Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (999)

Search Parameters:
Keywords = living cancer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 (registering DOI) - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/human/day), low-dose live NB23 (1 × 1010 CFUs/human/day), or high-dose live NB23 (3 × 1010 CFUs/human/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

19 pages, 3596 KiB  
Article
Radon Exposure to the General Population of the Fernald Community Cohort
by John F. Reichard, Swade Barned, Angelico Mendy and Susan M. Pinney
Atmosphere 2025, 16(8), 939; https://doi.org/10.3390/atmos16080939 - 5 Aug 2025
Abstract
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that [...] Read more.
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that interacts with cells in the lung and trachea-bronchial tree, leading to DNA damage, mutations, and tumor initiation. The purpose of this project was to use evidence collected by the Fernald Dosimetry Reconstruction Project and other sources to estimate the outdoor Rn exposure to individuals in the community immediately surrounding the FMPC during the years of plant operation. Using previously tabulated source terms, diffusion and meteorological data, and self-reported detailed residential histories, we estimated radon exposure for approximately 9300 persons who lived at more than 14,000 addresses. The results indicated that a portion of the population cohort experiences mean annual Rn exposure exceeding the U.S. Environmental Protection Agency (EPA) action limit of 4 pCiL−1. These exposure estimates support the analysis of the incidence of lung cancer in the Fernald Community Cohort (FCC). Full article
Show Figures

Figure 1

34 pages, 6455 KiB  
Article
IBCar: Potent Orally Bioavailable Methyl N-[5-(3′-Iodobenzoyl)-1H-Benzimidazol-2-yl]Carbamate for Breast Cancer Therapy
by Janina Baranowska-Kortylewicz and Ying Yan
Cancers 2025, 17(15), 2526; https://doi.org/10.3390/cancers17152526 - 30 Jul 2025
Viewed by 294
Abstract
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using [...] Read more.
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using the MTS assay to assess metabolic activity and the clonogenic assay to determine reproductive integrity. The impact of IBCar on microtubule integrity, mitochondrial function, and multiple signaling pathways was analyzed using Western blotting, microarray analysis, and live cell imaging. The therapeutic effectiveness of orally administered IBCar was assessed in a transgenic mouse model of Luminal B breast cancer and in mice implanted with subcutaneous triple-negative breast cancer xenografts. Results: IBCar demonstrated potent cytotoxicity across a diverse panel of breast cancer cell lines, including those with mutant or wild-type TP53, and cell lines with short and long doubling times. Comparative analysis revealed distinct responses between normal and cancer cells, including differences in IBCar’s effects on the mitochondrial membrane potential, endoplasmic reticulum stress and activation of cell death pathways. In breast cancer cells, IBCar was cytotoxic at nanomolar concentrations, caused irreversible microtubule depolymerization leading to sustained mitochondrial dysfunction, endoplasmic reticulum stress, and induced apoptosis. In normal cells, protective mechanisms included reversible microtubule depolymerization and activation of pro-survival signaling via the caspase-8 and riptosome pathways. The therapeutic potential of IBCar was confirmed in mouse models of Luminal B and triple negative BC, where it exhibited strong antitumor activity without detectable toxicity. Conclusions: These findings collectively support IBCar as a promising, effective, and safe therapeutic candidate for breast cancer treatment. Full article
Show Figures

Figure 1

13 pages, 1171 KiB  
Article
Beyond Protection: The Cytotoxic Effect of Anti-Tat Antibodies in People Living with HIV
by Juan Ernesto Gutiérrez-Sevilla, Jorge Gaona-Bernal, Gracia Viviana González-Enríquez, Martha Escoto-Delgadillo, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Silvia Gabriela Luévano-Gómez, Alma Minerva Pérez-Ríos, Maribel Ávila-Morán, Víctor Eduardo García-Arias, Jessica Paloma Torres-Ríos, Jhonathan Cárdenas-Bedoya and Blanca Miriam Torres-Mendoza
Int. J. Mol. Sci. 2025, 26(15), 7229; https://doi.org/10.3390/ijms26157229 - 26 Jul 2025
Viewed by 224
Abstract
Although ART leads to viral suppression, people living with HIV (PLWH) still face an increased risk of comorbidities, such as cancer. The HIV-1 Tat protein may contribute to the promotion of chronic inflammation, oxidative stress, and genomic instability. While the presence of anti-Tat [...] Read more.
Although ART leads to viral suppression, people living with HIV (PLWH) still face an increased risk of comorbidities, such as cancer. The HIV-1 Tat protein may contribute to the promotion of chronic inflammation, oxidative stress, and genomic instability. While the presence of anti-Tat antibodies has been associated with slower disease progression, their potential role in modulating DNA damage remains unclear. Assess the effect of anti-Tat antibodies on cytotoxic and DNA damage in PLWH. A cross-sectional study was conducted in 178 PLWH. Serum anti-Tat IgG antibodies were measured using enzyme-linked immunosorbent assay (ELISA). Cytotoxicity and DNA damage were assessed via serum 8-hydroxy-2′-deoxyguanosine (8-OHdG) and nuclear anomalies (Micronucleus cytome assay) in 2000 buccal cells. Statistical significance was considered at p < 0.05. Anti-Tat antibodies were found in 24.2% of participants. Positive individuals had lower CD4+ T cell counts (p = 0.045) and higher levels of pyknosis (p = 0.0001). No differences in 8-OHdG were found, but 8-OHdG correlated positively with CD4+ counts (rho = 0.334, p = 0.006). Pyknosis negatively correlated with CD4+ counts (rho = −0.272, p = 0.027). Anti-Tat antibodies may not prevent DNA damage but could be related to cytotoxic effects in PLWH. Full article
(This article belongs to the Special Issue Advanced Research on HIV Virus and Infection)
Show Figures

Figure 1

15 pages, 1272 KiB  
Article
Gender Differences in Knowledge and Attitudes on Hematopoietic Stem Cell Donation Among Apulian Citizens: An Explorative Study
by Elsa Vitale, Roberto Lupo, Stefano Botti, Chiara Ianne, Alessia Lezzi, Giorgio De Nunzio, Donato Cascio, Ivan Rubbi, Simone Zacchino, Gianandrea Pasquinelli, Doria Valentini, Valeria Soffientini, Valentina De Cecco, Chiara Cannici, Marco Cioce and Luana Conte
Hemato 2025, 6(3), 24; https://doi.org/10.3390/hemato6030024 - 22 Jul 2025
Viewed by 236
Abstract
Background: It is estimated that in Italy, there were 364,000 new diagnoses of neoplasms each year and that the overall incidence of blood cancers was 10% of these. Leukemia and lymphomas represented the ninth and eighth places, respectively, among the causes of death [...] Read more.
Background: It is estimated that in Italy, there were 364,000 new diagnoses of neoplasms each year and that the overall incidence of blood cancers was 10% of these. Leukemia and lymphomas represented the ninth and eighth places, respectively, among the causes of death from neoplasia. Hematopoietic stem cell transplantation represented an effective treatment option for many of these malignancies, and not only that: benign and congenital diseases could also be treated. Objective: To assess knowledge among the Apulian population regarding stem cell donation and factors that could influence this choice, focusing especially on the knowledge of the residents of Puglia, Italy on how stem cells were harvested and their functions, their reasons for joining the National Registry, and the reasons that hold them back from making such a choice. Study Design: An observational and cross-sectional study was conducted, through snowball sampling methodology, until data saturation. An online survey was conducted, which included several Italian associations. The questionnaire administered contained five main sections, such as sociodemographic data, knowledge of the existence of National Registries and their adherence, the nationwide presence of various associations that promote donation, knowledge with respect to the structure, use and functions of stem cells, sources of procurement, such as bone marrow, peripheral blood and umbilical cord, and related procedures, beliefs, attitudes, values, and opinions of the Italian population regarding the topic, and degree of information and education regarding bone marrow donation. Results: A total of 567 Apulian citizens were enrolled. Of these, 75.3% were female and 96.8% were aged between 18 and 65 years. Most of participants were single (46.9%) and married (47.3%) and had a diploma (44.4%), and less had a degree (35.8%). Significant differences were recorded between gender, singles, and married participants, and participants with a diploma or a degree and the items proposed. Conclusions: A true culture of donation in our region was not clearly spread. Although something has been accomplished in recent years in terms of deceased donor donation, still a great deal needs to be achieved for living donation, which encountered a great deal of resistance. It has been deemed necessary to seek winning solutions to this issue in terms of communication and information campaigns, raising awareness and empowering citizens to express consciously their concerns about organs and tissues and to stand in solidarity with those who suffered. Full article
Show Figures

Figure 1

19 pages, 3935 KiB  
Article
Selective Cleaning Enhances Machine Learning Accuracy for Drug Repurposing: Multiscale Discovery of MDM2 Inhibitors
by Mohammad Firdaus Akmal and Ming Wah Wong
Molecules 2025, 30(14), 2992; https://doi.org/10.3390/molecules30142992 - 16 Jul 2025
Viewed by 355
Abstract
Cancer remains one of the most formidable challenges to human health; hence, developing effective treatments is critical for saving lives. An important strategy involves reactivating tumor suppressor genes, particularly p53, by targeting their negative regulator MDM2, which is essential in promoting cell cycle [...] Read more.
Cancer remains one of the most formidable challenges to human health; hence, developing effective treatments is critical for saving lives. An important strategy involves reactivating tumor suppressor genes, particularly p53, by targeting their negative regulator MDM2, which is essential in promoting cell cycle arrest and apoptosis. Leveraging a drug repurposing approach, we screened over 24,000 clinically tested molecules to identify new MDM2 inhibitors. A key innovation of this work is the development and application of a selective cleaning algorithm that systematically filters assay data to mitigate noise and inconsistencies inherent in large-scale bioactivity datasets. This approach significantly improved the predictive accuracy of our machine learning model for pIC50 values, reducing RMSE by 21.6% and achieving state-of-the-art performance (R2 = 0.87)—a substantial improvement over standard data preprocessing pipelines. The optimized model was integrated with structure-based virtual screening via molecular docking to prioritize repurposing candidate compounds. We identified two clinical CB1 antagonists, MePPEP and otenabant, and the statin drug atorvastatin as promising repurposing candidates based on their high predicted potency and binding affinity toward MDM2. Interactions with the related proteins MDM4 and BCL2 suggest these compounds may enhance p53 restoration through multi-target mechanisms. Quantum mechanical (ONIOM) optimizations and molecular dynamics simulations confirmed the stability and favorable interaction profiles of the selected protein–ligand complexes, resembling that of navtemadlin, a known MDM2 inhibitor. This multiscale, accuracy-boosted workflow introduces a novel data-curation strategy that substantially enhances AI model performance and enables efficient drug repurposing against challenging cancer targets. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

31 pages, 2314 KiB  
Review
Innovative Peptide Therapeutics in the Pipeline: Transforming Cancer Detection and Treatment
by Yanyamba Nsereko, Amy Armstrong, Fleur Coburn and Othman Al Musaimi
Int. J. Mol. Sci. 2025, 26(14), 6815; https://doi.org/10.3390/ijms26146815 - 16 Jul 2025
Viewed by 789
Abstract
Cancer remains a leading global health burden, profoundly affecting patient survival and quality of life. Current treatments—including chemotherapy, radiotherapy, immunotherapy, and surgery—are often limited by toxicity or insufficient specificity. Conventional chemotherapy, for instance, indiscriminately attacks rapidly dividing cells, causing severe side effects. In [...] Read more.
Cancer remains a leading global health burden, profoundly affecting patient survival and quality of life. Current treatments—including chemotherapy, radiotherapy, immunotherapy, and surgery—are often limited by toxicity or insufficient specificity. Conventional chemotherapy, for instance, indiscriminately attacks rapidly dividing cells, causing severe side effects. In contrast, peptide-based therapeutics offer a paradigm shift, combining high tumour-targeting precision with minimal off-target effects. Their low immunogenicity, multi-pathway modulation capabilities, and adaptability for diagnostics and therapy make them ideal candidates for advancing oncology care. Innovative peptide platforms now enable three transformative applications: (1) precision molecular diagnostics (e.g., 18F-PSMA-1007 for prostate cancer detection), (2) targeted therapies (e.g., BT5528 and SAR408701 targeting tumour-specific antigens), and (3) theranostic systems (e.g., RAYZ-8009 and 177Lu-FAP-2286 integrating imaging and radiotherapy). Despite their promise, peptides face challenges like metabolic instability and short half-lives. Recent advances in structural engineering (e.g., cyclization and D-amino acid incorporation) and delivery systems (e.g., nanoparticles and PEGylation) have significantly enhanced their clinical potential. This review highlights peptide-based agents in development, showcasing their ability to improve early cancer detection, reduce metastasis, and enhance therapeutic efficacy with fewer adverse effects. Examples like CLP002 underscore their role in personalised medicine. By overcoming current limitations, peptide drugs are poised to redefine cancer management, offering safer, more effective alternatives to conventional therapies. Their integration into clinical practice could mark a critical milestone in achieving precision oncology. Full article
(This article belongs to the Special Issue Peptides as Biochemical Tools and Modulators of Biological Activity)
Show Figures

Figure 1

13 pages, 1844 KiB  
Article
Lactobacillus gasseri Suppresses the Helicobacter pylori-Induced Hummingbird Phenotype by Inhibiting CagA Phosphorylation and SHP-2 Interaction
by Rajesh K. Gupta, Tanvi Somiah, Amelia C. Steinlein and Ann-Beth Jonsson
Int. J. Mol. Sci. 2025, 26(14), 6718; https://doi.org/10.3390/ijms26146718 - 13 Jul 2025
Viewed by 349
Abstract
Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. The bacterium leverages several unique virulence factors to its advantage in order to colonize the human host. Among these, T4SS-delivered cytotoxin-associated gene A (CagA) has the most well-established [...] Read more.
Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. The bacterium leverages several unique virulence factors to its advantage in order to colonize the human host. Among these, T4SS-delivered cytotoxin-associated gene A (CagA) has the most well-established links to severe forms of disease. To explore the effect of lactobacilli in disrupting CagA functions within host cells, we expressed HA-tagged humanized cagA in the human gastric epithelial AGS cell line and studied both the phosphorylation levels of CagA and its downstream binding partners. We found that gastric-specific Lactobacillus gasseri Kx110 A1 suppressed the phosphorylation of CagA and inhibited phosphorylation-dependent downstream signaling, resulting in the suppression of CagA-induced cell elongation of AGS cells, commonly known as the hummingbird phenotype. Surprisingly, phosphorylation-independent signaling was unaffected by L. gasseri. Furthermore, our confocal microscopy analysis revealed that CagA was mislocalized to the cytoplasm, suggesting that L. gasseri interferes with its membrane localization and thereby hinders its phosphorylation. Live L. gasseri that had direct contact with host cells was found to be necessary to suppress the hummingbird phenotype. In summary, the data suggest that a L. gasseri strain can inhibit CagA phosphorylation and suppress cell elongation. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2584 KiB  
Article
Calliviminone A from Callistemon citrinus Induces PANC-1 Pancreatic Cancer Cell Death by Targeting the PI3K/Akt/mTOR Pathway
by Juthamart Maneenet, Ahmed M. Tawila, Hung Hong Nguyen, Nguyen Duy Phan, Orawan Monthakantirat, Supawadee Daodee, Chantana Boonyarat, Charinya Khamphukdee, Yaowared Chulikhit and Suresh Awale
Plants 2025, 14(13), 2074; https://doi.org/10.3390/plants14132074 - 7 Jul 2025
Viewed by 1641
Abstract
Pancreatic cancer cells exhibit a remarkable ability to tolerate nutrient deprivation, a phenomenon termed “austerity,” which enables their survival within the hypovascular tumor microenvironment. Conventional anticancer therapies frequently fail to effectively target these resilient neoplastic cells, posing a significant challenge to the therapeutic [...] Read more.
Pancreatic cancer cells exhibit a remarkable ability to tolerate nutrient deprivation, a phenomenon termed “austerity,” which enables their survival within the hypovascular tumor microenvironment. Conventional anticancer therapies frequently fail to effectively target these resilient neoplastic cells, posing a significant challenge to the therapeutic management of pancreatic cancer. Consequently, targeting austerity, the ability of cancer cells to tolerate nutrient starvation, represents a promising anti-austerity strategy for developing novel pancreatic cancer therapeutics. In this study, we investigated calliviminone A (CVM-A), a phloroglucinol–meroterpenoid isolated from Callistemon citrinus leaves, for its anti-austerity activity against PANC-1 human pancreatic cancer cells. Calliviminone A exhibited potent preferential cytotoxicity in nutrient-deprived medium (NDM) with a PC50 of 0.57 µM, while showing minimal toxicity in nutrient-rich Dulbecco’s Modified Eagle’s medium (IC50 = 45.2 µM), indicating a favorable therapeutic index. Real-time live-cell imaging revealed that CVM-A induced significant morphological changes, including cell shrinkage and membrane blebbing, leading to cell death within 24 h of NDM. Furthermore, under normal nutrient conditions in Dulbecco’s Modified Eagle’s Medium (DMEM), CVM-A significantly inhibited PANC-1 cell migration (up to 47% reduction at 20 µM) and colony formation (over 80% suppression at 25 µM), suggesting its antimetastatic potential. Western blot studies demonstrated that CVM-A downregulated key survival components of the PI3K/Akt/mTOR signaling pathway, completely inhibiting Akt and p-Akt at 2.5 µM in NDM, and suppressing insulin-induced Akt activation. These findings highlight CVM-A as a promising lead compound for developing novel anticancer therapies that target the adaptive survival mechanisms and metastatic potential of pancreatic cancer in nutrient-deprived microenvironments. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

32 pages, 4374 KiB  
Article
Predictive and Prognostic Relevance of ABC Transporters for Resistance to Anthracycline Derivatives
by Rümeysa Yücer, Rossana Piccinno, Ednah Ooko, Mona Dawood, Gerhard Bringmann and Thomas Efferth
Biomolecules 2025, 15(7), 971; https://doi.org/10.3390/biom15070971 - 6 Jul 2025
Viewed by 605
Abstract
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of [...] Read more.
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of the National Cancer Institute, USA. The log10IC50 values varied from −10.49 M (3′-deamino-3′-(4″-(3″-cyano)morpholinyl)-doxorubicin, 1) to −4.93 M (N,N-dibenzyldaunorubicin hydrochloride, 30). Multidrug-resistant NCI-ADR-Res ovarian cancer cells revealed a high degree of resistance to established anthracyclines (between 18-fold to idarubicin (4) and 166-fold to doxorubicin (13) compared to parental, drug-sensitive OVCAR8 cells). The resistant cells displayed only low degrees of resistance (1- to 5-fold) to four other anthracyclines (7, 18, 28, 30) and were even hypersensitive (collaterally sensitive) to two compounds (1, 26). Live cell time-lapse microscopy proved the cross-resistance of the three chosen anthracyclines (4, 7, 9) on sensitive CCRF/CEM and multidrug-resistant CEM/ADR5000 cells. Structure–activity relationships showed that the presence of tertiary amino functions is helpful in avoiding resistance, while primary amines rather increased resistance development. An α-aminonitrile function as in compound 1 was favorable. Investigating the mRNA expression of 49 ATP-binding cassette (ABC) transporter genes showed that ABCB1/MDR1 encoding P-glycoprotein was the most important one for acquired and inherent resistance to anthracyclines. Molecular docking demonstrated that all anthracyclines bound to the same binding domain at the inner efflux channel side of P-glycoprotein with high binding affinities. Kaplan–Meier statistics of RNA sequencing data of more than 8000 tumor biopsies of TCGA database revealed that out of 23 tumor entities high ABCB1 expression was significantly correlated with worse survival times for acute myeloid leukemia, multiple myeloma, and hepatocellular carcinoma patients. This indicates that ABCB1 may serve as a prognostic marker in anthracycline-based chemotherapy regimens in these tumor types and a target for the development of novel anthracycline derivatives. Full article
(This article belongs to the Special Issue Current Advances in ABC Transporters in Physiology and Disease)
Show Figures

Graphical abstract

44 pages, 11501 KiB  
Review
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review
by Stefana Avadanei-Luca, Isabella Nacu, Andrei Nicolae Avadanei, Mihaela Pertea, Bogdan Tamba, Liliana Verestiuc and Viorel Scripcariu
Int. J. Mol. Sci. 2025, 26(13), 6469; https://doi.org/10.3390/ijms26136469 - 4 Jul 2025
Viewed by 516
Abstract
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this [...] Read more.
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this process, resulting in delayed healing, excessive scarring, and compromised tissue integrity. This review explores innovative approaches related to wound healing in post-radiotherapy defects, focusing on the integration of adipose-derived stem cells (ADSCs) in protein/polysaccharide bioengineered scaffolds. Such scaffolds, like hydrogels, sponges, or 3D-printed/bioprinted materials, provide a biocompatible and biomimetic environment that supports cell-to-cell and cell-to-matrix interactions. Various proteins and polysaccharides are discussed for beneficial properties and limitations, and their compatibility with ADSCs in wound healing applications. The potential of ADSCs-polymeric scaffold combinations in radiation-induced wound healing is investigated, alongside the mechanisms of cell proliferation, inflammation reduction, angiogenesis promotion, collagen formation, integrin binding, growth factor signaling, and activation of signaling pathways. New strategies to improve the therapeutic efficacy of ADSCs by integration in adaptive polymeric materials and designed scaffolds are highlighted, providing solutions for radiation-induced wounded skin, personalized care, faster tissue regeneration, and, ultimately, enhanced quality of the patients’ lives. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Materials)
Show Figures

Graphical abstract

24 pages, 732 KiB  
Review
Advances in Oncolytic Viral Therapy in Melanoma: A Comprehensive Review
by Ayushi Garg, Rohit Rao, Felicia Tejawinata, Gazi Amena Noor Shamita, McKay S. Herpel, Akihiro Yoshida, Gordon Goolamier, Jessica Sidiropoulos, Iris Y. Sheng, Salim-Tamuz Abboud, Luke D. Rothermel, Nami Azar and Ankit Mangla
Vaccines 2025, 13(7), 727; https://doi.org/10.3390/vaccines13070727 - 3 Jul 2025
Viewed by 1018
Abstract
Checkpoint inhibitor therapy revolutionized the treatment of patients with melanoma. However, in patients where melanoma exhibits resistance to checkpoint inhibitor therapy, the treatment options are limited. Oncolytic viruses are a unique form of immunotherapy that uses live viruses to infect and lyse tumor [...] Read more.
Checkpoint inhibitor therapy revolutionized the treatment of patients with melanoma. However, in patients where melanoma exhibits resistance to checkpoint inhibitor therapy, the treatment options are limited. Oncolytic viruses are a unique form of immunotherapy that uses live viruses to infect and lyse tumor cells to release the elusive neoantigen picked up by the antigen-presenting cells, thus increasing the chances of an immune response against cancer. Coupled with checkpoint inhibitors, intratumoral injections of the oncolytic virus can help an enhanced immune response, especially in a tumor that displays resistance to checkpoint inhibitors. However, oncolytic viruses are not bereft of challenges and face several obstacles in the tumor microenvironment. From the historical use of wild viruses to the sophisticated use of genetically modified viruses in the current era, oncolytic virus therapy has evolved tremendously in the last two decades. Increasing the ability of the virus to select the malignant cells over the non-malignant ones, circumventing the antiviral immune response from the body, and enhancing the oncolytic properties of the viral platform by attaching various ligands are some of the several improvements made in the last three decades. In this manuscript, we trace the journey of the development of oncolytic virus therapy, especially in the context of melanoma. We review the clinical trials of talimogene laherparepvec in patients with melanoma. We also review the data available from the clinical trials of vusolimogene oderparepvec in patients with melanoma. Finally, we review the use of various oncolytic viruses and their challenges in clinical development. This manuscript aims to create a comprehensive literature review for clinicians to understand and implement oncolytic virus therapy in patients diagnosed with melanoma. Full article
(This article belongs to the Special Issue Next-Generation Vaccine and Immunotherapy)
Show Figures

Figure 1

18 pages, 1546 KiB  
Perspective
Paradigm Lost
by Jane Mellor, Ewan Hunter and Alexandre Akoulitchev
Cancers 2025, 17(13), 2187; https://doi.org/10.3390/cancers17132187 - 28 Jun 2025
Viewed by 564
Abstract
Background/Objectives: The 3-dimensional (3D) architecture of the genome in the nucleus of a living cell plays an unexpected yet fundamental regulatory role in cell biology. As an imprint of the cellular genetic, epigenetic and metabolic status, it discriminates pathological conditions through conditional [...] Read more.
Background/Objectives: The 3-dimensional (3D) architecture of the genome in the nucleus of a living cell plays an unexpected yet fundamental regulatory role in cell biology. As an imprint of the cellular genetic, epigenetic and metabolic status, it discriminates pathological conditions through conditional changes to long-range 3D interactions (up to 300 kb) and thus could act as a powerful molecular biomarker linked closely to clinical outcomes. Methods: Here an assessment is made of the latest paradigm shift in molecular biology from a supply chain where information flows from DNA to RNA to protein, to the concept of heritable 3D folding of the genome reflecting the epigenetic and metabolic state of the cell, and which serves as a molecular biomarker for complex clinical outcome. Results: While biomarkers based on individual components of the supply chain fail to accurately reflect clinical outcomes, 3D genomics offers highly informative insights, exemplified for immuno-oncology and prostate cancer diagnosis by clinical tests of superior performance, already in practice in the US and UK. Conclusions: A more complete understanding of human biology will require models that account for the flow of information to and from the 3D genomic architecture in living cells, together with its regulation and logic. Integrating these principles into biomarker discovery and therapeutic design, along with other frontline approaches in precision medicine, including multi-omics and other system-level tools, will be essential for advancing precision medicine beyond its current limitations. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

15 pages, 634 KiB  
Review
Reactive Molecules in Cigarette Smoke: Rethinking Cancer Therapy
by Vehary Sakanyan
BioTech 2025, 14(3), 52; https://doi.org/10.3390/biotech14030052 - 27 Jun 2025
Viewed by 419
Abstract
Science has made significant progress in detecting reactive oxygen species (ROS) in tobacco smoke, which is an important step for precision cancer therapy. An important advance is also the understanding that superoxide can be produced by electrophilic molecules. The dual action of hydrogen [...] Read more.
Science has made significant progress in detecting reactive oxygen species (ROS) in tobacco smoke, which is an important step for precision cancer therapy. An important advance is also the understanding that superoxide can be produced by electrophilic molecules. The dual action of hydrogen peroxide, directly or via electrophilic molecules, in the development of oxidative stress allows for the identification of target proteins that can potentially stop unwanted signals in cancer development. However, despite advances in proteomics, reliable inhibitors to stop ROS-associated cancer progression have not yet been proposed for the treatment of tobacco cigarette smokers. This is likely due to an imperfect understanding of the diversity of molecular mechanisms of anti-ROS action. Fluorescent protein detection in living cells, called in-gel, offers a direct route to a better understanding of the rapid interaction of ROS and electrophilic compounds with targeted proteins. It seemed that the traditional paradigm of pharmaceutical innovation “one drug, one disease” did not solve the problem of tobacco smoking causing cancer. However, among the various therapeutic treatments for tobacco smokers, the best way to combat cancer today is smoking cessation, which fits into the “one-cure” paradigm. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

31 pages, 1459 KiB  
Review
Insights on Natural Membrane Characterization for the Rational Design of Biomimetic Drug Delivery Systems
by Daniela Donghia, Sara Baldassari, Giuliana Drava, Giorgia Ailuno and Gabriele Caviglioli
Pharmaceutics 2025, 17(7), 841; https://doi.org/10.3390/pharmaceutics17070841 - 27 Jun 2025
Viewed by 516
Abstract
Cell membranes are vital for living organisms and serve as a dynamic barrier between the internal and external environments. They are composed of a complex lipid bilayer embedded with proteins, allowing them to perform multiple functions like maintaining the cell structure, regulating which [...] Read more.
Cell membranes are vital for living organisms and serve as a dynamic barrier between the internal and external environments. They are composed of a complex lipid bilayer embedded with proteins, allowing them to perform multiple functions like maintaining the cell structure, regulating which substances enter or leave the cell, and intercellular communication. Cellular functions are inherently linked to their membrane properties, and the heterogeneous nature of cell membranes makes the study of their physico-chemical properties extremely challenging. This review is intended to provide a comprehensive overview of the composition and physical features of the cell membrane, by focusing on the lipid and protein composition, and on the physical properties (like membrane stiffness or fluidity), highlighting how these characteristics influence cell functions. An insight into the similarities and differences from the membranes of extracellular vesicles (naturally secreted by almost all cell types) is also provided. The understanding of the physico-chemical properties of cell membranes might find application in different therapeutic fields, like disease diagnosis and development of novel drug delivery systems. Therefore, an overview of the literature works describing the rational design of biomimetic drug delivery systems is presented, focusing on the choice of lipid components, frequently inspired by the study of the composition of naturally secreted exosomes, and on the physical characterization of the systems. In the future, in-depth study of biologic vesicles might lead to the development of promising formulation for drug delivery, possibly enhancing the therapeutic outcomes of many pathologies, like cancer. Full article
(This article belongs to the Special Issue Membrane Transport and Drug Permeation)
Show Figures

Graphical abstract

Back to TopTop