Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical and Sociodemographic Characteristics
2.3. Anthropometric Measures
2.4. Dietary Assessment
2.5. Evaluation of Gluten-Free Diet Adherence and Fecal Sample Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | celiac disease |
GFD | gluten-free diet |
BMI | body mass index |
BIVA | bioelectrical impedance vector analysis |
SF-BIA | phase-sensitive bioelectrical impedance analysis |
R | resistance |
Xc | reactance |
PhA | phase angle |
BCM | body cell mass |
IQR | interquartile range |
FM | fat mass |
FFM | fat-free mass |
FMI | fat mass index |
FFMI | fat-free mass index |
BCMI | body cellular mass index |
References
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, J.W.; Coward, S.; Debruyn, J.; Ronksley, P.E.; Shaheen, A.-A.; et al. Incidence of Celiac Disease Is Increasing Over Time: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Gatti, S.; Fasano, A. The New Epidemiology of Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2014, 59, S7–S9. [Google Scholar] [CrossRef] [PubMed]
- Mearin, M.L.; Agardh, D.; Antunes, H.; Al-Toma, A.; Auricchio, R.; Castillejo, G.; Catassi, C.; Ciacci, C.; Discepolo, V.; Dolinsek, J.; et al. ESPGHAN Position Paper on Management and Follow-up of Children and Adolescents with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, R.; Calabrese, I.; Galatola, M.; Cielo, D.; Carbone, F.; Mancuso, M.; Matarese, G.; Troncone, R.; Auricchio, S.; Greco, L. Gluten consumption and inflammation affect the development of celiac disease in at-risk children. Sci. Rep. 2022, 12, 5396. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, R.; Stellato, P.; Bruzzese, D.; Cielo, D.; Chiurazzi, A.; Galatola, M.; Castilljeo, G.; Escobar, P.C.; Gyimesi, J.; Hartman, C.; et al. Growth rate of coeliac children is compromised before the onset of the disease. Arch. Dis. Child. 2020, 105, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Cruz, N.S.; de la Barca, A.C.; Valenzuela, J.H. Enfermedad celiaca en niños del noroeste de México: Características clínicas de 24 casos. Rev. Gastroenterol. Mex. 2013, 78, 211–218. [Google Scholar] [CrossRef]
- Barnea, L.; Mozer-Glassberg, Y.; Hojsak, I.; Hartman, C.; Shamir, R. Pediatric Celiac Disease Patients Who Are Lost to Follow-Up Have a Poorly Controlled Disease. Digestion 2014, 90, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Wierdsma, N.J.; van Bokhorst-de van der Schueren, M.A.E.; Berkenpas, M.; Mulder, C.J.J.; van Bodegraven, A.A. Vitamin and Mineral Deficiencies Are Highly Prevalent in Newly Diagnosed Celiac Disease Patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef] [PubMed]
- Aljada, B.; Zohni, A.; El-Matary, W. The Gluten-Free Diet for Celiac Disease and Beyond. Nutrients 2021, 13, 3993. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, A.; Capriati, T.; Basso, M.S.; Panetta, F.; Di Ciommo Laurora, V.M.; Bellucci, F.; Cristofori, F.; Francavilla, R. Celiac Disease and Overweight in Children: An Update. Nutrients 2014, 6, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Nestares, T.; Martín-Masot, R.; Flor-Alemany, M.; Bonavita, A.; Maldonado, J.; Aparicio, V.A. Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients 2021, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Nestares, T.; Martín-Masot, R.; Labella, A.; Aparicio, V.A.; Flor-Alemany, M.; López-Frías, M.; Maldonado, J. Is a Gluten-Free Diet Enough to Maintain Correct Micronutrients Status in Young Patients with Celiac Disease? Nutrients 2020, 12, 844. [Google Scholar] [CrossRef] [PubMed]
- Nestares, T.; Martín-Masot, R.; de Teresa, C.; Bonillo, R.; Maldonado, J.; Flor-Alemany, M.; Aparicio, V.A. Influence of Mediterranean Diet Adherence and Physical Activity on Bone Health in Celiac Children on a Gluten-Free Diet. Nutrients 2021, 13, 1636. [Google Scholar] [CrossRef] [PubMed]
- Kabbani, T.A.; Goldberg, A.; Kelly, C.P.; Pallav, K.; Tariq, S.; Peer, A.; Hansen, J.; Dennis, M.; Leffler, D.A. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment. Pharmacol. Ther. 2012, 35, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Kostecka, M.; Kostecka-Jarecka, J.; Iłowiecka, K.; Kostecka, J. An Evaluation of Nutritional Status and Problems with Dietary Compliance in Polish Patients with Celiac Disease. Nutrients 2022, 14, 2581. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Picca, M.; Dilillo, D.; Meneghin, F.; Cravidi, C.; Tischer, M.C.; Vivaldo, T.; Bedogni, G.; Zuccotti, G.V. Changes of body mass index in celiac children on a gluten-free diet. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis? Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, R.; Martín-Masot, R.; Cornejo-Pareja, I.; Vegas-Aguilar, I.M.; Herrador-López, M.; Tinahones, F.J.; Navas-López, V.M.; Bellido-Guerrero, D.; García-Almeida, J.M. Phase angle as a marker of outcome in hospitalized pediatric patients. A systematic review of the evidence (GRADE) with meta-analysis. Rev. Endocr. Metab. Disord. 2023, 24, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Maniero, D.; Lorenzon, G.; Marsilio, I.; D’odorico, A.; Savarino, E.V.; Zingone, F. Assessment of Nutritional Status by Bioelectrical Impedance in Adult Patients with Celiac Disease: A Prospective Single-Center Study. Nutrients 2023, 15, 2686. [Google Scholar] [CrossRef] [PubMed]
- Zeevenhooven, J.; Koppen, I.J.N.; Benninga, M.A. The New Rome IV Criteria for Functional Gastrointestinal Disorders in Infants and Toddlers. Pediatr. Gastroenterol. Hepatol. Nutr. 2017, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity—Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef] [PubMed]
- Base de Datos BEDCA. Available online: https://www.bedca.net/bdpub/ (accessed on 30 January 2024).
- U.S. Department of Agriculture, Agricultural Research Service. Food Data Central. Available online: https://fdc.nal.usda.gov (accessed on 19 April 2023).
- Gerasimidis, K.; Zafeiropoulou, K.; Mackinder, M.; Ijaz, U.Z.; Duncan, H.; Buchanan, E.; Cardigan, T.; Edwards, C.A.; McGrogan, P.; Russell, R.K. Comparison of Clinical Methods with the Faecal Gluten Immunogenic Peptide to Assess Gluten Intake in Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Donat, E.; Masip, E.; Crespo-Escobar, P.; Fornes-Ferrer, V.; Polo, B.; Ribes-Koninckx, C. Detection and Quantifi-cation of Gluten Immunogenic Peptides in Feces of Infants and Their Relationship with Diet. Rev. Esp. Enferm. Dig. 2019, 111, 106–11026. [Google Scholar] [PubMed]
- Xie, Z.; Askari, A. Na+/K+-ATPase as a signal transducer. JBIC J. Biol. Inorg. Chem. 2002, 269, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.G.; Torres-Carrillo, A.; Flores-Maldonado, C.; Shoshani, L.; Ponce, A. Na+/K+-ATPase: More than an Electrogenic Pump. Int. J. Mol. Sci. 2024, 25, 6122. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lilly, M.N.; Shapiro, J.I. Targeting Na/K-ATPase Signaling: A New Approach to Control Oxidative Stress. Curr. Pharm. Des. 2018, 24, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, K.; Shapiro, J.I.; Sodhi, K. The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules 2016, 21, 1172. [Google Scholar] [CrossRef] [PubMed]
- Cigarrán Guldrís, S. Future uses of vectorial bioimpedance (BIVA) in nephrology. Nefrología 2011, 31, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Castro, J.; Muriel-Neyra, C.; Martin-Masot, R.; Moreno-Fernandez, J.; Maldonado, J.; Nestares, T. Oxidative stress, DNA stability and evoked inflammatory signaling in young celiac patients consuming a gluten-free diet. Eur. J. Nutr. 2019, 59, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Ebik, B.; Bacaksiz, F.; Uzel, A.; Akkuzu, M.Z.; Yavuz, A.; Kacmaz, H.; Aslan, N.; Arpa, M.; Neselioglu, S.; Erel, O. Did diet compliance and remission reduce oxidative stress in celiac patients? Rev. Assoc. Médica Bras. 2024, 70, e20231120. [Google Scholar] [CrossRef] [PubMed]
- Pelizzaro, F.; Cardin, R.; Sarasini, G.; Minotto, M.; Carlotto, C.; Fassan, M.; Palo, M.; Farinati, F.; Zingone, F. Crosstalk between MicroRNAs and Oxidative Stress in Coeliac Disease. Inflamm. Intest. Dis. 2024, 9, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Maluf, S.W.; Filho, D.W.; Parisotto, E.B.; Medeiros, G.d.S.d.; Pereira, C.H.J.; Maraslis, F.T.; Schoeller, C.C.D.; da Rosa, J.S.; Fröde, T.S. DNA damage, oxidative stress, and inflammation in children with celiac disease. Genet. Mol. Biol. 2020, 43, e20180390. [Google Scholar] [CrossRef] [PubMed]
- García Romero, R; Ramos Fuentes, F. Valoración del Estado Nutricional y la Composición Corporal en Pacientes Pediátricos con Enfermedad Renal Crónica. Master’s Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2016.
- Vassilev, G.; Hasenberg, T.; Krammer, J.; Kienle, P.; Ronellenfitsch, U.; Otto, M. The Phase Angle of the Bioelectrical Impedance Analysis as Predictor of Post-Bariatric Weight Loss Outcome. Obes. Surg. 2016, 27, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Więch, P.; Chmiel, Z.; Bazaliński, D.; Sałacińska, I.; Bartosiewicz, A.; Mazur, A.; Korczowski, B.; Binkowska-Bury, M.; Dąbrowski, M. The Relationship between Body Composition and a Gluten Free Diet in Children with Celiac Disease. Nutrients 2018, 10, 1817. [Google Scholar] [CrossRef] [PubMed]
- Kinga, S.; Marciniak, M.D.; Michalak, M.; Zawada, A.; Ratajczak-Pawłowska, A.E.; Dobrowolska, A.; Krela-Kaźmierczak, I. The other side of celiac disease—Assessment of bone mineral density and body composition in patients with celiac disease. Gastroenterol. Rev. 2024, 19, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Molina Vega, M.; Manuel, J.; Almeida, G.; Vegas Aguilar, I.; Garach, A.M.; María Gómez Pérez, A.; Pareja, I.C.; Perdigones, C.D.; Guerrero, D.B. Revisión sobre los fun-damentos teórico-prácticos del ángulo de fase y su valor pronóstico en la práctica clínica. Nutr. Clin. Med. 2017, XI, 129–148. [Google Scholar] [CrossRef]
- Girma, T.; Nielsen, A.-L.H.; Kæstel, P.; Abdissa, A.; Michaelsen, K.F.; Friis, H.; Wells, J.C. Biochemical and anthropometric correlates of bio-electrical impedance parameters in severely malnourished children: A cross-sectional study. Clin. Nutr. 2017, 37, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Niknam, R.; Salehi, A.; Vardanjani, H.M.; Fattahi, M.R.; Dehghani, S.-M.; Honar, N.; Haghighat, M.; Imanieh, M.-H. Different Clinical Features of Celiac Disease in Children, Adolescents, and Adults; a Cross-sectional Study. Middle East J. Dig. Dis. 2021, 13, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Brito, G.A.P. Anthropometric Parameters in Celiac Disease: A Review on the Different Evaluation Methods and Disease Effects. J. Nutr. Metab. 2019, 2019, 4586963. [Google Scholar] [CrossRef] [PubMed]
- Vereczkei, Z.; Farkas, N.; Hegyi, P.; Imrei, M.; Földi, M.; Szakács, Z.; Kiss, S.; Solymár, M.; Nagy, R.; Bajor, J. It Is High Time for Personalized Dietary Counseling in Celiac Disease: A Systematic Review and Meta-Analysis on Body Composition. Nutrients 2021, 13, 2947. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Imanifard, R.; Jarahzadeh, M.; Rohani, P.; Velu, P.; Sohouli, M.H. Impact of Gluten-free Diet on Anthropometric Indicators in Individuals with and without Celiac Disease: A Systematic Review and Meta-analysis. Clin. Ther. 2023, 45, e243–e251. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmy-Feler, A.; Kassner, O.; Frank, Y.; Moran-Lev, H.; Anafy, A.; Levy, D.; Interator, H.; Elkon-Tamir, E.; Cohen, S.; Lebenthal, Y.; et al. Body composition in pediatric celiac disease and metabolic syndrome component risk—An observational study. Pediatr. Res. 2023, 94, 618–625. [Google Scholar] [CrossRef] [PubMed]
Celiac Patients Basal (n = 25) 1 | Celiac Patients 2y GFD (n = 25) 2 | Healthy Controls (n = 29) | p | |
---|---|---|---|---|
Age (years) | 10 (8–12) | 11 (8.5–12) | 9 (7.5–11.5) | 0.255 |
Females, n (%) | 13 (52) | 17 (68) | 17 (58.6) | 0.091 |
Anthropometry | ||||
Z score Weight | 0.1 (−0.8–0.6) | −0.1 (−0.6–0.7) | −0.02 (−1.7–0.6) | 0.744 |
Z score Height | −0.4 (−1.1–0.4) | −0.3 (−0.9–0.9) | 0.08 (−1.4–0.7) | 0.561 |
Z score BMI | 0.06 (−0.3–0.7) | 0.1 (−0.43–1.2) | −0.2 (−1.2–0.7) | 0.536 |
Body Fat composition | ||||
FM (kg) | 7.4 (5.2–15.6) | 12.2 (7.8–16.1) | 8.8 (6.3–11.6) | 0.048 |
FMI (kg/m2) | 4.7 (3.8–7.6) | 6.0 (4.4–8.0) | 5.0 (3.8–5.9) | 0.180 |
Body lean mass composition | ||||
FFM (kg) | 18.5 (15.8–30.3) | 25.9 (17.6–32.6) | 20.5 (16.6–25.7) | 0.230 |
FFMI (kg/m2) | 11.7 (11.1–13.1) | 12.4 (10.9–13.5) | 11.5 (10.6–12.7) | 0.597 |
BCM (kg) | 9.7 (7.5–15.4) | 12.5 (8.5–16.2) | 9.7 (7.7–12.7) | 0.236 |
BCMI (kg/m2) | 5.8 (5.1–7.1) | 6 (5.3–6.7) | 5.6 (5.0–6.1) | 0.346 |
Muscle quality | ||||
PhA (degree) | 5.2 (4.7–5.5) | 5 (4.9–5.4) | 5.0 (4.7–5.2) | 0.298 |
Z score PhA | −1.1 (−2.1–−0.2) | −1.1 (−1.5–−0.8) | −1.3 (−1.9–−0.8) | 0.342 |
Na+/K+ * | 1.124 ± 0.1665 | 1.072 ± 0.1100 | 1.169 ± 0.1257 | 0.037 |
Celiac Patients 2y GFD (n = 25) | Healthy Controls (n = 29) | p | |
---|---|---|---|
Age (years) | 11 (8.5–12) | 9 (7.5–11.5) | 0.104 |
Females, n (%) | 17 (68) | 17 (58.6) | 0.587 |
Anthropometry | |||
Z score Weight | −0.1 (−0.6–0.7) | −0.02 (−1.7–0.6) | 0.482 |
Z score Height | −0.3 (−0.9–0.9) | 0.08 (−1.4–0.7) | 0.477 |
Z score BMI | 0.1 (−0.43–1.2) | −0.2 (−1.2–0.7) | 0.358 |
Body Fat composition | |||
FM (kg) | 12.2 (7.8–16.1) | 8.8 (6.3–11.6) | 0.013 |
FMI (kg/m2) | 6.0 (4.4–8.0) | 5.0 (3.8–5.9) | 0.061 |
Body lean mass composition | |||
FFM (kg) | 25.9 (17.6–32.6) | 20.5 (16.6–25.7) | 0.133 |
FFMI (kg/m2) | 12.4 (10.9–13.5) | 11.5 (10.6–12.7) | 0.322 |
BCM (kg) | 12.5 (8.5–16.2) | 9.7 (7.7–12.7) | 0.110 |
BCMI (kg/m2) | 6 (5.3–6.7) | 5.6 (5.0–6.1) | 0.149 |
Muscle quality | |||
PhA (degree) | 5 (4.9–5.4) | 5.0 (4.7–5.2) | 0.170 |
Z score PhA | −1.1 (−1.5–−0.8) | −1.3 (−1.9–−0.8) | 0.158 |
Na/K * | 1.072 ± 0.1100 | 1.1669 ± 0.1692 | 0.006 |
Celiac Patients Basal | Celiac Patients 2y GFD | Healthy Controls | p | |
---|---|---|---|---|
Energy (kcal) | 1697.3 (1381.8–1972.1) | 1837.1 (1457.5–2193.0) | 1858.4 (1622.8–2037.4) | 0.889 |
Fat (g) | 71.5 (50.0–82.1) | 69.6 (60.7–91.9) | 66.0 (47.8–76.6) | 0.720 |
Protein (g) | 64.2 (51.6–83.7) | 77.8 (66.5–99.9) | 75.7 (63.4–86.2) | 0.596 |
Carbohydrates (g) | 189.9 (134.6–222.1) | 202.1 (166.6–222.7) | 223.4 (172.9–245.2) | 0.212 |
Sugar (g) | 26.5 (13.3–51.5) | 43.3 (29.0–47.45) | 42.7 (27.3–51.1) | 0.268 |
Fiber (g) | 10.7 (9.3–14.2) | 11.4 (8.6–17.8) | 11.0 (8.3–15.5) | 0.596 |
T0 | T12 | p | |
---|---|---|---|
Energy (kcal) | 1697.3 (1381.8–1972.1) | 2076.4 (1672.0–2232.7) | 0.126 |
Fat (g) | 71.5 (50.0–82.1) | 72.9 (60.5–96.7) | 0.391 |
Protein (g) | 64.2 (51.6–83.7) | 89.9 (70.3–99.2) | 0.296 |
Carbohydrates (g) | 189.9 (134.6–222.1) | 227.3 (194.2–255.2) | 0.247 |
Sugar (g) | 26.5 (13.3–51.5) | 38.2 (26.3–55.2) | 0.117 |
Fiber (g) | 10.7 (9.3–14.2) | 11.9 (9.2–14.4) | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestares, T.; Jiménez-Muñoz, M.; Torcuato-Rubio, E.; Tamayo Pérez, L.; de la Flor Alemany, M.; Herrador-López, M.; Navas-López, V.; Martín-Masot, R. Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study. J. Clin. Med. 2025, 14, 5061. https://doi.org/10.3390/jcm14145061
Nestares T, Jiménez-Muñoz M, Torcuato-Rubio E, Tamayo Pérez L, de la Flor Alemany M, Herrador-López M, Navas-López V, Martín-Masot R. Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study. Journal of Clinical Medicine. 2025; 14(14):5061. https://doi.org/10.3390/jcm14145061
Chicago/Turabian StyleNestares, Teresa, María Jiménez-Muñoz, Encarnación Torcuato-Rubio, Laura Tamayo Pérez, Marta de la Flor Alemany, Marta Herrador-López, Víctor Navas-López, and Rafael Martín-Masot. 2025. "Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study" Journal of Clinical Medicine 14, no. 14: 5061. https://doi.org/10.3390/jcm14145061
APA StyleNestares, T., Jiménez-Muñoz, M., Torcuato-Rubio, E., Tamayo Pérez, L., de la Flor Alemany, M., Herrador-López, M., Navas-López, V., & Martín-Masot, R. (2025). Cellular Recovery and Body Composition Changes in Pediatric Celiac Disease After the Start of a Gluten-Free Diet: A Prospective Cohort Study. Journal of Clinical Medicine, 14(14), 5061. https://doi.org/10.3390/jcm14145061