Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
Abstract
Featured Application
Abstract
1. Introduction
1.1. Overview of Insulin Resistance (IR) and Its Association with Obesity
1.2. Dietary Interventions as a Key Strategy for Managing IR
1.3. Definition and Characteristics of Sprouted Grains
1.4. Emerging Interest in Sprouted Grains as a Functional Food for Improving Insulin Sensitivity
2. Methods and Materials
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Peer-reviewed original articles or reviews published between 2020 and 2025 (as of June 2025);
- Studies focusing on sprouted or germinated grains and their influence on IR, glucose metabolism, or metabolic health;
- Articles examining bioactive compounds or the nutritional composition of sprouted grains relevant to obesity, IR, or MetS;
- Older articles (published before 2020) were also considered when recent studies were unavailable or when foundational mechanisms were needed to support key points in the discussion.
2.2.2. Exclusion Criteria
- Studies published in non-English languages;
- Conference abstracts, letters to the editor, or reports lacking primary data;
- Articles not directly related to IR or metabolic functions;
- Duplicate publications or studies lacking a clear methodology.
3. Nutritional and Bioactive Components of Sprouted Grains
Grain Varieties | Sprouting Conditions | Key Benefits | References |
---|---|---|---|
Red-pigmented rice (Oryza sativa L.) | Soaked and germinated at 25 °C for 30 h, 90% humidity | ↑ Protein (9.4%), ↑ Fat (27%) | [27] |
Coix seed (Coix lacryma-jobi L.) | Soaked at 36 °C for 10 h, germinated at 29 °C for 24h | ↑ Soluble protein (32%), ↑ Free amino acids (41%) | [28] |
Oat (Avena sativa L. cv. ‘Turquesa’) | Germinated at 25 °C for 5 days in darkness, 60% relative humidity | ↑ Protein (14%), ↑ Lipids (26%), ↓ Total fiber (55%) | [29] |
Quinoa (Chenopodium quinoa Willd., cv. ‘Choclito’, white) | Germinated at 25 °C for 72 h, 95% humidity | ↑ Protein (11%), ↑ Fiber (21%), ↑ Magnesium (9%) | [30] |
Quinoa (cv. ‘Pasankalla’, red) | Standard germination conditions * for 72 h | ↑ Protein (11%), ↑ Fiber (17%), ↑ Iron (11%) | [30] |
Quinoa (cv. ‘Collana’, black) | Standard germination conditions * for 72 h | ↑ Protein (13%), ↑ Iron (26%), ↑ Magnesium (18%) | [30] |
Category | Key Changes | Examples and Details | References |
---|---|---|---|
Proteins and Amino Acids | • ↑ Endogenous protease activity → hydrolysis of storage proteins • ↑ Water-soluble proteins • ↑ Free amino acids | • Soybean (Glycine max; ZD41, J58, JHD): 36 h germination → water-soluble protein +9–30% • Quinoa (Chenopodium quinoa): 7 d germination → total essential amino acids +7–14% | [31,32,33] |
Carbohydrates and Fiber | • ↑ α-amylase activity → breakdown of starch • Preferential amylopectin degradation → Relative ↑ amylose • ↓ Viscosity and gelatinization temperature | • Coix seed (Coix lacryma-jobi L.) : 24 h germination → starch ↓ from 58.9% to 52.4% • Oat (Avena sativa L.): α-amylase ↑ from 0.3 to 48 U/g • Quinoa: 72 h germination → changes in total dietary fiber | [28,34,35] |
Lipids and Fatty Acids | • Lipase-mediated hydrolysis → β-oxidation and energy supply • ↓ Lipase activity relative to other enzymes •↑ Polyunsaturated Fatty Acids (PUFA; especially n-3), ↓ Saturated Fatty Acids (SFA) | • Barley (Hordeum vulgare): ↑ stearic acid (C18:0) and α-linolenic acid (C18:3n-3), ↓ oleic acid (C18:1n-9) • Eight grains comparison: PUFA 46.9–75.6% (millet highest) | [36,37] |
Micronutrient Bioavailability | • Degradation of antinutrients → ↑ extractability of vitamins and minerals • ↑ Water-soluble B-vitamins and fat-soluble vitamin E | • Oat: marked ↑ in thiamine and riboflavin • Quinoa (JQ-R2): riboflavin 4–5× increase at 36 h • Brown rice (Oryza sativa): ↑ α-tocopherol and tocotrienols at 96 h after seed soaking | [26,38,39] |
Antinutrient Reduction | • ↓ Phytic acid, lectins, and trypsin inhibitors • ↑ Phytase activity → mineral solubilization | • Quinoa: germination → ↓ phytic acid → ↑ Ca, Zn, Fe bioavailability | [40,41] |
Bioactive Compounds | • ↑ Gamma-Aminobutyric Acid (GABA), polyphenols, flavonoids, β-glucan • ↑ Antioxidant and anti-inflammatory activities | • Adzuki bean (Vigna angularis): GABA up to 674 ± 31 mg/kg → improved glucose and weight regulation in mice • Oat: β-glucan +14–37% → Histone Deacetylase 3(HDAC3)/ Nuclear factor kappa B (NF-κB) pathway modulation • Red rice (Oryza sativa): flavonoids +20%, DPPH/ABTS activity ↑ 1.0–1.4× | [26,27,42,43] |
3.1. Macronutrient Modifications During Sprouting
3.1.1. Modification of Protein and Amino Acid Contents
3.1.2. Modification of Carbohydrates and Dietary Fiber
3.1.3. Modification of Lipids and Fatty Acid Profiles
3.2. Enhanced Bioavailability of Micronutrients
3.3. Reduction of Anti-Nutrients and Improved Digestibility
3.4. Increased Bioactive Compounds
3.5. Functional Food Applications of Sprouted Grains
4. Mechanisms by Which Sprouted Grains Improve Insulin Sensitivity
4.1. Reduction of Postprandial Glycemic Response
4.2. Anti-Inflammatory and Antioxidant Properties
4.2.1. Suppression of Pro-Inflammatory Cytokines
4.2.2. ROS Scavenging
4.3. Prebiotic Effects of Sprouted Grains on Gut Health
4.4. Modulation of Lipid Metabolism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IR | Insulin resistance |
BMI | Body mass index |
ROS | Reactive oxygen species |
NF-κB | Nuclear factor kappa B |
SOCS | Suppressor of cytokine signaling |
JNK | c-Jun N-terminal kinase |
Wnt | Wingless-related integration site |
TLR | Toll-like receptor |
TNF-α | Tumor necrosis factor-α |
LPS | Lipopolysaccharide |
MCP-1 | Monocyte chemoattractant protein-1 |
IL-6 | Interleukin-6 |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
IκBα | Inhibitor of kappa B alpha |
MetS | Metabolic syndrome |
T2DM | Type 2 diabetes mellitus |
HEI | Healthy Eating Index |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
GBR | Germinated brown rice |
GABA | Gamma-aminobutyric acid |
BCAA | Branched-chain amino acids |
SCFA | Short-chain fatty acid |
GI | Glycemic index |
PUFA | Polyunsaturated fatty acids |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
FRAP | Ferric reducing antioxidant power |
HDAC3 | Histone deacetylase 3 |
IVPD | In vitro protein digestibility |
IRS-1 | Insulin receptor substrate-1 |
PI3K | Phosphoinositide 3-kinase |
Akt | Protein kinase B (commonly known as Akt) |
AMPK | AMP-activated protein kinase |
GLUT | Glucose transporter |
GCK | Glucokinase |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
CRP | C-reactive protein |
ORAC | Oxygen radical absorbance capacity |
TEAC | Trolox equivalent antioxidant capacity |
Treg | Regulatory T cell |
Th17 | T helper 17 cell |
IL-8 | Interleukin-8 |
LDL | Low-density lipoprotein |
References
- Szukiewicz, D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int. J. Mol. Sci. 2023, 24, 9818. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. S2), S135–S148. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Suren Garg, S.; Kushwaha, K.; Dubey, R.; Gupta, J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res. Clin. Pract. 2023, 200, 110691. [Google Scholar] [CrossRef]
- Gao, D.; Bing, C.; Griffiths, H.R. Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy. Adipocyte 2025, 14, 2485927. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Sun, J.; Wu, P.; Cheng, Z.; Zhou, P.; Li, N.; Cheng, L.; Xu, P.; Xue, Y.; Tian, J.; et al. Associations of dietary pattern, insulin resistance and risk of developing metabolic syndrome among Chinese population. PLoS ONE 2024, 19, e0308090. [Google Scholar] [CrossRef]
- Ushula, T.W.; Mamun, A.; Darssan, D.; Wang, W.Y.S.; Williams, G.M.; Whiting, S.J.; Najman, J.M. Dietary patterns and the risks of metabolic syndrome and insulin resistance among young adults: Evidence from a longitudinal study. Clin. Nutr. 2022, 41, 1523–1531. [Google Scholar] [CrossRef]
- Heidarzadeh-Esfahani, N.; Darbandi, M.; Khamoushi, F.; Najafi, F.; Soleimani, D.; Moradi, M.; Shakiba, E.; Pasdar, Y. Association of plant-based dietary patterns with the risk of type 2 diabetes mellitus using cross-sectional results from RaNCD cohort. Sci. Rep. 2024, 14, 3814. [Google Scholar] [CrossRef]
- Salas-Gonzalez, M.D.; Aparicio, A.; Loria-Kohen, V.; Ortega, R.M.; Lopez-Sobaler, A.M. Association of Healthy Eating Index-2015 and Dietary Approaches to Stop Hypertension Patterns with Insulin Resistance in Schoolchildren. Nutrients 2022, 14, 4232. [Google Scholar] [CrossRef]
- Tettamanzi, F.; Bagnardi, V.; Louca, P.; Nogal, A.; Monti, G.S.; Mambrini, S.P.; Lucchetti, E.; Maestrini, S.; Mazza, S.; Rodriguez-Mateos, A.; et al. A High Protein Diet Is More Effective in Improving Insulin Resistance and Glycemic Variability Compared to a Mediterranean Diet-A Cross-Over Controlled Inpatient Dietary Study. Nutrients 2021, 13, 4380. [Google Scholar] [CrossRef]
- Hadi, A.; Khosroshahi, M.Z.; Zwamel, A.H.; Asbaghi, O.; Naeini, F.; Miraghajani, M.; Nouri, M.; Ghaedi, E. Impact of walnut consumption on glycemic control and anthropometric indices: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord. 2025, 24, 62. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef]
- Nandan, A.; Koirala, P.; Dutt Tripathi, A.; Vikranta, U.; Shah, K.; Gupta, A.J.; Agarwal, A.; Nirmal, N. Nutritional and functional perspectives of pseudocereals. Food Chem. 2024, 448, 139072. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Le, K.A.; Van den Broeck, H.C.; Brouns, F.; De Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef]
- Penas, E.; Martinez-Villaluenga, C. Advances in Production, Properties and Applications of Sprouted Seeds. Foods 2020, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Canli, M.; Celik, E.E.; Kocadagli, T.; Kanmaz, E.O.; Gokmen, V. Formation of Bioactive Tyrosine Derivatives during Sprouting and Fermenting of Selected Whole Grains. J. Agric. Food Chem. 2021, 69, 12517–12526. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.U.; Azmi, N.H.; Bhanger, M.I.; Ismail, N.; Ismail, M. Antidiabetic properties of germinated brown rice: A systematic review. Evid. Based Complement. Altern. Med. 2012, 2012, 816501. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, F.; Liu, C.; Asija, V.; Cao, L.; Zhou, M.; Gao, H.; Sun, M.; Weng, X.; Huang, J.; et al. Impact of Germinated Brown Rice and Brown Rice on Metabolism, Inflammation, and Gut Microbiome in High Fat Diet-Induced Insulin Resistant Mice. J. Agric. Food Chem. 2022, 70, 14235–14246. [Google Scholar] [CrossRef]
- Wan, W.; Jiang, X.; Zhao, R.; Cai, F.; Wu, F.; Hu, Y.; Zhou, X.; Liu, Z.; Shan, Y. Branched Chain Amino Acids, New Target of Germinated Brown Rice against Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2023, 67, e2200481. [Google Scholar] [CrossRef]
- Zhao, R.; Fajardo, J.; Shen, G.X. Influence of Brown or Germinated Brown Rice Supplementation on Fecal Short-Chain Fatty Acids and Microbiome in Diet-Induced Insulin-Resistant Mice. Microorganisms 2023, 11, 2629. [Google Scholar] [CrossRef]
- Goel, K.; Kushwaha, A.; Dutta, A.; Sharma, S.K.; Shahi, N.C.; Joshi, D.C.; Bhartiya, A.; Gupta, P. Impact of bio-processing treatments on the nutritional and anti-diabetic enzyme inhibitory properties of black wheat, barnyard millet, and black soybean. Front. Nutr. 2025, 12, 1554993. [Google Scholar] [CrossRef]
- Jimenez-Pulido, I.J.; Martin-Diana, A.B.; Tome-Sanchez, I.; de Luis, D.; Martinez-Villaluenga, C.; Rico, D. Boosting Synergistic Antioxidant and Anti-Inflammatory Properties Blending Cereal-Based Nutraceuticals Produced Using Sprouting and Hydrolysis Tools. Foods 2024, 13, 1868. [Google Scholar] [CrossRef]
- Kang, L.; Luo, J.; Su, Z.; Zhou, L.; Xie, Q.; Li, G. Effect of Sprouted Buckwheat on Glycemic Index and Quality of Reconstituted Rice. Foods 2024, 13, 1148. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem. 2025, 464, 141790. [Google Scholar] [CrossRef]
- Aparicio-Garcia, N.; Martinez-Villaluenga, C.; Frias, J.; Penas, E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Jeong, S.Y.; Islam, M.Z.; Shin, B.K.; Park, Y.J.; Kim, J.K.; Lee, Y.T.; Lee, J.H. Bioactive Compounds and Quality Evaluation of Red-Pigmented Rice Processed by Germination and Roasting. Foods 2022, 11, 2735. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yang, Y.; Zhao, Y.; Liu, Z.; Li, C.; He, L.; Liu, L. Effect of different conditions on the germination of coix seed and its characteristics analysis. Food Chem. X 2024, 22, 101332. [Google Scholar] [CrossRef]
- Damazo-Lima, M.; Rosas-Perez, G.; Reynoso-Camacho, R.; Perez-Ramirez, I.F.; Rocha-Guzman, N.E.; de Los Rios, E.A.; Ramos-Gomez, M. Chemopreventive Effect of the Germinated Oat and its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice. Foods 2020, 9, 169. [Google Scholar] [CrossRef]
- Ramos-Pacheco, B.S.; Choque-Quispe, D.; Ligarda-Samanez, C.A.; Solano-Reynoso, A.M.; Palomino-Rincon, H.; Choque-Quispe, Y.; Peralta-Guevara, D.E.; Moscoso-Moscoso, E.; Aiquipa-Pillaca, A.S. Effect of Germination on the Physicochemical Properties, Functional Groups, Content of Bioactive Compounds, and Antioxidant Capacity of Different Varieties of Quinoa (Chenopodium quinoa Willd.) Grown in the High Andean Zone of Peru. Foods 2024, 13, 417. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Liu, X.; Xiong, Y.; Liu, T.; Li, Z.; Song, J.; Wang, J.; Wang, X.; Li, X. Nutritional evaluation and transcriptome analyses of short-time germinated seeds in soybean (Glycine max L. Merri.). Sci. Rep. 2021, 11, 22714. [Google Scholar] [CrossRef]
- Shi, H.; Nam, P.K.; Ma, Y. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agric. Food Chem. 2010, 58, 4970–4976. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Al-Qabba, M.M.; Algonaiman, R.; Radhi, K.S.; Almutairi, A.S.; Al Zhrani, M.M.; Mohamed, A. Impact of Sprouting Process on the Protein Quality of Yellow and Red Quinoa (Chenopodium quinoa). Molecules 2024, 29, 404. [Google Scholar] [CrossRef]
- Makinen, O.E.; Zannini, E.; Arendt, E.K. Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods Hum. Nutr. 2013, 68, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, C.; Saleh, A.S.M.; Wu, H.; Zhao, K.; Zhang, G.; Jiang, H.; Yan, W.; Li, W. Effect of germination duration on structural and physicochemical properties of mung bean starch. Int. J. Biol. Macromol. 2020, 154, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.T.; Velasco, S.; Trevino, J.; Jimenez, B.; Rebole, A. Changes in the Nutrient Composition of Barley Grain (Hordeum vulgare L.) and of Morphological Fractions of Sprouts. Scientifica 2021, 2021, 9968864. [Google Scholar] [CrossRef]
- Al-Taher, F.; Nemzer, B. Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods 2023, 12, 3306. [Google Scholar] [CrossRef]
- Cao, B.; Bao, C.; Zhu, Z.; Gong, Y.; Wei, J.; Shen, Z.; Su, N. Comparative Evaluation of Chemical Composition and Nutritional Characteristics in Various Quinoa Sprout Varieties: The Superiority of 24-Hour Germination. Foods 2024, 13, 2513. [Google Scholar] [CrossRef]
- Kong, L.; Lin, Y.; Liang, J.; Hu, X.; Ashraf, U.; Guo, X.; Bai, S. Dynamic Changes in Vitamin E Biosynthesis during Germination in Brown Rice (Oryza sativa L.). Foods 2022, 11, 3200. [Google Scholar] [CrossRef]
- Maldonado-Alvarado, P.; Pavon-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of Germination on the Nutritional Properties, Phytic Acid Content, and Phytase Activity of Quinoa (Chenopodium quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Sarasa, S.B.; Mahendran, R.; Muthusamy, G.; Thankappan, B.; Selta, D.R.F.; Angayarkanni, J. A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr. Microbiol. 2020, 77, 534–544. [Google Scholar] [CrossRef]
- Wang, X.; Ye, G.; Wang, Z.; Wang, Z.; Gong, L.; Wang, J.; Liu, J. Dietary Oat beta-Glucan Alleviates High-Fat Induced Insulin Resistance through Regulating Circadian Clock and Gut Microbiome. Mol. Nutr. Food Res. 2024, 68, e2300917. [Google Scholar] [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional Performance of Plant Proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Guo, X.; Qian, H. The impact of germination on the characteristics of brown rice flour and starch. J. Sci. Food Agric. 2012, 92, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi Alhashem, S.H.; Ehsani, M.R.; Akhondzadeh Basti, A.; Sharifan, A. Functional, nutritional, and sensorial evaluation of sorghum-based beverages produced by single- and two-stage acid, alpha-amylase enzyme, and germination treatments. Food Sci. Nutr. 2024, 12, 8129–8136. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.; Panpipat, W. Nutritional composition and bioactivity of germinated Thai indigenous rice extracts: A feasibility study. PLoS ONE 2020, 15, e0237844. [Google Scholar] [CrossRef] [PubMed]
- Quek, W.P.; Yu, W.; Tao, K.; Fox, G.P.; Gilbert, R.G. Starch structure-property relations as a function of barley germination times. Int. J. Biol. Macromol. 2019, 136, 1125–1132. [Google Scholar] [CrossRef]
- Sinha, K.; Kaur, R.; Singh, N.; Kaur, S.; Rishi, V.; Bhunia, R.K. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. Phytochemistry 2020, 180, 112538. [Google Scholar] [CrossRef]
- Pinheiro, S.S.; Anunciacao, P.C.; Cardoso, L.M.; Della Lucia, C.M.; de Carvalho, C.W.P.; Queiroz, V.A.V.; Pinheiro Sant’Ana, H.M. Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.). Food Chem. 2021, 345, 128775. [Google Scholar] [CrossRef]
- Yang, F.; Basu, T.K.; Ooraikul, B. Studies on germination conditions and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr. 2001, 52, 319–330. [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Liu, X. A review of thermosensitive antinutritional factors in plant-based foods. J. Food Biochem. 2022, 46, e14199. [Google Scholar] [CrossRef] [PubMed]
- Elliott, H.; Woods, P.; Green, B.D.; Nugent, A.P. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Nutr. Bull. 2022, 47, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, Y.; Li, W.; Wang, Y.; Zhang, H.; Xu, D.; Chen, R.; Tang, L.; Tang, H. Association between serum vitamin D level and cardiovascular disease in Chinese patients with type 2 diabetes mellitus: A cross-sectional study. Sci. Rep. 2025, 15, 6454. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef]
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-aminobutyric acid (GABA): A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 8852–8874. [Google Scholar] [CrossRef]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Celik, M.N.; Capasso, R.; Agagunduz, D.; Budan, F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef]
- Celik, E.E.; Canli, M.; Kocadagli, T.; Ozkaynak Kanmaz, E.; Gokmen, V. Formation of Histamine, phenylethylamine and gamma-Aminobutyric acid during sprouting and fermenting of selected wholegrains. Food Res. Int. 2023, 173, 113447. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, X.; Ge, Y.; Xu, Q.; Li, Z.; Tang, H.; Cao, D.; Zhang, D. The Effects of GABA-Rich Adzuki Beans on Glycolipid Metabolism, as Well as Intestinal Flora, in Type 2 Diabetic Mice. Front. Nutr. 2022, 9, 849529. [Google Scholar] [CrossRef]
- Adamu, H.A.; Imam, M.U.; Der-Jiun, O.; Ismail, M. In utero Exposure to Germinated Brown Rice and Its GABA Extract Attenuates High-Fat-Diet-Induced Insulin Resistance in Rat Offspring. J. Nutr. Nutr. 2017, 10, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, U.; Tyagi, A.; Ham, H.J.; Oh, D.H. Comprehensive profiling of bioactive compounds in germinated black soybeans via UHPLC-ESI-QTOF-MS/MS and their anti-Alzheimer’s activity. PLoS ONE 2022, 17, e0263274. [Google Scholar] [CrossRef]
- Boccellino, M.; D’Angelo, S. Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.O.; Ofosu, F.K.; Kilonzi, S.M.; Shabbir, U.; Oh, D.H. Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients 2021, 13, 2882. [Google Scholar] [CrossRef]
- Aziz, A.; Noreen, S.; Khalid, W.; Mubarik, F.; Niazi, M.K.; Koraqi, H.; Ali, A.; Lima, C.M.G.; Alansari, W.S.; Eskandrani, A.A.; et al. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022, 27, 7320. [Google Scholar] [CrossRef]
- Miyahira, R.F.; Lopes, J.O.; Antunes, A.E.C. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods Hum. Nutr. 2021, 76, 143–152. [Google Scholar] [CrossRef]
- Bala Durairajan, M.; Velavan Sundararajan, V.; Kannan, G.; Mathews Paul, B.; Muniyandi, K.; Thangaraj, P. Elicitation of nutritional, antioxidant, and antidiabetic potential of barnyard millet (Echinochloa esculenta (A. Braun) H. Scholz) sprouts and microgreens through in vitro bio-accessibility assessment. Food Chem. 2024, 441, 138282. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.P.; Hao, C.L.; Yen, H.W.; Chen, C.Y.; Wu, B.N.; Lin, H.L. Pre-germinated brown rice prevents high-fat diet induced hyperglycemia through elevated insulin secretion and glucose metabolism pathway in C57BL/6J strain mice. J. Clin. Biochem. Nutr. 2015, 56, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Ren, J.; Zhou, Y.; Bai, Z.; Yan, J.; Na, G.; Shan, Y. Whole grain germinated brown rice regulates intestinal immune homeostasis and gastrointestinal hormones in type 2 diabetic patients-a randomized control trial. Food Funct. 2022, 13, 8274–8282. [Google Scholar] [CrossRef]
- Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Azmi, N.H.; Ismail, N.; Imam, M.U.; Ooi, J.; Oslan, S.N.H. Modulation of High-Fat Diet-Induced Brain Oxidative Stress by Ferulate-Rich Germinated Brown Rice Ethyl Acetate Extract. Molecules 2022, 27, 4907. [Google Scholar] [CrossRef]
- Rico, D.; Penas, E.; Garcia, M.D.C.; Martinez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martin-Diana, A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef]
- Ren, C.; Hong, B.; Zhang, S.; Yuan, D.; Feng, J.; Shan, S.; Zhang, J.; Guan, L.; Zhu, L.; Lu, S. Autoclaving-treated germinated brown rice relieves hyperlipidemia by modulating gut microbiota in humans. Front. Nutr. 2024, 11, 1403200. [Google Scholar] [CrossRef]
- Han, S.; Wu, X.; Zhu, L.; Lu, H.; Ling, X.; Luo, Y.; Hu, Z.; Zhou, Y.; Tang, Y.; Luo, F. Whole grain germinated brown rice intake modulates the gut microbiota and alleviates hypertriglyceridemia and hypercholesterolemia in high fat diet-fed mice. Food Funct. 2024, 15, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.U.; Ismail, M.; Omar, A.R.; Ithnin, H. The hypocholesterolemic effect of germinated brown rice involves the upregulation of the apolipoprotein A1 and low-density lipoprotein receptor genes. J. Diabetes Res. 2013, 2013, 134694. [Google Scholar] [CrossRef]
- Pasmans, K.; Meex, R.C.R.; van Loon, L.J.C.; Blaak, E.E. Nutritional strategies to attenuate postprandial glycemic response. Obes. Rev. 2022, 23, e13486. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive alpha-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Carvalho, B.M.; Saad, M.J. Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediat. Inflamm. 2013, 2013, 986734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ren, C.; Li, L.; Huang, C.; Zhao, Q.; Zhong, Y.; Hu, Q.; Liao, W.; Xia, H.; Yang, L.; et al. Effects of germinated brown rice and germinated black rice on people with type 2 diabetes mellitus combined with dyslipidaemia. Food Funct. 2024, 15, 6642–6656. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef] [PubMed]
- Jahdkaran, M.; Sistanizad, M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J. Steroid Biochem. Mol. Biol. 2025, 250, 106744. [Google Scholar] [CrossRef] [PubMed]
Category | Mechanism Details | Metabolic Implications | References |
---|---|---|---|
Reduction of Postprandial Glycemic Response | • Inhibition of α-amylase and α-glucosidase → delayed carbohydrate hydrolysis → ↓ glucose absorption | • ↓ Postprandial glucose rise • ↑ Insulin signaling | [22,66,67,68] |
Anti-Inflammatory and Antioxidant Properties | • ↓ Pro-inflammatory cytokines • ↑ Reactive Oxygen Species (ROS) scavenging via elevated polyphenols, ferulic acid, and antioxidants | • Protection of insulin signaling • ↓ Oxidative damage • Support glycemic control | [26,69,70,71] |
Prebiotic Effects on Gut Health | • Modulation of gut microbiota [26,69,70,71] composition • ↑ Intestine barrier integrity • ↑ Short-Chain Fatty Acids (SCFA) production | • ↑ Metabolic homeostasis via the gut–liver axis • ↑ Insulin sensitivity mediated by SCFAs | [19,21,68,72,73] |
Modulation of Lipid Metabolism | • ↑ Expression of hepatic genes involved in lipid metabolism • ↑ Fecal lipid excretion | • ↑ Improved lipid profiles • ↓ Dyslipidemia | [21,72,74] |
Sprouted Grain | Key Bioactive(s) | Metabolic Effect(s) | Mechanistic Insight | Reference |
---|---|---|---|---|
Adzuki bean (Vigna angularis, cv. ‘Pearl Red’) | γ-Aminobutyric acid (GABA) | • ↓Fasting glucose • ↓Weight gain | • ↑GABA signaling • ↑ Shift in gut microbiota | [59] |
Red rice (Oryza sativa) | Flavonoids | • ↑Antioxidant activity | • Supports glycemic control | [27] |
Oat (Avena sativa, cv. ‘Meeri’) | β-glucan | • ↑ Histone Deacetylase 3(HDAC3)/ Nuclear factor kappa B (NF-κB) modulation | • ↑ Insulin signaling • Anti-inflammatory action | [26] |
Quinoa (Chenopodium quinoa) White, red, and black varieties | Dietary fiber, Amino acids | • ↑Protein and fiber • ↓Phytic acid | • ↑ Nutrient bioavailability • ↓ Antinutrient interference | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, C.; Lee, A. Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance. Appl. Sci. 2025, 15, 8574. https://doi.org/10.3390/app15158574
Sun Y, Li C, Lee A. Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance. Applied Sciences. 2025; 15(15):8574. https://doi.org/10.3390/app15158574
Chicago/Turabian StyleSun, Yan, Caiyun Li, and Aejin Lee. 2025. "Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance" Applied Sciences 15, no. 15: 8574. https://doi.org/10.3390/app15158574
APA StyleSun, Y., Li, C., & Lee, A. (2025). Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance. Applied Sciences, 15(15), 8574. https://doi.org/10.3390/app15158574