Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,182)

Search Parameters:
Keywords = mass change monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 651 KiB  
Article
The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation
by Monika Różycka-Kosmalska, Marcin Kosmalski, Michał Panek, Alicja Majos, Izabela Szymczak-Pajor, Agnieszka Śliwińska, Jacek Kasznicki, Jerzy Krzysztof Wranicz and Krzysztof Kaczmarek
J. Clin. Med. 2025, 14(15), 5431; https://doi.org/10.3390/jcm14155431 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality [...] Read more.
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality of life, its impact on respiratory function is not well understood, particularly in patients with comorbid conditions. The aim of the study was to search for functional predictors of the respiratory system in the process of evaluating the efficiency of clinical assessment of CBA in patients with AF. Methods: We conducted a prospective study on 42 patients with symptomatic AF who underwent CBA, assessing their respiratory function through spirometry before and 30 days after the procedure. Exclusion criteria included pre-existing lung disease and cardiac insufficiency. The impact of variables such as body mass index (BMI), coronary artery disease (CAD) and heart failure (HF) on spirometry parameters was analyzed using statistical tests. Results: No significant changes were observed in overall post-PVI spirometry parameters for the full cohort. However, post hoc analyses revealed a significant decline in ΔMEF75 in patients with CAD and BMI ≥ 30 kg/m2, whereas ΔFEV1/FVCex was significantly increased in patients with HF, as well as in patients with ejection fraction (EF) < 50%. Conclusions: CBA for AF does not universally affect respiratory function in the short term, but specific subgroups, including patients with CAD and a higher BMI, may require post-procedure respiratory monitoring. In addition, PVI may improve lung function in patients with HF and reduced EF. Full article
(This article belongs to the Special Issue Clinical Aspects of Cardiac Arrhythmias and Arrhythmogenic Disorders)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Correlations Between Coffee Intake, Glycemic Control, Cardiovascular Risk, and Sleep in Type 2 Diabetes and Hypertension: A 12-Month Observational Study
by Tatiana Palotta Minari, José Fernando Vilela-Martin, Juan Carlos Yugar-Toledo and Luciana Pellegrini Pisani
Biomedicines 2025, 13(8), 1875; https://doi.org/10.3390/biomedicines13081875 (registering DOI) - 1 Aug 2025
Abstract
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension [...] Read more.
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension over a 12-month period. Methods: An observational study was conducted with 40 participants with T2D and hypertension, comprising 20 females and 20 males. Participants were monitored for their daily coffee consumption over a 12-month period, being assessed every 3 months. Linear regression was utilized to assess interactions and relationships between variables, providing insights into potential predictive associations. Additionally, correlation analysis was performed using Pearson’s and Spearman’s tests to evaluate the strength and direction of linear and non-linear relationships. Statistical significance was set at p < 0.05. Results: Significant changes were observed in fasting blood glucose (FBG), glycated hemoglobin (HbA1c), body weight, body mass index, sleep duration, nocturnal awakenings, and waist-to-hip ratio (p < 0.05) over the 12-month study in both sexes. No significant differences were noted in the remaining parameters (p > 0.05). The coffee consumed by the participants was of the “traditional type” and contained sugar (2g per cup) for 100% of the participants. An intake of 4.17 ± 0.360 cups per day was found at baseline and 5.41 ± 0.316 cups at 12 months (p > 0.05). Regarding correlation analysis, a higher coffee intake was significantly associated with shorter sleep duration in women (r = −0.731; p = 0.037). Conversely, greater coffee consumption correlated with lower LDL cholesterol (LDL-C) levels in women (r = −0.820; p = 0.044). Additionally, a longer sleep duration was linked to lower FBG (r = -0.841; p = 0.031), HbA1c (r = -0.831; p = 0.037), and LDL-C levels in women (r = -0.713; p = 0.050). No significant correlations were observed for the other parameters in both sexes (p > 0.05). Conclusions: In women, coffee consumption may negatively affect sleep duration while potentially offering beneficial effects on LDL-C levels, even when sweetened with sugar. Additionally, a longer sleep duration in women appears to be associated with improvements in FBG, HbA1c, and LDL-C. These correlations emphasize the importance of a balanced approach to coffee consumption, weighing both its potential health benefits and drawbacks in postmenopausal women. However, since this study does not establish causality, further randomized clinical trials are warranted to investigate the underlying mechanisms and long-term implications—particularly in the context of T2D and hypertension. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (3rd Edition))
13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 2346 KiB  
Article
TDM-Based Approach for Properly Managing Intravenous Isavuconazole Treatment in a Complex Case Mix of Critically Ill Patients
by Milo Gatti, Matteo Rinaldi, Riccardo De Paola, Antonio Siniscalchi, Tommaso Tonetti, Pierluigi Viale and Federico Pea
Antibiotics 2025, 14(8), 777; https://doi.org/10.3390/antibiotics14080777 (registering DOI) - 1 Aug 2025
Abstract
Objectives: To assess the role of a real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program of isavuconazole in preventing under- or overexposure with the intent of improving efficacy and safety outcomes in the critically ill patients. Methods: This retrospective study [...] Read more.
Objectives: To assess the role of a real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program of isavuconazole in preventing under- or overexposure with the intent of improving efficacy and safety outcomes in the critically ill patients. Methods: This retrospective study included critical patients receiving intravenous isavuconazole for prophylaxis or treatment of invasive fungal infections (IFI) and undergoing at least one TDM-guided ECPA in the period 1 March 2021–31 March 2025. Desired isavuconazole exposure was defined as trough concentrations (Cmin) of 1.0–5.1 mg/L. Efficacy outcome was assessed by means of bronchoalveolar (BAL) galactomannan (GM) index, breakthrough IFI, and 30-day mortality rate, whereas safety was assessed by means of hepatic test disturbances (HTD). Univariate analysis was carried out for assessing potential variables associated with isavuconazole under- or overexposure and for comparing features of solid organ transplant (SOT) recipients vs. non-SOT patients. Proportions of isavuconazole Cmin underexposure, desired exposure, and overexposure were assessed at different timepoints from starting therapy. Trends over time of HTD in relation to isavuconazole exposure were assessed separately in patients having HTD or not at baseline. Results: Overall, 32 critical patients were included. A total of 166 TDM-guided ECPAs were provided. Median (IQR) average isavuconazole Cmin was 3.5 mg/L (2.1–4.6 mg/L). Proportions of ECPAs with isavuconazole Cmin under- and overexposure were 4.2% (7/166) and 16.3% (27/166), respectively. Patients experiencing underexposure had higher body mass index (30.1 vs. 25.5 kg/m2; p < 0.001). Trends of isavuconazole Cmin under- and overexposure changed over time, significantly decreasing the former (10.5% <7 days vs. 4.3% 7–28 days vs. 0.0% >28 days; p < 0.001) and increasing the latter (5.3% <7 days vs. 12.8% 7–28 days vs. 29.3% >28 days; p < 0.001). HTD occurred in 15/32 patients, most of whom (10/15) were affected just at baseline. Patients with transient or persistent overexposure trended toward a higher risk of HTD compared to those without (33.3% vs. 8.3%; p = 0.11). Conclusions: A real-time TDM-guided approach could be a valuable tool for optimizing isavuconazole exposure, especially whenever dealing with obese patients or with prolonged treatment. Full article
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 199
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 136
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 246
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

24 pages, 7845 KiB  
Article
Metabolomics and Lipidomics Explore Phenotype-Specific Molecular Signatures for Phenylketonuria
by Buket Yurteri Şahiner, Ali Dursun and Basri Gülbakan
Int. J. Mol. Sci. 2025, 26(15), 7171; https://doi.org/10.3390/ijms26157171 - 25 Jul 2025
Viewed by 259
Abstract
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized [...] Read more.
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized by varying Phe accumulation, dietary tolerance, and heterogeneous cognitive and neurological outcomes, but current monitoring methods, focused primarily on blood Phe levels, are limited in capturing this variability. In this study, we applied mass spectrometry-based advanced quantitative amino acid analyses, untargeted metabolomics, and lipidomics analyses. We examined the plasma metabolite and lipid profiles in a total of 73 individuals with various PKU phenotypes against healthy controls to see how the metabolome and lipidome of the patients change in different phenotypes. We investigated whether novel markers could be associated with metabolic control status. By elucidating the metabolic and lipid fingerprints of PKU’s phenotypic variability, our findings may provide novel insights that could inform the refinement of dietary and pharmacological interventions, thereby supporting the development of more personalized treatment strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Beyond Weight Loss: Comparative Effects of Tirzepatide Plus Low-Energy Ketogenic Versus Low-Calorie Diet on Hepatic Steatosis and Stiffness in MASLD
by Luigi Schiavo, Biagio Santella, Monica Mingo, Gianluca Rossetti, Marcello Orio and Vincenzo Pilone
Nutrients 2025, 17(15), 2409; https://doi.org/10.3390/nu17152409 - 24 Jul 2025
Viewed by 358
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition globally, strongly linked to obesity, insulin resistance, and type 2 diabetes (T2D). Tirzepatide (TZP), a dual GIP/GLP-1 receptor agonist, improves glycemic control and reduces body weight and the [...] Read more.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition globally, strongly linked to obesity, insulin resistance, and type 2 diabetes (T2D). Tirzepatide (TZP), a dual GIP/GLP-1 receptor agonist, improves glycemic control and reduces body weight and the liver fat content in patients with obesity and T2D. However, its effect on liver-specific outcomes such as steatosis and fibrosis remains incompletely characterized. Low-energy ketogenic therapy (LEKT), a nutritional strategy characterized by carbohydrate restriction and nutritional ketosis, may enhance hepatic β-oxidation and reduce hepatic lipogenesis. To date, however, the combination of TZP and LEKT has not been studied in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to compare the hepatic and metabolic effects of TZP combined with either LEKT or a conventional low-calorie diet (LCD) over a 12-week period. Methods: Sixty adult patients with MASLD undergoing TZP therapy were prospectively assigned to either an LEKT or a conventional LCD, with 30 participants per group. As primary endpoints, the controlled attenuation parameter (CAP, an index of hepatic steatosis) and liver stiffness measurement (LSM, an index of liver fibrosis) were assessed at the baseline and after 12 weeks using FibroScan®. Secondary outcomes included changes in body mass index (BMI), glycated hemoglobin (HbA1c), and liver enzymes. Adherence to both diet and pharmacological treatment, as well as tolerability, were systematically monitored throughout the intervention period. Results: Both groups showed significant reductions in body weight (TZP + LEKT, p = 0.0289; TZP + LCD, p = 0.0278), with no significant intergroup difference (p = 0.665). CAP and LSM improved significantly in both groups, but reductions were greater in the TZP + LEKT group (CAP −12.5%, p < 0.001; LSM −22.7%, p < 0.001) versus LCD (CAP −6.7%, p = 0.014; LSM −9.2%, p = 0.022). Between-group differences were statistically significant for both CAP (p = 0.01) and LSM (p = 0.03). Conclusions: Based on these preliminary findings, we support the hypothesis that the combination of TZP and LEKT may be superior to TZP with an LCD in reducing hepatic steatosis and stiffness in individuals with obesity. Full article
Show Figures

Figure 1

12 pages, 239 KiB  
Article
The Range and Direction of Changes in the Classification of the Body Mass Index in Children Measured Between the Ages of 6 and 10 in Gdansk, Poland (Longitudinal Studies)
by Marek Jankowski, Aleksandra Niedzielska, Jacek Sein Anand, Beata Wolska and Paulina Metelska
Nutrients 2025, 17(15), 2399; https://doi.org/10.3390/nu17152399 - 23 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Body Mass Index (BMI) is a widely used indicator of children’s nutritional status and helps identify risks of being underweight and overweight during development. Understanding how BMI classifications evolve over time is crucial for early intervention and public health planning. This study [...] Read more.
Background/Objectives: Body Mass Index (BMI) is a widely used indicator of children’s nutritional status and helps identify risks of being underweight and overweight during development. Understanding how BMI classifications evolve over time is crucial for early intervention and public health planning. This study aimed to determine the scope and direction of changes in BMI classification among children between the ages of 6 and 10. Methods: This longitudinal study included 1026 children (497 boys and 529 girls) from Gdansk, Poland. Standardized anthropometric measurements were collected at ages 6 and 10. BMI was calculated and classified using international reference systems (IOTF and OLAF). BMI classification changes were analyzed using rank transformations and Pearson correlation coefficients (p < 0.05) to explore relationships between body measurements. Results: Most children (76.51%) retained their BMI classifications over the four-year period. However, 23.49% experienced changes, with boys more often moving to a higher BMI category (15.29%) and girls more frequently shifting to a lower category (14.03%). The prevalence of children classified as living with obesity declined between ages 6 and 10, while both overweight and underweight classifications slightly increased. Strong correlations were observed between somatic features and BMI at both ages. Conclusions: The stability of BMI classification over time underscores the importance of early identification and sustained monitoring of nutritional status. The sex-specific patterns observed highlight the importance of targeted health promotion strategies. In this context, incorporating dietary interventions—such as promoting balanced meals and reducing unhealthy food intake—could play a significant role in maintaining healthy BMI trajectories and preventing both obesity and undernutrition during childhood. Full article
20 pages, 6534 KiB  
Article
Beyond Correlation: Mutual Information to Detect Damage in Nonlinear Systems
by Jale Tezcan and Claudia Marin-Artieda
Signals 2025, 6(3), 34; https://doi.org/10.3390/signals6030034 - 21 Jul 2025
Viewed by 246
Abstract
Analyzing and measuring the similarity between two signals is a common task in many vibration-based structural health monitoring applications. Coherence between input and response signals serves as a convenient indicator of damage, based on the premise that nonlinearity due to damage in a [...] Read more.
Analyzing and measuring the similarity between two signals is a common task in many vibration-based structural health monitoring applications. Coherence between input and response signals serves as a convenient indicator of damage, based on the premise that nonlinearity due to damage in a linear system manifests as a loss of coherence in specific frequency bands. Because input excitations in civil structures are difficult to measure, damage indicators based on the coherence between two response signals have been developed. These indicators have shown promise in detecting nonlinear behavior in structures that were initially linear. This paper proposes a new damage indicator based on Mutual Information, a nonlinear extension of the squared correlation coefficient, to quantify the similarity between two signals without making assumptions about the nature of their interactions or the underlying dynamics of the system. Mutual Information is distinguished from other nonlinear similarity metrics due to its ability to capture all types of nonlinear dependencies, its high computational efficiency, and its invariance to invertible transformations, such as scaling. The proposed approach is demonstrated using a standard dataset containing experimental data from a three-story aluminum frame structure under 17 different damage states. The results show that the proposed metric can detect deviations from the baseline state due to changes in mass, stiffness, or newly induced nonlinear behavior, suggesting its potential for monitoring changes in the structural system. Full article
Show Figures

Figure 1

14 pages, 2459 KiB  
Article
Investigating the Correlation Between Corrosion-Induced Bolt Head Damage and Preload Loss Using Ultrasonic Testing
by Jay Shah, Hao Wang and Abhijit Mukherjee
Sensors 2025, 25(14), 4491; https://doi.org/10.3390/s25144491 - 19 Jul 2025
Viewed by 286
Abstract
The integrity of bolted components primarily relies on the quality of interfacial contact, which is achieved by maintaining prescribed bolt torque levels. However, challenges arise from corrosion-induced bolt head damage, potentially compromising the bolt preload, and quantifying such effects remains unanswered. Many studies [...] Read more.
The integrity of bolted components primarily relies on the quality of interfacial contact, which is achieved by maintaining prescribed bolt torque levels. However, challenges arise from corrosion-induced bolt head damage, potentially compromising the bolt preload, and quantifying such effects remains unanswered. Many studies often compare bolt corrosion’s effects to bolt loosening as both affect the interfacial contact stresses to some extent. This technical study aimed to investigate whether a correlation exists between the impact of bolt head damage and the different levels of bolt torque. Guided wave ultrasonic testing (UT) was implemented for this investigation. Laboratory experiments were conducted to monitor the transmission of ultrasonic signals across the bolted interface first during the bolt-tightening process. Once the highest bolt torque was achieved, the process was repeated for a simplified corrosion scenario, simulated by artificially damaging the bolt head in a controlled manner. The analysis focused on studying the transmission of signal energy for both scenarios. The findings revealed different trends for the signal energy transmission during bolt tightening, which are subjective to the inspection frequency. On the contrary, even at an advanced level of bolt head damage corresponding to 16% mass loss, no clear or monotonic trend was observed in the total transmitted energy. While the total energy remained relatively stable across all inspection frequencies, distinct waveform changes, such as energy redistribution and the emergence of additional wave packets, were observed. The findings emphasize the need for more advanced waveform-based analysis techniques to detect and interpret subtle changes caused by bolt degradation. Full article
Show Figures

Figure 1

14 pages, 415 KiB  
Article
Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study
by Teresa Nestares, María Jiménez-Muñoz, Encarnación Torcuato-Rubio, Laura Tamayo Pérez, Marta de la Flor Alemany, Marta Herrador-López, Víctor Navas-López and Rafael Martín-Masot
J. Clin. Med. 2025, 14(14), 5061; https://doi.org/10.3390/jcm14145061 - 17 Jul 2025
Viewed by 477
Abstract
Background/Objectives: Celiac disease (CD) alters nutrient absorption and body composition, especially during childhood. Although adherence to a gluten-free diet (GFD) promotes mucosal recovery, its impact on cellular functionality and metabolic balance remains underexplored. This study aims to evaluate the utility of bioelectrical impedance [...] Read more.
Background/Objectives: Celiac disease (CD) alters nutrient absorption and body composition, especially during childhood. Although adherence to a gluten-free diet (GFD) promotes mucosal recovery, its impact on cellular functionality and metabolic balance remains underexplored. This study aims to evaluate the utility of bioelectrical impedance vector analysis (BIVA) in assessing nutritional status, inflammatory improvement, and body composition changes in pediatric patients with CD following a GFD. Methods: Seventy-nine children aged 5–14 years were studied. Three groups were analyzed: (1) 25 children with newly diagnosed CD, evaluated at diagnosis and after 12 months of GFD (prospective cohort); (2) 25 CD patients on a GFD for over 24 months (cross-sectional); and (3) 29 healthy controls. Body composition (fat mass (FM), fat-free mass (FFM), body cell mass (BCM), phase angle (PhA), and Na+/K+ ratio) was measured. GFD adherence was assessed and a dietary assessment was also performed. Results: After 12 months on a GFD, newly diagnosed CD patients showed significant increases in FM (from 8.2 to 10.1 kg, p = 0.001), FFM (p = 0.001), and BCM (p = 0.0001), along with a significant decrease in the Na+/K+ ratio (p = 0.015). Compared to healthy controls, CD children on GFD for more than 24 months had higher FM (12.2 vs. 8.8 kg, p = 0.013) and lower Na+/K+ ratios (p = 0.006). PhA increased slightly over time but did not reach statistical significance. Conclusions: Our study suggests that the adherence to a GFD leads to improved body composition and cellular homeostasis in children with CD, as reflected by increases in BCM and reductions in Na+/K+ ratio, making it a promising biomarker for monitoring inflammation and cellular recovery. Full article
(This article belongs to the Special Issue Future Trends in the Diagnosis and Management of Celiac Disease)
Show Figures

Figure 1

22 pages, 1534 KiB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Viewed by 527
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Dietary, Body Composition, and Blood Leptin Variations in Fit-Model Female Athletes During the Pre-Competition Period
by Ramutis Kairaitis, Petras Minderis, Inga Lukonaitienė, Gediminas Mamkus, Tomas Venckūnas and Sigitas Kamandulis
Nutrients 2025, 17(14), 2299; https://doi.org/10.3390/nu17142299 - 12 Jul 2025
Viewed by 553
Abstract
Background: The Fit-Model in bodybuilding is a relatively new category designed for women seeking a balanced physique, avoiding excessive muscularity and extreme leanness. This study examined the dietary strategies, body composition changes, and plasma leptin fluctuations of Fit-Model athletes during a seven-week pre-competition [...] Read more.
Background: The Fit-Model in bodybuilding is a relatively new category designed for women seeking a balanced physique, avoiding excessive muscularity and extreme leanness. This study examined the dietary strategies, body composition changes, and plasma leptin fluctuations of Fit-Model athletes during a seven-week pre-competition phase. Methods: Twelve females (age: 27.6 ± 4.4 years, body mass: 60.0 ± 6.2 kg) preparing for a national championship were monitored for energy and macronutrient intakes, total, lean, and fat mass, plasma leptin levels, and menstrual cycle characteristics. The five highest-ranked athletes were selected to compete at the world championship, allowing for comparisons between national and international athletes. Results: Low carbohydrate intake was reported, and total energy intake decreased from 1700 to 1520 kcal/day approaching the contest day. Athletes experienced an average body mass loss of 4.2 kg, with no clear relationship between final weight or fat mass and competitive success. Plasma leptin levels were markedly low during all 7 weeks of preparation with a further decline before the contest, but did not correlate with either changes in body composition and weight or energy or macronutrient intakes. Menstrual cycle disturbances were prevalent, with only two athletes maintaining regular cycles by the end of the preparation. Conclusions: Fit-Model athletes undergo a considerable decline in body weight and fat mass during the final weeks before the contest, yet these changes do not appear to be decisive for performance outcomes. Persistently low leptin levels and menstrual irregularities call for strategies that balance physique optimization with endocrine health to support both the performance and well-being of athletes. Full article
Show Figures

Figure 1

Back to TopTop