Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Management
2.2. Earthworm Sampling
2.3. Weather Conditions in Sampling Years
2.4. Data Analysis
3. Results
3.1. Depth Distribution of Earthworms
3.2. Effects of Tillage on Earthworm Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; De Oliveira, T.; Roger-Estrade, J. Earthworm Services for Cropping Systems. A Review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A Review of Earthworm Impact on Soil Function and Ecosystem Services. Eur. J. Soil. Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why Is the Influence of Soil Macrofauna on Soil Structure Only Considered by Soil Ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Gong, X.; Wang, S.; Wang, Z.; Jiang, Y.; Hu, Z.; Zheng, Y.; Chen, X.; Li, H.; Hu, F.; Liu, M.; et al. Earthworms Modify Soil Bacterial and Fungal Communities through Enhancing Aggregation and Buffering pH. Geoderma 2019, 347, 59–69. [Google Scholar] [CrossRef]
- Ahmed, N.; Al-Mutairi, K.A. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability 2022, 14, 7803. [Google Scholar] [CrossRef]
- Kavdir, Y.; İlay, R. Earthworms and Soil Structure. In Biology of Earthworms; Karaca, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 24, pp. 39–50. ISBN 978-3-642-14635-0. [Google Scholar]
- Wang, X.; Fu, S.; Wang, X.; Li, Z.; Li, J.; Zhang, W. One-Year Monitoring of Daily Earthworm Cast Production: Surface Cast Contribution to Soil Fertility in a Subtropical Forest. Forests 2021, 12, 865. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; De Ruiter, P.C.; Van Der Putten, W.H.; Birkhofer, K.; Hemerik, L.; De Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Change Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- Blakemore, R. Critical Decline of Earthworms from Organic Origins under Intensive, Humic SOM-Depleting Agriculture. Soil Syst. 2018, 2, 33. [Google Scholar] [CrossRef]
- Van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-Induced Changes in the Functional Diversity of Soil Biota—A Review with a Focus on German Data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long Term Effects of Ploughing and Conservation Tillage Methods on Earthworm Abundance and Crumb Ratio. Agronomy 2020, 10, 1552. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Phil. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.-F. Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System. Agriculture 2021, 11, 265. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional Tillage Decreases the Abundance and Biomass of Earthworms and Alters Their Community Structure in a Global Meta-analysis. Glob. Change Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef]
- Diallo, A.; Hoeffner, K.; Guillocheau, S.; Sorgniard, P.; Cluzeau, D. Combined Effects of Annual Crop Agricultural Practices on Earthworm Communities. Appl. Soil Ecol. 2023, 192, 105073. [Google Scholar] [CrossRef]
- Ibrahim, H.T.M.; Modiba, M.M.; Dekemati, I.; Gelybó, G.; Birkás, M.; Simon, B. Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment. Agronomy 2024, 14, 278. [Google Scholar] [CrossRef]
- Peigné, J.; Cannavaciuolo, M.; Gautronneau, Y.; Aveline, A.; Giteau, J.L.; Cluzeau, D. Earthworm Populations under Different Tillage Systems in Organic Farming. Soil Tillage Res. 2009, 104, 207–214. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in Northern, Western and South-Western Europe: A Review of Problems and Opportunities for Crop Production and the Environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A Cover Crop and No-Tillage System for Enhancing Soil Health by Increasing Soil Organic Matter in Soybean Cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- D’Hose, T.; Molendijk, L.; Van Vooren, L.; Van Den Berg, W.; Hoek, H.; Runia, W.; Van Evert, F.; Ten Berge, H.; Spiegel, H.; Sandèn, T.; et al. Responses of Soil Biota to Non-Inversion Tillage and Organic Amendments: An Analysis on European Multiyear Field Experiments. Pedobiologia 2018, 66, 18–28. [Google Scholar] [CrossRef]
- Simon, B.; Dekemati, I.; Ibrahim, H.T.M.; Modiba, M.M.; Birkás, M.; Grósz, J.; Kulhanek, M.; Neugschwandtner, R.W.; Hofer, A.; Wagner, V.; et al. Impact of Tillage Practices and Soil Texture on Soil Health and Earthworms in the Pannonian Region: A Comparative Study from Austria and Hungary. Appl. Soil Ecol. 2025, 206, 105863. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Schmer, M.R.; Jin, V.L.; Wienhold, B.J.; Varvel, G.E. Long-Term Corn and Soybean Response to Crop Rotation and Tillage. Agron. J. 2015, 107, 2241–2252. [Google Scholar] [CrossRef]
- Engell, I.; Linsler, D.; Sandor, M.; Joergensen, R.G.; Meinen, C.; Potthoff, M. The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants 2022, 11, 1747. [Google Scholar] [CrossRef]
- Adamič, S.; Leskovšek, R. Soybean (Glycine Max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy 2021, 11, 2477. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Stefanski, A.; Fisichelli, N.A.; Rice, K.; Rich, R.; Reich, P.B. Warming Shifts ‘Worming’: Effects of Experimental Warming on Invasive Earthworms in Northern North America. Sci. Rep. 2014, 4, 6890. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate Change Effects on Earthworms—A Review. Soil Org. 2020, 91, 113–137. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P. Earthworm Population Dynamics under Conservation Tillage Systems in South-Eastern Australia. Soil Res. 2006, 44, 425. [Google Scholar] [CrossRef]
- Seibutis, V.; Tamošiūnas, K.; Deveikytė, I.; Kadžienė, G.; Semaškienė, R. Earthworm Population Response to Simplified Tillage and Shortened Crop Rotations in a Central Lithuanian Cambisol: A Five-Year Study. Agriculture 2025, 15, 366. [Google Scholar] [CrossRef]
- Nieminen, M.; Ketoja, E.; Mikola, J.; Terhivuo, J.; Sirén, T.; Nuutinen, V. Local Land Use Effects and Regional Environmental Limits on Earthworm Communities in Finnish Arable Landscapes. Ecol. Appl. 2011, 21, 3162–3177. [Google Scholar] [CrossRef]
- Ogrin, D.; Repe, B.; Štaut, L.; Svetlin, D.; Ogrin, M. podnebna tipizacija slovenije po podatkih za obdobje 1991–2020. Dela 2023, 59, 5–89. [Google Scholar] [CrossRef]
- ISO 23611-1:2018; Soil Quality—Sampling of Soil invertebrates Part 1: Hand-Sorting and Extraction of Earthworms. ISO: Geneva, Switzerland, 2018.
- Gutiérrez-López, M.; Moreno, G.; Trigo, D.; Juárez, E.; Jesús, J.B.; Díaz Cosín, D.J. The Efficiency of Earthworm Extraction Methods Is Determined by Species and Soil Properties in the Mediterranean Communities of Central-Western Spain. Eur. J. Soil Biol. 2016, 73, 59–68. [Google Scholar] [CrossRef]
- AFSVSPP, Administration for Food Safety, Veterinary Sector and Plant Protection. Weather Data from Agrometeorological Portal. Available online: https://agromet.mkgp.gov.si/APP2/Home/Index (accessed on 23 October 2024).
- Crittenden, S.J.; Eswaramurthy, T.; De Goede, R.G.M.; Brussaard, L.; Pulleman, M.M. Effect of Tillage on Earthworms over Short- and Medium-Term in Conventional and Organic Farming. Appl. Soil Ecol. 2014, 83, 140–148. [Google Scholar] [CrossRef]
- Mršić, N.; Novak, T.; Devetak, D. Živali Naših Tal: Uvod v Pedozoologijo—Sistematika in Ekologija s Splošnim Pregledom Talnih Živali, 1. natis.; Tehniška Založba Slovenije: Ljubljana, Slovenia, 1997; ISBN 978-86-365-0213-6. [Google Scholar]
- Siebert, J.; Eisenhauer, N.; Poll, C.; Marhan, S.; Bonkowski, M.; Hines, J.; Koller, R.; Ruess, L.; Thakur, M.P. Earthworms Modulate the Effects of Climate Warming on the Taxon Richness of Soil Meso- and Macrofauna in an Agricultural System. Agric. Ecosyst. Environ. 2019, 278, 72–80. [Google Scholar] [CrossRef]
- Opute, P.A.; Maboeta, M.S. A Review of the Impact of Extreme Environmental Factors on Earthworm Activities and the Feedback on the Climate. Appl. Ecol. Environ. Res. 2022, 20, 3277–3297. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Ostle, N.J.; McNamara, N.P.; Poskitt, J. Functional Shifts of Grassland Soil Communities in Response to Soil Warming. Soil Biol. Biochem. 2009, 41, 315–322. [Google Scholar] [CrossRef]
- Ulrich, S.; Tischer, S.; Hofmann, B.; Christen, O. Biological Soil Properties in a Long-term Tillage Trial in Germany. Z. Pflanzenernähr. Bodenk. 2010, 173, 483–489. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Sauer, T.J.; Aiken, R.A. Effects of Crop Residue Cover and Architecture on Heat and Water Transfer at the Soil Surface. Geoderma 2003, 116, 217–233. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue Retention and Minimum Tillage Improve Physical Environment of the Soil in Croplands: A Global Meta-Analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Coulibaly, S.F.M.; Aubert, M.; Brunet, N.; Bureau, F.; Legras, M.; Chauvat, M. Short-Term Dynamic Responses of Soil Properties and Soil Fauna under Contrasting Tillage Systems. Soil Tillage Res. 2022, 215, 105191. [Google Scholar] [CrossRef]
- Torppa, K.A.; Taylor, A.R. Alternative Combinations of Tillage Practices and Crop Rotations Can Foster Earthworm Density and Bioturbation. Appl. Soil Ecol. 2022, 175, 104460. [Google Scholar] [CrossRef]
- Curry, J.P.; Byrne, D.; Schmidt, O. Intensive Cultivation Can Drastically Reduce Earthworm Populations in Arable Land. Eur. J. Soil Biol. 2002, 38, 127–130. [Google Scholar] [CrossRef]
- FAO. Soils, Where Food Begins; FAO: Rome, Italy, 2023; ISBN 978-92-5-137969-1. [Google Scholar]
- Reich, P.B.; Oleksyn, J.; Modrzynski, J.; Mrozinski, P.; Hobbie, S.E.; Eissenstat, D.M.; Chorover, J.; Chadwick, O.A.; Hale, C.M.; Tjoelker, M.G. Linking Litter Calcium, Earthworms and Soil Properties: A Common Garden Test with 14 Tree Species. Ecol. Lett. 2005, 8, 811–818. [Google Scholar] [CrossRef]
- Bartz, M.L.C.; Dudas, R.T.; Demetrio, W.C.; Brown, G.G. Earthworms as Soil Health Indicators in No-Tillage Agroecosystems. Eur. J. Soil Biol. 2024, 121, 103605. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hassim, R.; Shapiro, C.; Jasa, P.; Klopp, H. How Does No-till Affect Soil-Profile Compactibility in the Long Term? Geoderma 2022, 425, 116016. [Google Scholar] [CrossRef]
- Da Silva, K.A.; Nicola, V.B.; Dudas, R.T.; Demetrio, W.C.; Maia, L.D.S.; Cunha, L.; Bartz, M.L.C.; Brown, G.G.; Pasini, A.; Kille, P.; et al. Pesticides in a Case Study on No-Tillage Farming Systems and Surrounding Forest Patches in Brazil. Sci. Rep. 2021, 11, 9839. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- De Oliveira, T.; Bertrand, M.; Roger-Estrade, J. Short-Term Effects of Ploughing on the Abundance and Dynamics of Two Endogeic Earthworm Species in Organic Cropping Systems in Northern France. Soil Tillage Res. 2012, 119, 76–84. [Google Scholar] [CrossRef]
(A) | Model | k | AICc | ΔAICc | LRT | df | P(>χ2) |
---|---|---|---|---|---|---|---|
Earthworm mass | Tillage; Year; T × Y | 10 | 282.6 | 1.7 | 345.0 | 2 | 0.001 |
Tillage; Year; | 6 | 280.6 | 0.0 | 251.4 | 2 | 0.007 | |
Year | 4 | 286.5 | 5.8 | 129.4 | 4 | 0.270 | |
Intercept | 2 | 293.2 | 12.5 | ||||
(B) | Model | k | AICc | ΔAICc | LRT | df | P(>χ2) |
Earthworm abundance | Tillage; Year; T × Y | 9 | 328.6 | 0.0 | 51.1 | 2 | <0.001 |
Tillage; Year; | 5 | 389.4 | 60.8 | 51.2 | 2 | <0.001 | |
Year | 3 | 436.6 | 108.0 | 68.8 | 4 | <0.001 | |
Intercept | 1 | 483.7 | 155.1 | ||||
(C) | Model | k | AICc | ΔAICc | LRT | df | P(>χ2) |
Proportion of adults | Tillage; Year; T × Y | 9 | 200.9 | 0.0 | 14.3 | 2 | 0.001 |
Tillage; Year; | 5 | 211.7 | 10.8 | 7.5 | 2 | 0.023 | |
Year | 3 | 215.2 | 14.3 | 18.8 | 4 | 0.001 | |
Intercept | 1 | 225.5 | 24.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoncelj, I.; Rovanšek, A.; Leskovšek, R. Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period. Agriculture 2025, 15, 1658. https://doi.org/10.3390/agriculture15151658
Bertoncelj I, Rovanšek A, Leskovšek R. Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period. Agriculture. 2025; 15(15):1658. https://doi.org/10.3390/agriculture15151658
Chicago/Turabian StyleBertoncelj, Irena, Anže Rovanšek, and Robert Leskovšek. 2025. "Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period" Agriculture 15, no. 15: 1658. https://doi.org/10.3390/agriculture15151658
APA StyleBertoncelj, I., Rovanšek, A., & Leskovšek, R. (2025). Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period. Agriculture, 15(15), 1658. https://doi.org/10.3390/agriculture15151658