Layered Production Allocation Method for Dual-Gas Co-Production Wells
Abstract
1. Introduction
2. Layered Production Allocation Method
3. Transient Simulation of Gas–Liquid Segregation in Dual-Gas Co-Production Wells
3.1. Model Construction
3.2. Simulation Results and Analysis
3.2.1. Flow Path Characteristics and Phase Behavior
3.2.2. Simulation Results for the “Coal over Sand” Vertical Stacking Configuration
3.2.3. Simulation Results for the “Sand over Coal” Configuration
3.2.4. Summary of Tubing Placement Effects
3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Tang, D.; Li, S.; Xu, H.; Tao, S.; Geng, Y.; Ma, L.; Zhu, X. Fracture System Identification of Coal Reservoir and the Productivity Differences of CBM Wells with Different Coal Structures: A Case in the Yanchuannan Block, Ordos Basin. J. Pet. Sci. Eng. 2018, 161, 175–189. [Google Scholar] [CrossRef]
- Xing, Z.; Han, G.; Jia, Y.; Tian, W.; Gong, H.; Zuo, H.; Jiang, W.; Liang, X. Mechanistic Modeling and Experimental Study of Multistage Plunger Lift for Liquid Unloading in Ultra-Deep Gas Well. Geoenergy Sci. Eng. 2025, 246, 213653. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, B.; Deng, Z.; Chao, W.; Men, X. In Situ Stress Distribution of Deep Coals and Its Influence on Coalbed Methane Development in the Shizhuang Block, Qinshui Basin, China. ACS Omega 2023, 8, 36188–36198. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, K.; Zhang, H.; Shabbiri, K.; Hu, Q.; Zhang, C. The Geochemical Characteristics, Origin, Migration and Accumulation Modes of Deep Coal-Measure Gas in the West of Linxing Block at the Eastern Margin of Ordos Basin. J. Nat. Gas Sci. Eng. 2021, 91, 103965. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhu, Y.; Yang, Y. Evaluation of Gas Contents for a Multi-Seam Deep Coalbed Methane Reservoir and Their Geological Controls: In Situ Direct Method versus Indirect Method. Fuel 2020, 265, 116917. [Google Scholar] [CrossRef]
- Xing, Z.-S.; Han, G.-Q.; Jia, Y.-L.; Tian, W.; Gong, H.-F.; Jiang, W.-B.; Mai, P.-D.; Liang, X.-Y. Optimization of Plunger Lift Working Systems Using Reinforcement Learning for Coupled Wellbore/Reservoir. Pet. Sci. 2025, 22, 2154–2168. [Google Scholar] [CrossRef]
- Chen, S.; Tang, D.; Tao, S.; Xu, H.; Li, S.; Zhao, J.; Ren, P.; Fu, H. In-Situ Stress Measurements and Stress Distribution Characteristics of Coal Reservoirs in Major Coalfields in China: Implication for Coalbed Methane (CBM) Development. Int. J. Coal Geol. 2017, 182, 66–84. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, H.; Xu, T.; Chen, B.; Hu, P.; Yin, Z.; Wu, P.; He, G. Geological Characteristics and CBM Exploration Potential Evaluation: A Case Study in the Middle of the Southern Junggar Basin, NW China. J. Nat. Gas Sci. Eng. 2016, 30, 557–570. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Tang, D.; Shen, J.; Wang, J.; Chen, S. A Comprehensive Review of Deep Coalbed Methane and Recent Developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Pan, Z.; Xu, H.; Tao, S.; Liu, Y.; Ren, P. Geological Conditions of Deep Coalbed Methane in the Eastern Margin of the Ordos Basin, China: Implications for Coalbed Methane Development. J. Nat. Gas Sci. Eng. 2018, 53, 394–402. [Google Scholar] [CrossRef]
- Li, X.; Fu, X.; Yang, X.; Ge, Y.; Quan, F. Coalbed Methane Accumulation and Dissipation Patterns: A Case Study of the Junggar Basin, NW China. J. Asian Earth Sci. 2018, 160, 13–26. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, X.; Chen, P.; Guo, C.; Wang, F.; Tan, C. Production Allocation Optimization of Gas Reservoirs with Edge and Bottom Aquifer Based on a Parallel-Structured Genetic Algorithm. ACS Omega 2024, 9, 27329–27337. [Google Scholar] [CrossRef]
- Meng, D.; He, D.; Guo, Z.; Wang, G.; Ji, G.; Tang, H.; Zeng, Q. Dynamic Analysis of High-Water-Cut Tight Sandstone Gas Reservoirs and Study of Water Production Splitting of Gas Wells: A Case Study on the Western Sulige Gas Field, Ordos Basin, NW China. Processes 2023, 11, 2093. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.C.; Yang, Q.H.; Yu, J.Q.; Yue, Q.F.; Jia, D.L.; Wang, Q.B. Development and Prospect of Separated Zone Oil Production Technology. Pet. Explor. Dev. 2020, 47, 1103–1116. [Google Scholar] [CrossRef]
- Song, H.W.; Guo, H.M.; Guo, S.; Shi, H.Y. Partial Phase Flow Rate Measurements for Stratified Oil-Water Flow in Horizontal Wells. Pet. Explor. Dev. 2020, 47, 613–622. [Google Scholar] [CrossRef]
- Men, X.; Yan, X.; Chen, Y.; Li, Z.; Gong, H. Gas-Water Phase Flow Production Stratified Logging Technology of Coalbed Methane Wells. Pet. Explor. Dev. 2017, 44, 315–320. [Google Scholar] [CrossRef]
- Liang, X.; Xing, Z.; Yue, Z.; Ma, H.; Shu, J.; Han, G. Optimization of Energy Consumption in Oil Fields Using Data Analysis. Processes 2024, 12, 1090. [Google Scholar] [CrossRef]
- Ren, C.; Deng, C.; Jiang, Z.; Fu, Q.; Jiang, L.; Guo, Y.; Wu, K. The Production Splitting Method of Offshore Multilayer Combined Water Flooding Gas Wells with Gas Dissolving. ACS Omega 2024, 9, 12850–12865. [Google Scholar] [CrossRef]
- Cheng, G.; Wei, Y.; Guo, Z.; Fu, B.; Wang, Q.; Wang, G.; Jiang, Y.; Meng, D.; Han, J.; Shen, Y.; et al. A Novel Approach to Production Allocation for Multi-Layer Commingled Tight Gas Wells: Insights from the Ordos Basin, NW China. Energies 2025, 18, 456. [Google Scholar] [CrossRef]
- Song, T.; Zhu, W.; Chen, Q.; Wang, F.; Pan, B.; Bu, W.; Yue, M.; Song, H. A Novel Approach for Production Allocation in Multi-Layer Oil Reservoirs Based on Machine Learning Combining Game Theory. Geoenergy Sci. Eng. 2025, 247, 213706. [Google Scholar] [CrossRef]
- Xue, G.; Huang, X.; Deng, X.; Qi, Z.; Liu, N.; Li, S. A production splitting model of heterogeneous multi-layered reservoirs with commingled production. J. Porous Media 2023, 26, 101–120. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Gao, P.; Zhou, J. Tight Carbonate Gas Well Deliverability Evaluation and Reasonable Production Proration Analysis. J. Pet. Explor. Prod. Technol. 2021, 11, 2999–3009. [Google Scholar] [CrossRef]
- Zhang, D. Production Allocation Method in Numerical Simulation for Fractured Vuggy Reservoirs. Geoenergy Sci. Eng. 2023, 226, 211735. [Google Scholar] [CrossRef]
- Lv, M.; Cui, H.; Lei, Y.; Lei, K.; Zhu, Y. Study on Reasonable Production Allocation Method of Tight Sandstone Gas Reservoir—A Case of XX Block in Ordos Basin. Front. Energy Res. 2023, 10, 1021989. [Google Scholar] [CrossRef]
- Lou, W.; Wang, Z.; Zhang, J.; Liu, H.; Sun, B.; Zhang, F. Flow Regime Evolution Mechanism and Falling Flux Prediction Model for Bypass Injection of Viscous Liquid in Vertical T-Junction. Chem. Eng. J. 2023, 476, 146601. [Google Scholar] [CrossRef]
- Guo, C.; Qin, Y.; Yi, T.S.; Chen, Z.L.; Yuan, H.; Gao, J.Z.; Guo, J. A Method for Identifying Coalbed Methane Co-Production Interference Based on Production Characteristic Curves: A Case Study of the Zhijin Block, Western Guizhou, China. Pet. Explor. Dev. 2022, 49, 1126–1137. [Google Scholar] [CrossRef]
- Liu, H.; Lou, W.; Li, H.; Wang, Z.; Gao, Y.; Li, H.; Sun, B. A Modified Comprehensive Prediction Model for Wellbore Temperature-Pressure Field and Liquid Loading of Gas Wells. Geoenergy Sci. Eng. 2024, 232, 212452. [Google Scholar] [CrossRef]
- Yang, Z.B.; Qin, Y.; Zhang, Z.G.; Sun, H.S.; Li, Y.Y.; Wu, C.C. Optimization Methods of Production Layer Combination for Coalbed Methane Development in Multi-Coal Seams. Pet. Explor. Dev. 2018, 45, 312–320. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Casing Depth | 2533 | m |
Casing Inner Diameter | 139.7 | mm |
Tubing Inner Diameter | 60 | mm |
Upper Reservoir Depth | 2168.34 | m |
Lower Reservoir Depth | 2327.22 | m |
Tubing Position 1 | 2020 | m |
Tubing Position 2 | 2301 | m |
Tubing Position 3 | 2330 | m |
Productivity Index | Figure 2c,d | - |
Stacking Type | Tubing Position | Inflow Behavior | Wellbore Flow Behavior | Deliquification Efficiency | Overall Performance |
---|---|---|---|---|---|
Coal Over Sand | Top | Upper CBM water directly discharged; lower gas flows through annulus | Initial dual-path flow; later liquid accumulation and backpressure | Poor | Risk of liquid loading and unstable output |
Middle | Fluids from both reservoirs mix turbulently mid-well | Insufficient pressure differential, near-zero liquid velocity | Very Poor | Backflow risk may cause shut-in | |
Bottom | Liquids from both layers converge to lower tubing | High gas velocity lifts liquids efficiently | Excellent | Optimal deliquification and gas recovery | |
Sand Over Coal | Top | Upper sandstone fluids discharged; lower drainage restricted | High liquid holdup, low slug frequency | Moderate | Partial drainage but lower zone constrained |
Middle | Local pressure drop but stagnant liquid | Weak oscillations, ineffective discharge | Poor | Severe liquid loading and failure in discharge | |
Bottom | Fluids from both reservoirs discharged via casing | Casing as main path, frequent slugging | Excellent | Best energy use, stable co-production |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, Z.; Cao, Y.; Yu, J.; Han, G.; Xing, Z. Layered Production Allocation Method for Dual-Gas Co-Production Wells. Energies 2025, 18, 4039. https://doi.org/10.3390/en18154039
Wu G, Li Z, Cao Y, Yu J, Han G, Xing Z. Layered Production Allocation Method for Dual-Gas Co-Production Wells. Energies. 2025; 18(15):4039. https://doi.org/10.3390/en18154039
Chicago/Turabian StyleWu, Guangai, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han, and Zhisheng Xing. 2025. "Layered Production Allocation Method for Dual-Gas Co-Production Wells" Energies 18, no. 15: 4039. https://doi.org/10.3390/en18154039
APA StyleWu, G., Li, Z., Cao, Y., Yu, J., Han, G., & Xing, Z. (2025). Layered Production Allocation Method for Dual-Gas Co-Production Wells. Energies, 18(15), 4039. https://doi.org/10.3390/en18154039