Dynamic Response Analysis of Structures Under Wind and Seismic Loads

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 30 March 2026 | Viewed by 1775

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
Interests: dynamic response analysis of structures under wind and seismic loads

E-Mail
Guest Editor
Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, Catania, Italy
Interests: optimization algorithms; dynamic analysis; structural analysis; damaged beams
School of Civil Engineering, Chongqing University, Chongqing 400044, China
Interests: bridge wind engineering; (passive + active) vibration control; artificial intelligence + optimization/control; CFD algorithm and application

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute your research to this Special Issue of Buildings titled “Dynamic Response Analysis of Structures Under Wind and Seismic Loads”.

As modern structures become increasingly complex and flexible, the impact of wind and seismic loads on their structural safety and performance has become more critical. In-depth research into the dynamic response mechanisms of structures under wind and seismic loads is essential for ensuring structural safety and optimizing design. This Special Issue aims to highlight the latest research findings in this field, exploring topics such as analysis methods, influencing factors, advanced structural systems, and control measures for structural dynamic responses under wind and seismic loads, providing valuable insights for both research and engineering practice.

For this reason, this Special Issue aims to disseminate and discuss the new developments and directions in this field. Therefore, we welcome research papers and review papers on various topics that present original, theoretical, empirical, experimental, methodological, and numerical analyses. Topics include, but are not limited to, the following research areas:

  • Simulation and prediction of wind and seismic loads;
  • Methods for dynamic response analysis of structures;
  • Structural design theories for wind and seismic resistance;
  • Dynamic response simulation or experiment of structures;
  • Structural vibration control technologies;
  • Wind–structure–soil interaction;
  • Seismic–structure–soil interaction;
  • Damage assessment of structures under wind and seismic loads;
  • Fragility or reliability analysis of structures under wind and seismic loads.

We look forward to receiving your contributions.

Dr. Junfeng Zhang
Dr. Ilaria Fiore
Dr. Ke Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wind load
  • seismic load
  • dynamic response
  • structural design
  • damage assessment
  • vibration control technologies
  • fragility analysis
  • reliability analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 5443 KB  
Article
Effects of Near-Fault Vertical Ground Motion on Seismic Response and Damage in High-Speed Railway Isolated Track–Bridge Systems
by Haiyan Li, Jinyu Ma, Zhiwu Yu and Jianfeng Mao
Buildings 2025, 15(18), 3320; https://doi.org/10.3390/buildings15183320 - 14 Sep 2025
Viewed by 581
Abstract
China’s high-speed railway (HSR) network relies heavily on bridge structures to ensure track regularity, with many lines crossing seismically active near-fault zones. Near-fault ground motions are characterized by significant vertical components (VGMs), which challenge conventional seismic design practices. Although seismic isolation techniques are [...] Read more.
China’s high-speed railway (HSR) network relies heavily on bridge structures to ensure track regularity, with many lines crossing seismically active near-fault zones. Near-fault ground motions are characterized by significant vertical components (VGMs), which challenge conventional seismic design practices. Although seismic isolation techniques are widely adopted, the effects of VGMs on the dynamic response and damage mechanisms of HSR track–bridge systems remain insufficiently studied. To address this gap, this study develops a refined finite element model (FEM) in OpenSEES that integrates CRTS II slab ballastless tracks, bridge structures, and friction pendulum bearing (FPB). Using nonlinear time-history analyses, the research systematically investigates structural responses and damage degrees under different ratios of vertical-to-horizontal peak ground acceleration (αVH) and multiple seismic intensity levels (frequent, design, and rare earthquakes). Key findings reveal that αVH values in near-fault regions frequently range between 0.5 and 1.5, often exceeding current design code specifications. The impact of VGMs intensifies with seismic intensity: negligible under frequent earthquakes but significantly amplifying damage to piers, bearings, and track interlayer components (e.g., sliding layers and CA mortar layers) during design and rare earthquakes. While seismic isolation effectively mitigates structural responses through energy dissipation by bearings, it may increase sliding layer displacements and lead to bearing failure under rare earthquakes. Based on these insights, tiered αVH values are recommended for seismic design: 0.65 for frequent, 0.9 for design, and 1.2 for rare earthquakes. These findings provide critical references for the seismic design of HSR infrastructure in near-fault regions. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

29 pages, 3573 KB  
Article
Joint Seismic Risk Assessment and Economic Loss Estimation of Coastal RC Frames Subjected to Combined Wind and Offshore Ground Motions
by Zheng Zhang, Yunmu Jiang and Long Yan
Buildings 2025, 15(18), 3309; https://doi.org/10.3390/buildings15183309 - 12 Sep 2025
Viewed by 303
Abstract
The dynamic environment of coastal regions subjects infrastructure to multiple interacting natural hazards, with the simultaneous occurrence of windstorms and earthquakes posing a particularly critical challenge. Unlike inland hazards, these coastal threats frequently exhibit irregular statistical behavior and terrain-induced anomalies. This study proposes [...] Read more.
The dynamic environment of coastal regions subjects infrastructure to multiple interacting natural hazards, with the simultaneous occurrence of windstorms and earthquakes posing a particularly critical challenge. Unlike inland hazards, these coastal threats frequently exhibit irregular statistical behavior and terrain-induced anomalies. This study proposes a novel probabilistic framework to assess compound hazard effects, advancing beyond traditional single-hazard analyses. By integrating maximum entropy theory with bivariate Copula models, a unified return period analysis is developed to capture the joint probability structure of seismic and wind events. The model is calibrated using long-term observational data collected from a representative coastal zone since 2000. For the PGA marginal distribution, our sixth-moment maximum-entropy model achieved an R2 of 0.90, compared with 0.57 for a conventional GEV fit—reflecting a 58% increase in explained variance. Analysis shows the progressive evolution of damage from slight damaged through moderate damaged and severe damaged to collapse for an 18-story reinforced concrete frame structure, and shows that the combined effect of seismic and wind loads results in risk probabilities of aforementioned damage state of approximately 2 × 10−3, 6 × 10−4, 2 × 10−4, and 3 × 10−5, respectively, under a 0.4 g ground motion and a concurrent wind speed of 15 m/s. Furthermore, when both the uncertainty of loss ratios and structural parameters are incorporated, the standard deviation of the economic loss ratio reaches up to 0.015 in the transition region (PGA 0.2–0.4 g), highlighting considerable variability in economic loss assessment, whereas the mean economic loss ratio rapidly saturates above 0.8 with increasing PGA. These findings demonstrate that uncertainty in economic loss is most pronounced within the transition region, while remaining much lower outside this zone. Overall, this study provides a robust framework and quantitative basis for comprehensive risk assessment and resilient design of coastal infrastructure under compound wind and seismic hazards. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

21 pages, 2987 KB  
Article
Random Wind Vibration Control of Transmission Tower-Line Systems Using Shape Memory Alloy Damper
by Mingjing Chang, Xibing Fang, Shanshan Zhang and Dingkun Xie
Buildings 2025, 15(17), 3091; https://doi.org/10.3390/buildings15173091 - 28 Aug 2025
Viewed by 480
Abstract
Shape memory alloy dampers (SMADs) are widely applied in structural vibration control due to their excellent superelastic properties. However, there has been no research on the random wind-induced vibration control of transmission tower-line (TTL) systems with added SMADs. To address this gap, this [...] Read more.
Shape memory alloy dampers (SMADs) are widely applied in structural vibration control due to their excellent superelastic properties. However, there has been no research on the random wind-induced vibration control of transmission tower-line (TTL) systems with added SMADs. To address this gap, this paper proposes an analytical framework for the wind-induced vibration control of TTL systems with SMADs under random wind loads. An analytical model for the coupled TTL system is developed. The constitutive relationship of the SMAD is derived using the statistical linearization method, and a vibration control approach for the TTL-coupled system with SMADs is proposed. The vibration response of the TTL–SMAD system under random wind loads is derived, and an extreme response analysis framework based on the first exceedance failure criterion is established. The results show that the optimal installation scheme for the SMAD achieves a vibration reduction of more than 30%. When the damper’s stiffness coefficient is approximately 1, the SMAD effectively controls the vibrations. Moreover, a service temperature of 0 °C is found to be the optimal control temperature for the SMAD. These findings provide important references for the application of SMADs in the vibration control of TTL systems. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

Back to TopTop