslim, N.A. Effect of Extra Virgin Olive Oil on Inflammatory Markers and Intestinal Microbiota in Chronic Kidney Disease Patients. Nutr. Clínica Y Dietética Hosp. 2024, 44, 244–252. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Castañer, O.; Solà, R.; Motilva, M.; Castell, M.; Pérez-Cano, F.; Fitó, M. Influence of Phenol-Enriched Olive Oils on Human Intestinal Immune Function. Nutrients 2016, 8, 213. [Google Scholar] [CrossRef]
- Conterno, L.; Martinelli, F.; Tamburini, M.; Fava, F.; Mancini, A.; Sordo, M.; Pindo, M.; Martens, S.; Masuero, D.; Vrhovsek, U.; et al. Measuring the Impact of Olive Pomace Enriched Biscuits on the Gut Microbiota and Its Metabolic Activity in Mildly Hypercholesterolaemic Subjects. Eur. J. Nutr. 2019, 58, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.B.; Costa, C.M.; Bonifácio-Lopes, T.; Silva, S.; Veiga, M.; Monforte, A.R.; Nunes, J.; Vicente, A.A.; Pintado, M. Prebiotic Effects of Olive Pomace Powders in the Gut: In Vitro Evaluation of the Inhibition of Adhesion of Pathogens, Prebiotic and Antioxidant Effects. Food Hydrocoll. 2021, 112, 106312. [Google Scholar] [CrossRef]
- Mónica, S.-G.; Ricardo, G.-G.; Manuela, P.; Alejandro, R.; Elena, C. Prebiotic Potential of Olive Leaf By-Product throughout in Vitro Human Colon Fermentation. Food Biosci. 2025, 68, 106659. [Google Scholar] [CrossRef]
- Pacheco-Ordaz, R.; Wall-Medrano, A.; Goñi, M.G.; Ramos-Clamont-Montfort, G.; Ayala-Zavala, J.F.; González-Aguilar, G.A. Effect of Phenolic Compounds on the Growth of Selected Probiotic and Pathogenic Bacteria. Lett. Appl. Microbiol. 2018, 66, 25–31. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Cámara, M.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Jos, A.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; et al. Phenolic Compounds Naturally Present in Olive Oil and Lowering of Blood LDL-cholesterol and Systolic Blood Pressure, Therefore Reducing the Risk of Coronary Heart Disease: Evaluation of a Health Claim Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2025, 23, e9470. [Google Scholar] [CrossRef]
- Bender, C.; Strassmann, S.; Golz, C. Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023, 15, 325. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, Z.; Zhang, H.; Liu, Z.; Chen, W.; Jia, Y.; Shi, R.; Wang, C. From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety. Int. J. Mol. Sci. 2025, 26, 4470. [Google Scholar] [CrossRef]
- Martín, M.A.; Ramos, S.; Granado-Serrano, A.B.; Rodríguez-Ramiro, I.; Trujillo, M.; Bravo, L.; Goya, L. Hydroxytyrosol Induces Antioxidant/Detoxificant Enzymes and Nrf2 Translocation via Extracellular Regulated Kinases and Phosphatidylinositol-3-Kinase/Protein Kinase B Pathways in HepG2 Cells. Mol. Nutr. Food Res. 2010, 54, 956–966. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Saguie, B.O.; Pereira de Almeida Nogueira, N.; Paes, M.; dos Santos Valença, S.; Atella, G.C.; Monte-Alto-Costa, A. Oleic Acid and Hydroxytyrosol Present in Olive Oil Promote ROS and Inflammatory Response in Normal Cultures of Murine Dermal Fibroblasts through the NF-ΚB and NRF2 Pathways. Food Res. Int. 2020, 131, 108984. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, H.; Zhang, Q.; Yang, F.; Bu, C.; Chen, S. Hydroxytyrosol Alleviates Acute Liver Injury by Inhibiting the TNF-α/PI3K/AKT Signaling Pathway via Targeting TNF-α Signaling. Int. J. Mol. Sci. 2024, 25, 12844. [Google Scholar] [CrossRef]
- Guo, J.; Meng, F.; Hu, R.; Chen, L.; Chang, J.; Zhao, K.; Ren, H.; Liu, Z.; Hu, P.; Wang, G.; et al. Inhibition of the NF-ΚB/HIF-1α Signaling Pathway in Colorectal Cancer by Tyrosol: A Gut Microbiota-Derived Metabolite. J. Immunother. Cancer 2024, 12, e008831. [Google Scholar] [CrossRef] [PubMed]
- Zodio, S.; Serreli, G.; Melis, M.P.; Franchi, B.; Boronat, A.; de la Torre, R.; Deiana, M. Protective Effect of Hydroxytyrosol and Tyrosol Metabolites in LPS-Induced Vascular Barrier Derangement in Vitro. Front. Nutr. 2024, 11, e008831. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, K.; Wang, S.; Wang, Q.; Hu, Y.; Yin, F.; Liu, X.; Zhou, D. Distribution of Tyrosol Fatty Acid Esters in the Gastrointestinal Tracts of Mice and Their Hydrolysis Characteristics by Gut Microbiota. Food Funct. 2022, 13, 2998–3008. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, Y.; Yang, K.; Jiao, J.; Zhan, H.; Yang, Y.; Lv, D.; Li, W.; Ding, W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022, 27, 8732. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, Y.; Wang, F.; Wu, F.; Li, C.; Liu, S.; Chen, B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int. J. Mol. Sci. 2024, 25, 10623. [Google Scholar] [CrossRef]
- Du, S.; Huang, H.; Li, X.; Zhai, L.; Zhu, Q.; Zheng, K.; Song, X.; Xu, C.; Li, C.; Li, Y.; et al. Anti-Inflammatory Properties of Uvaol on DSS-Induced Colitis and LPS-Stimulated Macrophages. Chin. Med. 2020, 15, 43. [Google Scholar] [CrossRef]
- Juan, M.E.; Wenzel, U.; Daniel, H.; Planas, J.M. Erythrodiol, a Natural Triterpenoid from Olives, Has Antiproliferative and Apoptotic Activity in HT-29 Human Adenocarcinoma Cells. Mol. Nutr. Food Res. 2008, 52, 595–599. [Google Scholar] [CrossRef]
- Moreno, F.J.; Pazos, F.; Garrido-Romero, M.; Payen, C.; Borrego-Yaniz, G.; Chagoyen, M.; Corzo, N.; Denis, M.; Fablet, C.; Fernández, M.; et al. Roadmap for the Integration of Gastro-intestinal (GI) Tract Microbiomes (Human and Domestic Animal) in Risk Assessments under EFSA’s Remit. EFSA Support. Publ. 2024, 21, 8597E. [Google Scholar] [CrossRef]
- Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host Variables Confound Gut Microbiota Studies of Human Disease. Nature 2020, 587, 448–454. [Google Scholar] [CrossRef]
Animal Studies | ||||||
---|---|---|---|---|---|---|
Title | Study Type | Olive Matrix | Compound | Dosage and Time | Microbiota Changes | Main Findings |
[83] | In vivo | Olive leaves | OLE | 2.7 g of OLE/kg of diet during 1 week | ↑ Clostridiales, Paraprevotella, Anaerotruncus, Oscillibacter, Sporobacter ↓ Alistipes, Morganella | OLE significantly modulated the gut microbiota and plasma metabolomic profiles, supporting its potential protective role in colorectal cancer progression |
[84] | In vivo | Olive leaves | OLE | 1 g/kg and 2 g/kg feed for 31 days | ↑ Lactobacillus ↓ E. coli, Clostridium spp. | ↑ body weight, ↑ carcass and breast yield, ↓ abdominal fat; improved lipid profile (↓ cholesterol, TG, VLDL); enhanced immunity and antioxidant markers |
[85] | In vivo | Olive mill wasterwater | HT, P | 74 ppm and 225 ppm of polyphenols/pig/day for 85 days | ↑ Eubacterium, Treponema ↓ Fusobacterium, Bacteroides helcogenes, Corynebacterium urealiticum | Positive effect on gut health and microbiota composition; improvement of intestinal morphology and potential to improve animal growth and health |
[86] | In vivo | Olive oil | HT | 10 and 50 mg/kg of HT | ↑ Lachnospiraceae, Muribaculaceae, Colidextribacter ↓ Bacteroidaceae, Desulfovibrionaceae | HT promoted intestinal barrier regeneration, modulated gut microbiota composition and restored SCFAs production in colitic mice |
[87] | In vivo | - | HT | 500 mg/kg HT for 28 days | ↑ Clostridium, Intestinibacter ↓ Lactobacillus, Streptococcus | HT Improves intestinal morphology (↑ villus height, ↑ villus height/crypt depth ratio) and attenuates intestinal inflammation enhancing antioxidant capacity |
[88] | In vivo | - | HT | 60 mg/kg of HT after 7 days of induction of colitis with DSS | ↑ Bacteroidota, Bacteroidota, Firmicutes ↓ Staphylococcus, Aerococcus, Alistipes | HT alleviated the DSS-induced colitis and enhanced antioxidant and anti-inflammatory responses |
[89] | In vivo | - | HT | 50 mg/kg/day of HT | ↓ Ruminococcaceae, Proteobacteria, Christensenellaceae, Ferribacter; ↑ Parabacteroides goldsteinii, Lactobacillus johnsonii, Rikenella | HT modulated gut microbiota composition, reversed dysbiosis and alleviated inflammation in High-Fat-Diet-Induced mice |
[90] | In vivo | - | MA | 50 and 100 mg kg−1 of MA during 11 days | ↑ Bacteroidetes, Parabacteroides ↓ Proteobacteria, Enterococcus, Escherichia-Shigella | MA alleviates alcoholic liver injury, intestinal barrier damage and inhibits liver inflammation |
[91] | In vivo | - | OA | 100 mg/kg of OA per day | ↑ Firmicutes, Oscillibacter, Ruminiclostridium; ↓ Actinobacteria | OA changed the composition of mice gut microbiota and improved the intestinal immune system |
[92] | In vitro | Olive leaves | PC, OLE | Not specified | ↑ Coriobacteriaceae (Collinsella sp.), Eggerthellaceae (Eggerthella sp.) ↓ Bacteroidota | ↓ oleuropein and ↑ hydroxytyrosol and phenolic metabolites; significant changes in amino acids and fatty acids |
[93] | In vivo In vitro | Olive leaves | P | 800 g leaves/sheep/day; 30 days | ↑ Catenisphera, Mogibacterium | Increase in milk MUFA, PUFA (n-3 and n-6), decrease in SFA and improved milk fatty acid profile and health indexes |
[94] | In vivo | - | Tyr | 20 mg Tyr/kg/day for 7 days | ↑ Lactobacillus, Bifidobacterium, Akkermansia ↓ Proteus | Tyr alleviated colitis morbidity and mucosal injury and improved colonic barrier integrity |
[95] | Ex vivo | Extra virgin olive oil | OC | 10 mg of OC | ↑ Monoglobus pectinilyticus, Lachnospiraceae ↓ Prevotella denticola, Bacteroides caecimuris | Positive potential of oleocanthal as a nutraceutical |
[96] | In vitro/Ex vivo | Olive leaves | OLEA | Not specified | ↑ Akkermansiaceae | Oleacein regulate intestinal oxidative stress, inflammation and permeability in mice. |
[97] | In vivo | Extra virgin olive oil | Tyr | 0.2% (wt/wt) for 16 weeks | ↑ Muribaculaceae, Blautia, Lachnospiraceae ↓ Firmicutes/Bacteroidetes | Tyrosol consumption attenuates obesity and related symptoms in HFD-fed mice probably via the modulation of PPARα-thermogenesis and gut microbiota |
[98] | In vivo | - | UA | 25, 50 and 100 mg/kg (bw)/day UA | ↑ Firmicutes/Bacteroidetes | UA alleviates the symptoms of type 1 diabetes mellitus in rats and it modulates the intestinal microflora composition |
Title | Study Type | Olive Matrix | Compound | Dosage and Time | Microbiota Changes | Other Findings |
---|---|---|---|---|---|---|
[99] | In vitro | Olive pomace | P | Not specified | ↑ Bifidobacteriaceae, Lactobacillales | ↑ low organic fatty acids; ↓ detrimental volatile organic compounds (e.g., skatole) |
[100] | In vitro | Olive leaves | OLE | Not specified | ↓ α-diversity after 24 h | Biotransformation of OLE was via deglycosylation, hydrolysis, ring cleavage, demethylation |
[101] | In vitro | Extra virgin olive oil | - | 40 mL/day of Extra virgin olive oil | Reduced inflammation and improved gut microbiota health (increase in SCFA levels) | |
[102] | In vivo | Virgin olive oil | PC | 80 mg/kg–500 mg/kg of PC | ↑ IgA-coated bacteria | Increase in systemic inflammation markers contrasts with known anti-inflammatory effects of olive oil phenolics, suggesting a complex dose-dependent response |
[103] | In vivo | Olive pomace | HT | Not specified | ↑ Bifidobacteria; ↓ Lactobacilli, Ruminococcus | Sex-dependent variation in metabolites and bacteria abundances and trend to ↓ oxidized LDL cholesterol |
[104] | In vitro | Olive pomace | P | - | ↑ Prevotella, Bacteroides and stable ratio of Firmicutes/Bacteroidetes | Production of SCFAs (acetate, butyrate, propionate) and development of a mucin-adhesion inhibition ability against pathogens |
[105] | In vitro | Olive leaves | HT, Ty, OLE, vanillin | Not specified | ↑ Bifidobacterium, Clostridium ↓ Firmicutes:Bacteroidetes ratio | ↑ SCFAs (acetate, butyrate, propionate) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Romero, M.; Díez-Municio, M.; Moreno, F.J. Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health. Foods 2025, 14, 2413. https://doi.org/10.3390/foods14142413
Garrido-Romero M, Díez-Municio M, Moreno FJ. Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health. Foods. 2025; 14(14):2413. https://doi.org/10.3390/foods14142413
Chicago/Turabian StyleGarrido-Romero, Manuel, Marina Díez-Municio, and Francisco Javier Moreno. 2025. "Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health" Foods 14, no. 14: 2413. https://doi.org/10.3390/foods14142413
APA StyleGarrido-Romero, M., Díez-Municio, M., & Moreno, F. J. (2025). Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health. Foods, 14(14), 2413. https://doi.org/10.3390/foods14142413