The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Spirometry
2.3. Pulmonary Vein Isolation
2.4. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF-PE | Persistent atrial fibrillation |
AF | Atrial fibrillation |
BMI | Body mass index |
CAD | Coronary artery disease |
CBA | Cryoballoon ablation |
COPD | Chronic obstructive pulmonary disease |
EF | Ejection fraction |
FEV1 | Forced expiratory volume during the first second of expiration |
FEV1/FVCex | Forced expiratory volume during the first second of expiration to forced vital capacity |
FVCex | Expiratory forced vital capacity |
HF | Heart failure |
MEF25 | Maximal expiratory flow at 25% of FVC |
MEF50 | Maximal expiratory flow at 50% of FVC |
MEF75 | Maximal expiratory flow at 75% of FVC |
PAF | Paroxysmal atrial fibrillation |
PEF | Peak expiratory flow |
PVI | Pulmonary vein isolation |
TEE | Echocardiography |
References
- Bizhanov, K.A.; Abzaliyev, K.B.; Baimbetov, A.K.; Sarsenbayeva, A.B.; Lyan, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J. Cardiovasc. Electrophysiol. 2023, 34, 153–165. [Google Scholar] [CrossRef]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.H.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.; Chung, M.K.; Evans, P.T.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: A Review. JAMA 2025, 333, 329–342. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef]
- Siklódy, C.H.; Minners, J.; Allgeier, M.; Allgeier, H.J.; Jander, N.; Keyl, C.; Weber, R.; Schiebeling-Römer, J.; Kalusche, D.; Arentz, T. Pressure-guided cryoballoon isolation of the pulmonary veins for the treatment of paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 2010, 21, 120–125. [Google Scholar] [CrossRef]
- Packer, D.L.; Kowal, R.C.; Wheelan, K.R.; Irwin, J.M.; Champagne, J.; Guerra, P.G.; Dubuc, M.; Reddy, V.; Nelson, L.; Holcomb, R.G.; et al. Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: First results of the North American Arctic Front (STOP AF) pivotal trial. J. Am. Coll. Cardiol. 2013, 61, 1713–1723. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castellá, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with EACTS. Rev. Esp. Cardiol. (Engl. Ed.) 2017, 70, 50. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G. Cryoballoon ablation for pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 2020, 31, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Penela, D.; Falasconi, G.; Zucchelli, G. Transcatheter options for atrial fibrillation treatment: An overview of the ablative techniques currently available and future perspectives. Ann. Cardiothorac. Surg. 2024, 13, 31–43. [Google Scholar] [CrossRef]
- Hammerstingl, C.; Lickfett, L.; Jeong, K.M.; Troatz, C.; Wedekind, J.A.; Tiemann, K.; Luderitz, B.; Lewalter, T. Persistence of iatrogenic atrial septal defect after pulmonary vein isolation–an underestimated risk? Am. Heart J. 2006, 152, 362.e1–362.e5. [Google Scholar] [CrossRef]
- Sauren, L.D.; van Belle, Y.; de Roy, L.; Pison, L.; La Meir, M.; van der Veen, H.J.; Crijns, F.H.; Jordaens, L.; Mess, W.H.; Maessen, J.G. Transcranial measurement of cerebral microembolic signals during endocardial pulmonary vein isolation: Comparison of three different ablation techniques. J. Cardiovasc. Electrophysiol. 2009, 20, 1102–1107. [Google Scholar] [CrossRef]
- Aksu, T.; Golcuk, S.; Guler, T.E.; Yalin, K.; Erden, I. Gastroparesis as a complication of atrial fibrillation ablation. Am. J. Cardiol. 2015, 116, 92–97. [Google Scholar] [CrossRef]
- Mugnai, G.; Irfan, C.; de Asmundis, G.; Ciconte, Y.; Saitoh, Y.; Hunuk, B.; Velagic, V.; Stroker, E.; Rossi, P.; Capulzini, L.; et al. Complications in the setting of percutaneous atrial fibrillation ablation using radiofrequency and cryoballoon techniques: A single-center study in a large cohort of patients. J. Cardiol. 2015, 196, 42–49. [Google Scholar] [CrossRef]
- Wojdyła-Hordyńska, A.; Baran, J.; Mazurek, M.; Derejko, P. Results of a survey concerning atrial fibrillation ablation strategies in Poland. Kardiol. Pol. 2020, 78, 974–981. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. ATS/ERS Task Force. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Tomalak, W.; Antczak, A.; Boros, P.W.; Czajkowska-Malinowska, M. Recommendations of the Polish Society of Lung Diseases regarding spirometry tests. Pneumonol. Alergol. Pol. 2006, 74 (Suppl. 1), 13–28. [Google Scholar]
- Tsiachris, D.; Antoniou, C.K.; Doundoulakis, I.; Manolakou, P.; Sougiannis, D.; Kordalis, A.; Gatzoulis, K.A.; Chierchia, G.B.; de Asmundis, C.; Stefanadis, C.; et al. Best practice guide for cryoballoon ablation in atrial fibrillation: The compilation experience of more than 1000 procedures. J. Cardiovasc. Dev. Dis. 2023, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Tu, S.J.; Emami, M.; Middeldorp, M.E.; Elliott, A.D.; Sanders, P. Incident atrial fibrillation in relation to ventilatory parameters: A Prospective Cohort Study. Can. J. Cardiol. 2023, 39, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Agarwal, S.K.; Alonso, A.; Blecker, S.; Chamberlain, A.M.; London, S.J.; Loehr, L.R.; McNeill, A.M.; Poole, C.; Soliman, E.Z.; et al. Airflow obstruction, lung function, and incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2014, 129, 971–980. [Google Scholar] [CrossRef]
- Shibata, Y.; Watanabe, T.; Osaka, D.; Abe, S.; Inoue, S.; Tokairin, Y.; Igarashi, A.; Yamauchi, K.; Kimura, T.; Kishi, H.; et al. Impairment of pulmonary function is an independent risk factor for atrial fibrillation: The Takahata study. Int. J. Med. Sci. 2011, 8, 514–522. [Google Scholar] [CrossRef]
- Kim, B.S.; Park, J.K.; Lee, Y.; Shin, J.H.; Lim, Y.H.; Park, H.C.; Kim, C.K.; Shin, J. The relationship between decreased pulmonary function and atrial fibrillation in general population: Findings from Ansung-Ansan cohort of the Korean Genome and Epidemiology Study. J. Cardiol. 2019, 74, 488–493. [Google Scholar] [CrossRef]
- Chahal, H.; Heckbert, S.R.; Barr, R.G.; Bluemke, D.A.; Jain, A.; Habibi, M.; Alonso, A.; Kronmal, R.; Jacobs, D.R.; Lima, J.A.; et al. Ability of reduced lung function to predict development of atrial fibrillation in persons aged 45 to 84 years (from the Multi-Ethnic Study of Atherosclerosis-Lung Study). Am. J. Cardiol. 2015, 115, 1700–1704. [Google Scholar] [CrossRef]
- Lee, S.N.; Ko, S.-H.; Her, S.-H.; Han, K.; Moon, D.; Kim, S.K.; Yoo, K.-D.; Ahn, Y.-B. Association between lung function and the risk of atrial fibrillation in a nationwide population cohort study. Sci. Rep. 2022, 12, 4007. [Google Scholar] [CrossRef]
- Simons, S.O.; Elliott, A.; Sastry, M.; Hendriks, J.M.; Arzt, M.; Rienstra, M.; Kalman, J.M.; Heidbuchel, H.; Nattel, S.; Wesseling, G.; et al. Chronic obstructive pulmonary disease and atrial fibrillation: An interdisciplinary perspective. Eur. Heart J. 2021, 42, 532–540. [Google Scholar] [CrossRef]
- Kannel, W.B.; Hubert, H.; Lew, E.A. Vital capacity as a predictor of cardiovascular disease: The Framingham Study. Am. Heart J. 1983, 105, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.; Bengtsson, C.; Lapidus, L.; Rybo, E.; Thiringer, G.; Wedel, H. Peak expiratory flow rate and risk of cardiovascular disease and death. A 12 year follow-up of participants in the population study of women in Gothenburg, Sweden. Am. J. Epidemiol. 1986, 124, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Lange, P.; Nyboe, J.; Jensen, G.; Schnohr, P.; Appleyard, M. Ventilatory function impairment and risk of cardiovascular death and of fatal or non-fatal myocardial infarction. Eur. Respir. J. 1991, 1, 1080–1087. [Google Scholar] [CrossRef]
- Truelsen, T.; Prescott, E.; Lange, P.; Schnohr, P.; Boysen, G. Lung function and risk of fatal and non-fatal stroke. The Copenhagen City Heart Study. Int. J. Epidemiol. 2001, 30, 145–151. [Google Scholar] [CrossRef]
- Wannamethee, G.; Shaper, A.G.; Ebrahim, S. Respiratory function and risk of stroke. Stroke 1995, 26, 2004–2010. [Google Scholar] [CrossRef]
- Ramalho, S.H.R.; Shah, A.M. Lung function and cardiovascular disease: A link. Trends Cardiovasc. Med. 2021, 31, 93–98. [Google Scholar] [CrossRef]
- Oguri, G.; Fujiu, K.; Oshima, T.; Shimizu, Y.; Hasumi, E.; Kojima, T.; Komuro, I. Cryoballoon ablation for paroxysmal atrial fibrillation mildly improves lung function: An observational study. Medicine 2023, 102, e35991. [Google Scholar] [CrossRef]
- Shin, J.; Andrews, M.; DeJean, L.; Debski, N.; Exarchakis, A.; Fleming, J.; Gandhi, R.; Hum, C.; Kalladanthyil, A.; Maddigunta, R.; et al. Risk factors associated with atrial fibrillation in elderly patients. J. Clin. Med. Res. 2023, 28, 148–160. [Google Scholar] [CrossRef]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994, 271, 840–844. [Google Scholar] [CrossRef]
- Huxley, R.R.; Lopez, F.L.; Folsom, A.R.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Maclehose, R.R.; Konety, S.; Alonso, A. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2021, 123, 1501–1508. [Google Scholar] [CrossRef]
- Lopez, F.L.; Agarwal, S.K.; Maclehose, R.F.; Soliman, E.Z.; Sharrett, A.R.; Huxley, R.R.; Konety, S.; Ballantyne, C.M.; Alonso, A. Blood lipid levels, lipid-lowering medications, and the incidence of atrial fibrillation: The atherosclerosis risk in communities study. Circ. Arrhythm. Electrophysiol. 2012, 5, 155–162. [Google Scholar] [CrossRef]
- Wyse, D.G.; Van Gelder, I.C.; Ellinor, P.T.; Go, A.S.; Kalman, J.A.; Narayan, S.M.; Nattel, S.; Schotten, U.; Rienstra, M. Lone atrial fibrillation: Does it exist? J. Am. Coll. Cardiol. 2014, 63, 1715–1723. [Google Scholar] [CrossRef]
- Romiti, G.F.; Corica, B.; Mei, D.A.; Bisson, A.; Boriani, G.; Olshansky, B.; Chao, T.-F.; Huisman, M.V.; Proietti, M.; Lip, G.Y. GLORIA-AF Investigators. Patterns of comorbidities in patients with atrial fibrillation and impact on management and long-term prognosis: An analysis from the Prospective Global GLORIA-AF Registry. BMC Med. 2024, 22, 151. [Google Scholar] [CrossRef] [PubMed]
- Sargent, S.R.; Mladenovic, J.R.; Liaw, J.J.T.; Siller, J.; Russell, P.L.; Tung, M.K.Y.; Holland, D.J. Catheter ablation for atrial fibrillation-influence of modifiable risk factors and ablation modality on procedural efficacy and safety. Heart Lung Circ. 2024, 33, 882–889. [Google Scholar] [CrossRef] [PubMed]
- De Maat, G.E.; Mulder, B.A.; Berretty, W.L.; Al-Jazairi, M.I.H.; Tan, E.S.; Wiesfeld, A.C.P.; Mariani, M.A.; Van Gelder, I.C.; Rienstra, M.; Blaauw, Y. Obesity is associated with impaired long-term success of pulmonary vein isolation: A plea for risk factor management before ablation. Open Heart 2018, 5, e000771. [Google Scholar] [CrossRef] [PubMed]
- Scheurlen, C.; van den Bruck, J.-H.; Filipovic, K.; Wörmann, J.; Arica, Z.; Erlhöfer, S.; Dittrich, S.; Heijman, J.; Lüker, J.; Steven, D.; et al. Procedural and outcome impact of obesity in cryoballoon versus radiofrequency pulmonary vein isolation in atrial fibrillation patients. J. Interv. Card. Electrophysiol. 2022, 26, 403–410. [Google Scholar] [CrossRef]
- Blockhaus, C.; Waibler, H.-P.; Gülker, J.-E.; Bufe, A.; Seyfarth, M.; Koektuerk, B.; Shin, D.-I. Influence of excess weight and obesity on performance and outcome of pulmonary vein isolation with the cryoballoon. Rev. Cardiovasc. Med. 2021, 22, 1047–1052. [Google Scholar] [CrossRef]
- Weinmann, K.; Bothner, C.; Rattka, M.; Aktolga, D.; Teumer, Y.; Rottbauer, W.; Dahme, T.; Pott, A. Pulmonary vein isolation with the cryoballoon in obese atrial fibrillation patients—Does weight have an impact on procedural parameters and clinical outcome? Int. J. Cardiol. 2020, 316, 137–142. [Google Scholar] [CrossRef]
- Urbanek, L.; Bordignon, S.; Chen, S.; Bologna, F.; Tohoku, S.; Dincher, M.; Schulte-Hahn, B.; Schmidt, B.; Chun, K.-R.-J. Impact of body mass index on cryoablation of atrial fibrillation: Patient characteristics, procedural data, and long-term outcomes. J. Cardiovasc. Electrophysiol. 2022, 33, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Fal, A.M.; Niżankowska-Mogilnicka, E.; Sliwiński, P.; Emeryk, A.; Antczak, A.; Kruszewski, J. Small airways in obstructive lung diseases. Pneumonol. Alergol. Pol. 2012, 80, 146–151. [Google Scholar] [PubMed]
- Boehmer, A.A.; Rothe, M.; Nussbaum, E.; Ruckes, C.; Dobre, B.C.; Kaess, B.M.; Ehrlich, J.R. Cryoballoon pulmonary vein isolation for atrial fibrillation in obese patients: A non-inferiority analysis. Int. J. Cardiol. Heart Vasc. 2023, 47, 101244. [Google Scholar] [CrossRef]
- Creta, A.; Providência, R.; Adragão, P.; de Asmundis, C.; Chun, J.; Chierchia, G.; Defaye, P.; Schmidt, B.; Anselme, F.; Finlay, M.; et al. Impact of type-2 diabetes mellitus on the outcomes of catheter ablation of atrial fibrillation (European Observational Multicentre Study. Am. J. Cardiol. 2020, 125, 901–906. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, R.; Zhang, X.; Xu, W. Association between baseline glycated hemoglobin level and atrial fibrillation recurrence following cryoballoon ablation among patients with and without diabetes. BMC Cardiovasc. Disord. 2024, 24, 111. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Han, W.; Rong, B.; Zhang, K.; Chen, T.; Wang, J.; Li, Y.; Chen, C.; Wu, L.; Zhong, J. Sex-based long-term outcome for atrial fibrillation patients post catheter ablation. Heart Lung 2025, 73, 74–80. [Google Scholar] [CrossRef]
- Meyer, E.J.; Wittert, G.A. Approach the patient with obstructive sleep apnea and obesity. J. Clin. Endocrinol. Metab. 2024, 109, e1267–e1279. [Google Scholar] [CrossRef]
- Jehan, S.; Myers, A.K.; Zizi, F.; Pandi-Perumal, S.R.; Jean-Louis, G.; McFarlane, S.I. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med. Disord. 2018, 2, 52–58. [Google Scholar] [PubMed]
- Chen, L.; Sun, X.; He, Y.; Lu, Y.; Zheng, L. Obstructive sleep apnea and atrial fibrillation: Insights from a bidirectional Mendelian randomization study. BMC Med. Genom. 2022, 15, 28. [Google Scholar] [CrossRef]
- Azarbarzin, A.; Labarca, G.; Kwon, Y.; Wellman, A. Physiologic consequences of upper airway obstruction in sleep apnea. Chest 2024, 166, 1209–1217. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, K.; Gao, X.; Zou, T.; Pang, Y.; Ling, Y.; Xu, Y.; Xu, Y.; Chen, Q.; Zhu, W.; et al. Cryoballoon ablation for atrial fibrillation in patients with heart failure with mildly reduced and preserved ejection fraction. ESC Heart Fail. 2023, 10, 518–531. [Google Scholar] [CrossRef]
- Pott, A.; Jäck, S.; Schweizer, C.; Baumhardt, M.; Stephan, T.; Rattka, M.; Weinmann, K.; Bothner, C.; Scharnbeck, D.; Keßler, K.; et al. Atrial fibrillation ablation in heart failure patients: Improved systolic function after cryoballoon pulmonary vein isolation. ESC Heart Fail. 2020, 7, 2258–2267. [Google Scholar] [CrossRef]
- Huang, W.-M.; Feng, J.-Y.; Cheng, H.-M.; Chen, S.-Z.; Huang, C.-J.; Guo, C.-Y.; Yu, W.-C.; Chen, C.-H.; Sung, S.-H. The role of pulmonary function in patients with heart failure and preserved ejection fraction: Looking beyond chronic obstructive pulmonary disease. PLoS ONE 2020, 15, e0235152. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Zhang, J.; Yang, H.; Abdu, F.A.; Guo, R.; Li, S.; Tang, K.; Li, H.; Che, W.; et al. Impact of Stable Coronary Artery Disease on the Efficacy of Cryoballoon Ablation for the Atrial Fibrillation. Am. J. Med. Sci. 2019, 358, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Tzeis, S.; Pamporis, K.; Schuermans, A.; Theofilis, P.; Milaras, N.; Tsiachris, D.; Efremidis, M.; Antoniadis, A.P.; Fragakis, N. Impact of catheter ablation timing according to duration of atrial fibrillation history on arrhythmia recurrences and clinical outcomes: A meta-analysis. Europace 2025, 27, euaf110. [Google Scholar] [CrossRef] [PubMed]
Parameter | N (%) |
---|---|
Sex | |
Female | 9 (33.3%) |
Male | 18 (66.7%) |
Comorbidities | |
HA | 21 (77.7%) |
HF | 5 (18.5%) |
CAD | 6 (22.2%) |
T2DM | 11 (40.7%) |
BMI ≥ 30 kg/m2 | 12 (44.4%) |
DLP | 18 (66.6%) |
EF ≥ 50% | 21 (77.7%) |
AF type (PAF/AF-PE) | 18/9 (66.6/33.3%) |
EHRA score | |
I–II | 11 (40.7%) |
III–IV | 16 (59.2%) |
Spirometry Parameter | Before PVI | 30 Days After PVI | p * |
---|---|---|---|
Median (Q1: Q3) | Median (Q1: Q3) | ||
FEV1/FVCex (%) | 75.78 (69.93; 81.34) | 76.68 (70.71; 80.45) | 0.94 |
FEV1 (l) | 3.00 (2.22; 3.55) | 2.97 (2.37; 3.37) | 0.18 |
FVCex (l) | 4.02 (2.99; 4.66) | 3.88 (3.04; 4.62) | 0.23 |
PEF (l/s) | 5.61 (4.70; 6.86) | 5.56 (4.99; 6.40) | 0.89 |
MEF75 (l/s) | 5.04 (4.21; 6.27) | 5.24 (3.93; 5.92) | 0.15 |
MEF50 (l/s) | 3.10 (2.26; 4.37) | 2.98 (2.30; 4.11) | 0.17 |
MEF25 (l/s) | 0.93 (0.73; 1.31) | 0.98 (0.68; 1.18) | 0.13 |
FEV1/FVCex (% of predicted) | 96.00 (89.00; 103.00) | 97.00 (92.00; 104.00) | 0.64 |
FEV1 (% of predicted) | 95.00 (82.00; 107.00) | 95.00 (84.00; 105.00) | 0.17 |
FVCex (% of predicted) | 97.00 (89.00; 107.00) | 99.00 (89.00; 108.00) | 0.40 |
PEF (% predicted) | 71.00 (67.00; 92.00) | 81.00 (65.00; 97.00) | 0.45 |
MEF75 (% of predicted) | 73.00 (65.00; 93.00) | 74.00 (67.00; 102.00) | 0.24 |
MEF50 (% of predicted) | 80.00 (62.00; 91.00) | 77.00 (54,00; 92,00) | 0.27 |
MEF25 (% of predicted) | 122.00 (94.00; 175.00) | 121.00 (84.00; 147.00) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różycka-Kosmalska, M.; Kosmalski, M.; Panek, M.; Majos, A.; Szymczak-Pajor, I.; Śliwińska, A.; Kasznicki, J.; Wranicz, J.K.; Kaczmarek, K. The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation. J. Clin. Med. 2025, 14, 5431. https://doi.org/10.3390/jcm14155431
Różycka-Kosmalska M, Kosmalski M, Panek M, Majos A, Szymczak-Pajor I, Śliwińska A, Kasznicki J, Wranicz JK, Kaczmarek K. The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation. Journal of Clinical Medicine. 2025; 14(15):5431. https://doi.org/10.3390/jcm14155431
Chicago/Turabian StyleRóżycka-Kosmalska, Monika, Marcin Kosmalski, Michał Panek, Alicja Majos, Izabela Szymczak-Pajor, Agnieszka Śliwińska, Jacek Kasznicki, Jerzy Krzysztof Wranicz, and Krzysztof Kaczmarek. 2025. "The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation" Journal of Clinical Medicine 14, no. 15: 5431. https://doi.org/10.3390/jcm14155431
APA StyleRóżycka-Kosmalska, M., Kosmalski, M., Panek, M., Majos, A., Szymczak-Pajor, I., Śliwińska, A., Kasznicki, J., Wranicz, J. K., & Kaczmarek, K. (2025). The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation. Journal of Clinical Medicine, 14(15), 5431. https://doi.org/10.3390/jcm14155431