Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = lightning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1042 KB  
Article
Simulation of Nonstationary Fluctuating Wind Fields Using POD Decoupling and Spline Interpolation
by Junfeng Zhang, Yuhang Xia, Ningbo Liu, Zheng Liu and Jie Li
Buildings 2026, 16(4), 804; https://doi.org/10.3390/buildings16040804 - 15 Feb 2026
Viewed by 41
Abstract
Improving the simulation efficiency of the spectral representation method (SRM) for nonstationary fluctuating wind fields has attracted considerable attention. To this end, this study proposes a method based on proper orthogonal decomposition (POD) decoupling and Spline interpolation to enhance computational efficiency. This method [...] Read more.
Improving the simulation efficiency of the spectral representation method (SRM) for nonstationary fluctuating wind fields has attracted considerable attention. To this end, this study proposes a method based on proper orthogonal decomposition (POD) decoupling and Spline interpolation to enhance computational efficiency. This method selects a limited number of interpolation points in the time-frequency domain of the evolutionary power spectral density (EPSD) for Cholesky decomposition, utilizes the proper orthogonal decomposition (POD) technique to achieve time-frequency decoupling of the spectral matrix, and employs Spline interpolation but not the traditional Hermite-interpolation to reconstruct the complete time-frequency functions, thereby enabling the rapid synthesis of wind-velocity time histories via the FFT. Then, the wind field on a three-span frame lightning-rod structure is taken as an example to validate the reliability of the proposed method. The influences of the modal order and the number of time-frequency interpolation points on both simulation efficiency and error are investigated, and comparisons are given with the Hermite-interpolation-based method. The results indicate that the simulation efficiency is governed primarily by the modal order, and the method with Spline interpolation shows higher computational efficiency and accuracy because it can satisfy accuracy requirements at a lower modal order. Finally, a rational truncation criterion based on the cumulative energy ratio of at least 99.9% is suggested to determine the optimal modal order, thereby achieving a balance between accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
19 pages, 3179 KB  
Article
Enhanced Thunderstorm Forecasting over the South China Sea Through VLF Lightning Data Assimilation
by Tong Xiao, Zhihong Lu, Qiyuan Yin, Zhe Cai and Hui Li
Atmosphere 2026, 17(2), 197; https://doi.org/10.3390/atmos17020197 - 13 Feb 2026
Viewed by 83
Abstract
To advance marine thunderstorm forecasting and enhance the operational utility of lightning data, this study developed a novel very low-frequency (VLF) lightning data assimilation scheme for the South China Sea region. The three-dimensional graupel mixing ratio field was successfully inverted from VLF lightning [...] Read more.
To advance marine thunderstorm forecasting and enhance the operational utility of lightning data, this study developed a novel very low-frequency (VLF) lightning data assimilation scheme for the South China Sea region. The three-dimensional graupel mixing ratio field was successfully inverted from VLF lightning detection data through the application of an empirical formula linking lightning frequency to graupel mass, a database of graupel mixing ratio profiles, and a distance-weighted diffusion scheme. This reconstructed field was then subjected to horizontal diffusion and assimilated into the Weather Research and Forecasting (WRF) model using the Grid Nudging module within the WRF–Four-Dimensional Data Assimilation (WRF-FDDA) system. A quantitative evaluation of 37 nocturnal marine convective cases was conducted using Fengyun-4A(FY-4A) satellite observations. The results demonstrate that the proposed assimilation method significantly enhances short-term (0–6 h) forecast performance. Specifically, the Fractions Skill Score (FSS) derived from the Advanced Geosynchronous Radiation Imager (AGRI) data increased rapidly during the early forecast stage, exceeding a value of 0.9. Meanwhile, the Lightning Mapping Imager Event (LMIE) product evaluation showed a high probability of detection (POD) of 85% for lightning forecasts, with a false alarm ratio (FAR) of only 9%. These findings indicate that the assimilation approach improves the accuracy of capturing the spatial structure and evolution of convective systems. Although the degree of improvement diminished with longer lead times, the results confirm the value of VLF lightning data in initializing convective-scale processes and underscore its practical value in marine nowcasting applications. Full article
(This article belongs to the Special Issue Atmospheric Electricity (2nd Edition))
Show Figures

Figure 1

14 pages, 2092 KB  
Article
HF Lightning Observations in the Upper Volga Region of Russia
by Anatoly N. Karashtin and Yury V. Shlyugaev
Atmosphere 2026, 17(2), 171; https://doi.org/10.3390/atmos17020171 - 6 Feb 2026
Viewed by 194
Abstract
Much of the information for studying the processes of lightning discharge initiation and development is provided by studying thundercloud radio emissions in various frequency bands. The High-Frequency (HF) band better corresponds to the characteristic scales of lightning development but has been undeservedly forgotten [...] Read more.
Much of the information for studying the processes of lightning discharge initiation and development is provided by studying thundercloud radio emissions in various frequency bands. The High-Frequency (HF) band better corresponds to the characteristic scales of lightning development but has been undeservedly forgotten and is used quite rarely. Based on observations carried out in the Upper Volga region it is shown that the intensity of HF radio emissions from lightning is high enough to be reliably recorded in nearby thunderstorms. It is found that at all stages of lightning development the intensity of its radio emission in the HF band up to 10 MHz exceeds the average background intensity significantly. The amplitudes of lightning pulses exceed the background level more significantly, up to 60 dB and more. The feasibility of using the HF band for lightning observations including tracing the direction of arrival of a radio emission is clearly demonstrated. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 5086 KB  
Article
Kerr-Based Interrogation of Lightning-Impulse Field Transients in Oil–Cellulose Composites and Their Interfacial Charging Effect
by Xiaolin Zhao, Haoxuan Zhang, Chunjia Gao, Yuwei Zhong, Xiang Zhao, Bo Qi and Shuqi Zhang
Processes 2026, 14(3), 551; https://doi.org/10.3390/pr14030551 - 4 Feb 2026
Viewed by 219
Abstract
To address the stringent insulation safety requirements of modern high-voltage transformers, accurately characterizing the transient electric field is critical. However, a significant problem remains: current engineering models typically rely on static capacitive distributions, failing to capture the dynamic electric field distortion induced by [...] Read more.
To address the stringent insulation safety requirements of modern high-voltage transformers, accurately characterizing the transient electric field is critical. However, a significant problem remains: current engineering models typically rely on static capacitive distributions, failing to capture the dynamic electric field distortion induced by rapid space charge injection under lightning impulses. Therefore, a non-contact spatial electric field measurement method based on the optical Kerr effect was employed to analyze the influence of electrode material, voltage amplitude, and wavefront time. Unlike traditional simulation models that often assume constant mobility and focus solely on the shielding effect, this study reveals a non-monotonic electric field evolution driven by a ‘Static-Dynamic’ mode transition. The proposed model highlights two critical breakthroughs: (1) Mechanism Innovation: It experimentally verifies that charge injection is governed by the ion charge-to-mass ratio rather than just the work function, leading to a newly identified field enhancement phase during the wavefront that overcomes the limitations of capacitive models that underestimate transient stress. (2) Parameter Quantification: Precise spatiotemporal thresholds are established—negative charges traverse the gap within ~200 ns, while positive charges require ~10 μs to reach equilibrium. These findings provide experimentally calibrated time constants for simulation correction and offer new criteria for optimizing electrode materials in UHV transformers to mitigate transient field distortion. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 3625 KB  
Article
Parameter Optimization of Biodegradable Composite PLA–Wood with New-Generation Infill Pattern
by Mehmet Kivanc Turan, Altug Bakirci, Yusuf Alptekin Turkkan and Fatih Karpat
Biomimetics 2026, 11(2), 106; https://doi.org/10.3390/biomimetics11020106 - 2 Feb 2026
Viewed by 285
Abstract
The increasing interest in sustainable materials has led to the development of bio-based composites for additive manufacturing applications. This study aimed to investigate the influence of key printing parameters and new-generation infill patterns together on the maximum compressive force of PLA–wood bio-composites produced [...] Read more.
The increasing interest in sustainable materials has led to the development of bio-based composites for additive manufacturing applications. This study aimed to investigate the influence of key printing parameters and new-generation infill patterns together on the maximum compressive force of PLA–wood bio-composites produced by Material Extrusion. By optimizing this material, low-cost wood-like products can be produced. New-generation 3D infill patterns (octet, cubic-subdivision, and lightning which is a biomimetic infill pattern) infill densities, printing temperatures, and layer heights were selected as variables/factors, and the Taguchi method was applied for design of the experiment. The signal-to-noise ratio and Analysis of Variance were used to evaluate the statistical significance and contribution of each parameter to the mechanical response. The signal-to-noise ratio indicated that the optimal printing settings were as follows: printing temperature, 205 °C; infill density, 80%; infill pattern, octet; and layer height, 0.2 mm (7123.4 N). ANOVA results showed that infill density was the most significant factor affecting maximum compressive force at 60%, while infill pattern also exhibited a notable effect. According to these results, infill density and infill pattern are the most important factors for achieving high compressive strength. These findings suggest that optimizing infill architecture and density can improve the mechanical performance of PLA–wood composites, also they can offer assistive design guidelines for lightweight and eco-friendly components. Full article
Show Figures

Figure 1

24 pages, 4044 KB  
Article
Climate-Driven Load Variations and Fault Risks in Humid-Subtropical Mountainous Grids: A Hybrid Forecasting and Resilience Framework
by Ruiyue Xie, Jiajun Lin, Yuesheng Zheng, Chuangli Xie, Haobin Lin, Xingyuan Guo, Zhuangyi Chen, Boye Qiu, Yudong Mao, Xiwen Feng and Zhaosong Fang
Energies 2026, 19(3), 778; https://doi.org/10.3390/en19030778 - 2 Feb 2026
Viewed by 164
Abstract
Against the backdrop of global climate change, remote subtropical mountainous power grids face severe operational challenges due to their fragile infrastructure and complex climatic conditions. However, existing research has insufficiently addressed load forecasting in data-sparse regions, particularly lacking systematic analysis of the “meteorology–load–failure” [...] Read more.
Against the backdrop of global climate change, remote subtropical mountainous power grids face severe operational challenges due to their fragile infrastructure and complex climatic conditions. However, existing research has insufficiently addressed load forecasting in data-sparse regions, particularly lacking systematic analysis of the “meteorology–load–failure” coupling mechanism. To address this gap, this study focused on 10 kV distribution lines in a typical subtropical monsoon region of southern China. Based on hourly load and meteorological data from 2016 to 2025, we propose a two-stage hybrid model combining “Random Forest (RF) feature selection + Long Short-Term Memory (LSTM) time series forecasting”. Through deep feature engineering, composite, lagged, and interactive features were constructed. Using the RF algorithm, we quantitatively identified the core drivers of load variation across different time scales: at the hourly scale, variations are dominated by historical inertia (with weights of 0.5915 and 0.3757 for 1-h and 24-h lagged loads, respectively); at the daily scale, the logic shifts to meteorological triggering and cumulative effects, where the composite feature load_lag1_hi_product emerged as the most critical driver (weight of 0.8044). Experimental results demonstrate that the hybrid model significantly improved forecasting accuracy compared to the full-feature LSTM benchmark: on a daily scale, RMSE decreased by 13.29% and MAE by 16.67%, with R2 reaching 0.8654; on an hourly scale, R2 reached 0.9687. Furthermore, correlation analysis with failure data revealed that most grid faults occurred during intervals of extremely low load variation (0–5%), suggesting that “chronic stress” from environmental exposure in hot and humid conditions is the primary cause, with lightning identified as the leading external threat (26.90%). The interpretable forecasting framework proposed in this study transcends regional limitations. It provides a strategic “low-cost, high-resilience” prototype applicable to power systems in humid-subtropical zones worldwide, particularly for developing regions facing the dual challenges of data sparsity and climate vulnerability. Full article
Show Figures

Figure 1

15 pages, 32660 KB  
Article
Enhancing Lightning Strike Protection of CFRP Laminates Using Nickel-Coated Carbon Fiber Nonwoven Veils
by Minqiang Jiang, Xiaoling Liu, Chris Rudd, Guocai Li, Weiping Liu, Zhenghua Cao and Xiaosu Yi
J. Compos. Sci. 2026, 10(2), 69; https://doi.org/10.3390/jcs10020069 - 31 Jan 2026
Viewed by 198
Abstract
The lightning strike protection (LSP) performance of nickel-coated carbon fiber nonwoven veils (NiCVs) with varying areal densities, integrated onto the surface of CFRP laminates, was evaluated through simulated lightning strike tests. Post-strike damage was evaluated through visual inspection, non-destructive ultrasonic testing, residual strength [...] Read more.
The lightning strike protection (LSP) performance of nickel-coated carbon fiber nonwoven veils (NiCVs) with varying areal densities, integrated onto the surface of CFRP laminates, was evaluated through simulated lightning strike tests. Post-strike damage was evaluated through visual inspection, non-destructive ultrasonic testing, residual strength measurements, and microstructural examinations. Results indicated that the protection effectiveness improved with increasing NiCV areal density. The laminate with a 68 g/m2 NiCV layer showed substantially reduced damage—its damage volume, damage area, and maximum damage depth decreased to 18%, 40%, and 51% of those of the control laminate—and it retained 95% of the reference compression strength, demonstrating the strong post-strike protection capability of this lightweight veil. A detailed analysis suggested that the NiCV LSP performance may arise from a mechanism involving high electrical conductivity, a thermally stable coated-fiber skeleton, as well as a distributed nonwoven network architecture. These results highlight NiCV as a promising functional approach for enhancing the lightning strike protection of CFRP aerostructures. Full article
Show Figures

Figure 1

28 pages, 11269 KB  
Article
Relationship Between Deep Convection, Water Vapor, Lightning, and Precipitation over Northern Coastal Brazil
by Diana Islas-Flores, David K. Adams, Ludmila Monteiro da Silva Dutra, Galdino Viana Mota and Rui M. S. Fernandes
Atmosphere 2026, 17(2), 153; https://doi.org/10.3390/atmos17020153 - 30 Jan 2026
Viewed by 297
Abstract
A key component necessary to improve the performance of climate and weather forecasting models is understanding the physical mechanisms controlling tropical deep convection. In this study, the thermodynamic variables linked to deep convection within this equatorial sea-breeze convective regime are analyzed. A range [...] Read more.
A key component necessary to improve the performance of climate and weather forecasting models is understanding the physical mechanisms controlling tropical deep convection. In this study, the thermodynamic variables linked to deep convection within this equatorial sea-breeze convective regime are analyzed. A range of data sets are employed: GNSS-based PWV and surface precipitation data, lightning and daily radiosonde observations, and GOES-13/16 and GPM satellite products. Our results indicate that the convective indices of CAPE and CIN, often used as predictors of deep convection, do not clearly distinguish deep-convective and non-convective days. In contrast, the variables representative of the atmospheric water vapor content, PWV and vertical water vapor distribution as well as an entrainment-based buoyancy measure, are better markers of potential deep convection. For this region, however, the water vapor/deep convection relationship with precipitation does not appear as strong as over tropical oceans and tropical continental regions. Finally, our results show that there is no strong link between daily average precipitation intensity and daily lightning count. However, deep-convective days without lightning had higher water vapor at the beginning of the day, as compared to days with lightning, which resulted in convective showers earlier in the day. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

40 pages, 3156 KB  
Review
A Review of What Can Be Learnt from Tweeks and Related Topics
by Michael J. Rycroft
Atmosphere 2026, 17(2), 152; https://doi.org/10.3390/atmos17020152 - 30 Jan 2026
Viewed by 306
Abstract
Tweeks are ELF/VLF radio signals originating from lightning discharges that exhibit dispersion due to their propagation in the Earth-ionosphere waveguide. Examples of the waveforms of tweeks and their dynamic frequency-time spectra are presented and interpreted. Tweeks observed in the daytime and night-time are [...] Read more.
Tweeks are ELF/VLF radio signals originating from lightning discharges that exhibit dispersion due to their propagation in the Earth-ionosphere waveguide. Examples of the waveforms of tweeks and their dynamic frequency-time spectra are presented and interpreted. Tweeks observed in the daytime and night-time are compared and contrasted. Tweeks observed during a solar eclipse are also discussed, as are those due to volcanic lightning and those claimed to be recorded some hours or days before a strong earthquake. The variations of tweek occurrence with season and geomagnetic activity, and with variations of solar radiation over the 11-year solar cycle, are reviewed. Wherever possible, geophysical interpretations are discussed. Theoretical models of tweek waveforms and spectra are considered; they vary according to the lightning current model used, the distance from the source (≥1 Mm), the vertical profile of ionospheric D-region ionisation and the specific mode theory used. The simplest interpretation shows that the first-order tweek cut- off frequency ~1.8 kHz is explained as reflection by the ionosphere at a height of ~83 km where the electron density is ~27 × 106 m−3. More complex interpretations are also reviewed and compared with electron density observations made by rockets and with profiles given by lower ionospheric models such as the International Reference Ionosphere or the Faraday International Reference Ionosphere. Full article
Show Figures

Figure 1

17 pages, 3903 KB  
Article
Analysis of MOA Damage Mechanism Under Multiple Strokes
by Tao Yuan, Dengke Gao, Siyu Chen and Zhenjie Zheng
Appl. Sci. 2026, 16(3), 1272; https://doi.org/10.3390/app16031272 - 27 Jan 2026
Viewed by 176
Abstract
Accident records from the actual operation of metal oxide arresters (MOAs) indicate that even MOA products that have passed standard tests still suffer from frequent damage. This phenomenon may be related to the fact that the current standards for MOA testing do not [...] Read more.
Accident records from the actual operation of metal oxide arresters (MOAs) indicate that even MOA products that have passed standard tests still suffer from frequent damage. This phenomenon may be related to the fact that the current standards for MOA testing do not cover multiple stroke conditions. To investigate the damage mechanism of MOA under the effect of multiple strokes, this study conducts continuous current impulse tests on MOA and simultaneously performs finite element simulation analysis. A comparative analysis of the test and simulation results shows the following: The continuous impulse discharge process of multiple strokes causes instantaneous heat accumulation in the varistors, leading to a sudden temperature rise and inducing significant non-uniform thermal stress in the varistors; Under the condition of consistent total impulse energy, multiple strokes are more likely to cause damage to MOA varistors. Moreover, the higher the amplitude of the lightning current in multiple strokes, and the shorter the impulse interval, the higher the risk and degree of thermal damage to the MOA varistors; By analyzing the rate of change in the maximum thermal stress of the varistors, the significant effective range of the superposition effect of multiple strokes under different impulse intervals can be obtained. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 5275 KB  
Article
Interference Characteristics of a Primary–Secondary Integrated Distribution Switch Under Lightning Strike Conditions Based on a Field-Circuit Hybrid Full-Wave Model
by Ge Zheng, Shilei Guan, Yilin Tian, Changkai Shi, Hui Yin, Chengbo Jiang, Meng Yuan, Yijun Fu, Yiheng Chen, Shen Lai and Shaofei Wang
Energies 2026, 19(3), 623; https://doi.org/10.3390/en19030623 - 25 Jan 2026
Viewed by 227
Abstract
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. [...] Read more.
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. A 3D full-wave model of the switch and a distributed parameter circuit model of the connecting lines are coupled via a network parameter matrix. This approach comprehensively accounts for the impacts of transmission lines and structural components on electromagnetic disturbances. Simulation and experimental results reveal that lightning strikes induce high-frequency damped oscillatory waves, primarily caused by traveling wave reflections along overhead lines. The characteristic frequency of disturbance is inversely proportional to the transmission line length. Additionally, internal components significantly influence this frequency; specifically, a larger voltage dividing capacitance in the voltage transformer results in a lower frequency. Model validation was performed using a 20 m transmission line setup. A 75 kV standard lightning impulse was injected into Phase B. At a distance of 500 mm from the voltage transformer, the measured radiated electric field amplitude was 14.12 kV/m (deviation < 5%), and the characteristic frequency was 1.11 MHz (deviation < 20%). These findings offer vital guidance for the lightning protection and EMC design of primary–secondary integrated distribution switches. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

18 pages, 5567 KB  
Article
Quantitative Analysis of Lightning Rod Impacts on the Radiation Pattern and Polarimetric Characteristics of S-Band Weather Radar
by Xiaopeng Wang, Jiazhi Yin, Fei Ye, Ting Yang, Yi Xie, Haifeng Yu and Dongming Hu
Remote Sens. 2026, 18(3), 392; https://doi.org/10.3390/rs18030392 - 23 Jan 2026
Viewed by 239
Abstract
Lightning rods, while essential for protecting weather radars from direct lightning strikes, act as persistent non-meteorological scatterers that can interfere with signal transmission and reception and thereby degrade detection accuracy and product quality. Existing studies have mainly focused on X-band and C-band systems, [...] Read more.
Lightning rods, while essential for protecting weather radars from direct lightning strikes, act as persistent non-meteorological scatterers that can interfere with signal transmission and reception and thereby degrade detection accuracy and product quality. Existing studies have mainly focused on X-band and C-band systems, and robust, measurement-based quantitative assessments for S-band dual-polarization radars remain scarce. In this study, a controllable tilting lightning rod, a high-precision Far-field Antenna Measurement System (FAMS), and an S-band dual-polarization weather radar (SAD radar) are jointly employed to systematically quantify lightning-rod impacts on antenna electromagnetic parameters under different rod elevation angles and azimuth configurations. Typical precipitation events were analyzed to evaluate the influence of the lightning rods on dual-polarization parameters. The results show that the lightning rod substantially elevates sidelobe levels, with a maximum enhancement of 4.55 dB, while producing only limited changes in the antenna main-beam azimuth and beamwidth. Differential reflectivity (ZDR) is the most sensitive polarimetric parameter, exhibiting a persistent positive bias of about 0.24–0.25 dB in snowfall and mixed-phase precipitation, while no persistent azimuthal anomaly is evident during freezing rain; the co-polar correlation coefficient (ρhv) is only marginally affected. Collectively, these results provide quantitative, far-field evidence of lightning-rod interference in S-band dual-polarization radars and provide practical guidance for more reasonable lightning-rod placement and configuration, as well as useful references for ZDR-oriented polarimetric quality-control and correction strategies. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

23 pages, 1277 KB  
Article
A Few-Shot Optical Classification Approach for Meteorological Lightning Monitoring: Leveraging Frame Difference and Triplet Network
by Mengmeng Xiao, Yulong Yan, Qilin Zhang, Yan Liu, Xingke Pan, Bingzhe Dai and Chunxu Duan
Remote Sens. 2026, 18(3), 386; https://doi.org/10.3390/rs18030386 - 23 Jan 2026
Viewed by 179
Abstract
To address the challenges of scarce labeled samples, strong instantaneity, and variable morphology in lightning optical classification—issues that traditional methods struggle to handle efficiently and often require extensive manual intervention—we propose a frame difference triplet network (FD-TripletNet) tailored for few-shot lightning recognition. The [...] Read more.
To address the challenges of scarce labeled samples, strong instantaneity, and variable morphology in lightning optical classification—issues that traditional methods struggle to handle efficiently and often require extensive manual intervention—we propose a frame difference triplet network (FD-TripletNet) tailored for few-shot lightning recognition. The lightning optical dataset used in this study was collected from two observation stations over six months, comprising 459 video samples that include lightning events with diverse morphologies (e.g., branched, spherical) and non-lightning events prone to misclassification (e.g., strong light interference, moving objects). Considering the critical feature of lightning—abrupt single-frame changes—we introduce adjacent frame difference matrices as model input to explicitly capture transient brightness variations, reducing noise from static backgrounds. To enhance discriminative ability in few-shot scenarios, the model leverages Triplet Loss to compact intra-class features and separate inter-class features, combined with a dynamic sample matching strategy to focus on challenging cases. The experimental results show that FD-TripletNet achieves a classification accuracy of 94.8% on the dataset, outperforming traditional methods and baseline deep learning models. It effectively reduces the False Negative Rate (FNR) to 3.2% and False Positive Rate (FPR) to 7.4%, successfully distinguishing between lightning and non-lightning events, thus providing an efficient solution for real-time lightning monitoring in meteorological applications. Full article
Show Figures

Figure 1

12 pages, 641 KB  
Article
Second-Harmonic Generation in Optical Fibers Under an External Electric Field
by Lanlan Liu, Chongqing Wu, Zihe Huang, Linkai Xia and Kaihong Wang
Appl. Sci. 2026, 16(2), 1136; https://doi.org/10.3390/app16021136 - 22 Jan 2026
Viewed by 115
Abstract
A method for the second-harmonic generation (SHG) in optical fibers by exploiting the third-order nonlinearity under an external electric field is proposed. The analysis begins with the electric polarization vector of the SHG, and the analytical solution for the SHG is presented. When [...] Read more.
A method for the second-harmonic generation (SHG) in optical fibers by exploiting the third-order nonlinearity under an external electric field is proposed. The analysis begins with the electric polarization vector of the SHG, and the analytical solution for the SHG is presented. When fiber birefringence is neglected, a mode-field matching condition is introduced. The nonlinearity-induced shift in propagation constant is provided based on Gaussian approximation. For a specific case, the power of SHG is calculated. The results show that the SHG power scales quadratically with the nonlinear coefficient. Reducing the effective area of the fiber and increasing the nonlinear coefficient can enhance the SHG power by 1–2 orders of magnitude. Since phase matching strongly affects the SHG process, optimizing the fiber design is crucial. Additionally, the polarization state of SHG is shown to have the same as the equivalent optical field of the injected fundamental wave. This work demonstrates potential for distributed sensing of electric fields and lightning events in high-voltage power grids using optical fibers. Full article
(This article belongs to the Special Issue Applications of Nonlinear Optical Devices and Materials)
Show Figures

Figure 1

32 pages, 11897 KB  
Article
A Time Series Analysis of Monthly Fire Counts in Ontario, Canada, with Consideration of Climate Teleconnections
by Emmanuella Boateng and Kevin Granville
Fire 2026, 9(1), 44; https://doi.org/10.3390/fire9010044 - 19 Jan 2026
Viewed by 383
Abstract
Climate change can impact various facets of a region’s fire regime, such as the frequency and timing of fire ignitions. This study examines the temporal trends of monthly fire counts in the Northwest and Northeast Regions of Ontario, Canada, between 1960 and 2023. [...] Read more.
Climate change can impact various facets of a region’s fire regime, such as the frequency and timing of fire ignitions. This study examines the temporal trends of monthly fire counts in the Northwest and Northeast Regions of Ontario, Canada, between 1960 and 2023. Fires ignited by human activities or lightning are analyzed separately. The significance of historical trends is investigated using the Cochrane–Orcutt method, which identifies decreasing trends in the number of human-caused fires for several months, including May through July. A complementary trend analysis of total area burned is also conducted. The forecasting of future months’ fire counts is explored using a Negative Binomial Autoregressive (NB-AR) model suitable for count time series data with overdispersion. In the NB-AR model, the use of climate teleconnections at a range of temporal lags as predictors is investigated, and their predictive skill is quantified through cross-validation estimates of Mean Absolute Error on a testing dataset. Considered teleconnections include the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO). The study finds the use of teleconnection predictors promising, with a notable benefit for forecasting human-caused fire counts but mixed results for forecasting lightning-caused fire counts. Full article
(This article belongs to the Special Issue Effects of Climate Change on Fire Danger)
Show Figures

Figure 1

Back to TopTop