Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,866)

Search Parameters:
Keywords = life cycle sustainability assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1272 KB  
Article
Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic
by Xiaoyan Wang, Md. Emdadul Haque, Chunlin Luo, Jianli Hu and Srinivas Palanki
Processes 2026, 14(2), 333; https://doi.org/10.3390/pr14020333 (registering DOI) - 17 Jan 2026
Abstract
Polyethylene is the most used plastic in the world, and over 90% of this plastic is ultimately disposed of in landfills or released into the environment, leading to severe ecological implications. In this research, the technoeconomic feasibility of upcycling low-density polyethylene (LDPE) to [...] Read more.
Polyethylene is the most used plastic in the world, and over 90% of this plastic is ultimately disposed of in landfills or released into the environment, leading to severe ecological implications. In this research, the technoeconomic feasibility of upcycling low-density polyethylene (LDPE) to produce ethylene is studied. The catalytic conversion of LDPE to ethylene is considered in microwave heating mode and Joule heating mode. Experimental data is obtained under conditions where most of the upcycled products are in the gas phase. A flowsheet is developed that produces industrial quantities of ethylene for both heating modes. A technoeconomic analysis and a life cycle analysis are conducted and compared with the traditional ethane cracking process for producing ethylene. Simulation results indicate that the upcycling system exhibits a lower capital expenditure and a comparable operating expenditure relative to conventional ethane steam cracking while generating additional valuable co-products, such as propylene and aromatic hydrocarbons, leading to a higher net present value potential. Sensitivity analyses reveal that the electricity price has the most significant impact on both the net present value and levelized cost of production, followed by the low-density polyethylene feedstock cost. Life-cycle assessment reveals a substantial reduction in greenhouse-gas emissions in the upcycled process compared to the fossil-based ethane steam-cracking route, primarily due to the use of renewable electricity, the lower reaction temperature that reduces utility demand, and the use of plastic waste as the feedstock. Overall, the proposed process demonstrates strong potential for the sustainable production of ethylene from waste LDPE. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 831 KB  
Systematic Review
Assessing Water Reuse Through Life Cycle Assessment: A Systematic Review of Recent Trends, Impacts, and Sustainability Challenges
by Lenise Santos, Isabel Brás, Anna Barreto, Miguel Ferreira, António Ferreira and José Ferreira
Processes 2026, 14(2), 330; https://doi.org/10.3390/pr14020330 (registering DOI) - 17 Jan 2026
Abstract
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse [...] Read more.
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse projects, focusing on research trends, methodological approaches, and opportunities for improvement. A systematic search was conducted in Web of Science, ScienceDirect, and Google Scholar for studies published from 2020 onwards using combinations of the keywords “life cycle assessment”, “LCA”, “water reuse”, “water recycling”, and “wastewater recycling”. Twelve studies were selected from 57 records identified, based on predefined eligibility criteria requiring quantitative LCA of water reuse systems. The results reveal a predominance of European research, reflecting regulatory advances and strong academic engagement in this field. The most frequently assessed impact categories were global warming, eutrophication, human toxicity and ecotoxicity, highlighting the environmental relevance of reuse systems. Energy consumption and water transport were identified as critical hotspots, especially in scenarios involving long distances and fossil-based energy sources. Nevertheless, most studies demonstrate that water reuse is environmentally viable, particularly when renewable energy and optimized logistics are applied. The review also emphasizes the need to better integrate economic and social dimensions and to adapt LCA methodologies to local conditions. Overall, the findings confirm LCA as a robust decision-support tool for sustainable planning and management of water reuse systems. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

22 pages, 2227 KB  
Article
A Supply Chain Analysis on Natural Rubber in Industrial Solid Tire Manufacturing Based on a Social Life Cycle Assessment Method: A Case Study Under Sri Lankan Scenario
by D. J. T. S. Liyanage, Pasan Dunuwila, V. H. L. Rodrigo, Enoka Munasinghe, Wenjing Gong, Koichi Shobatake, Kiyotaka Tahara, Takeo Hoshino and Ichiro Daigo
Sustainability 2026, 18(2), 950; https://doi.org/10.3390/su18020950 (registering DOI) - 16 Jan 2026
Viewed by 35
Abstract
As the largest exporter in the global solid tire market, Sri Lanka’s natural rubber supply chain plays a critical role in global production, yet its social dimension remains largely unaddressed. Our study aims to assess the social performance of a Sri Lankan natural [...] Read more.
As the largest exporter in the global solid tire market, Sri Lanka’s natural rubber supply chain plays a critical role in global production, yet its social dimension remains largely unaddressed. Our study aims to assess the social performance of a Sri Lankan natural rubber supply chain in solid tire manufacturing using social life cycle assessment (S-LCA) in a cradle-to-gate approach. Study adapts “More Good and Less Bad” method which captures both positive and negative social impacts, addressing traditional S-LCAs’ focus on negative impacts solely. It applies to updated methodological sheets to distinguish “good” and “bad” social conditions across subcategories based on baseline compliance. Social impacts were quantified using a Social Performance Index (SPI), calculated by multiplying social performance levels by working hours at the organizational level, comprising SPIgood for good social impacts and SPIbad for bad social impacts. Data was collected through stakeholder interviews, with working hours calculated using a “working hour model”. Results showed mixed social performance across 39 subcategories, identifying six social hotspots: promoting social responsibility (27.67% less bad, 72.32% more good), wealth distribution (26.87% less bad, 73.13% more good), commitment to sustainability issues (100% less bad), social benefits (100% less bad), safe and healthy living conditions (100% less bad), and hours of work (88.74% less bad, 11.26% more good). Full article
Show Figures

Figure 1

28 pages, 23381 KB  
Article
Fatigue Analysis and Numerical Simulation of Loess Reinforced with Permeable Polyurethane Polymer Grouting
by Lisha Yue, Xiaodong Yang, Shuo Liu, Chengchao Guo, Zhihua Guo, Loukai Du and Lina Wang
Polymers 2026, 18(2), 242; https://doi.org/10.3390/polym18020242 - 16 Jan 2026
Viewed by 34
Abstract
Loess subgrades are prone to significant strength reduction and deformation under cyclic traffic loads and moisture ingress. Permeable polyurethane polymer grouting has emerged as a promising non-excavation technique for rapid subgrade reinforcement. This study systematically investigated the fatigue behavior of polymer-grouted loess using [...] Read more.
Loess subgrades are prone to significant strength reduction and deformation under cyclic traffic loads and moisture ingress. Permeable polyurethane polymer grouting has emerged as a promising non-excavation technique for rapid subgrade reinforcement. This study systematically investigated the fatigue behavior of polymer-grouted loess using laboratory fatigue tests and numerical simulations. A series of stress-controlled cyclic tests were conducted on grouted loess specimens under varying moisture contents and stress levels, revealing that fatigue life decreased with increasing moisture and stress levels, with a maximum life of 200,000 cycles achieved under optimal conditions. The failure process was categorized into three distinct stages, culminating in a “multiple-crack” mode, indicating improved stress distribution and ductility. Statistical analysis confirmed that fatigue life followed a two-parameter Weibull distribution, enabling the development of a probabilistic fatigue life prediction model. Furthermore, a 3D finite element model of the road structure was established in Abaqus and integrated with Fe-safe for fatigue life assessment. The results demonstrated that polymer grouting reduced subgrade stress by nearly one order of magnitude and increased fatigue life by approximately tenfold. The consistency between the simulation outcomes and experimentally derived fatigue equations underscores the reliability of the proposed numerical approach. This research provides a theoretical and practical foundation for the fatigue-resistant design and maintenance of loess subgrades reinforced with permeable polyurethane polymer grouting, contributing to the development of sustainable infrastructure in loess-rich regions. Full article
(This article belongs to the Section Polymer Applications)
24 pages, 4272 KB  
Article
Study on the Impact of Temperature and Humidity Variations in Climate Zones on the Life-Cycle Assessment of Wall Materials
by Xiling Zhou, Xinqi Wang, Linhui Wan, Yuyang Chen, Xiaohua Fu and Yi Wu
Buildings 2026, 16(2), 375; https://doi.org/10.3390/buildings16020375 - 16 Jan 2026
Viewed by 49
Abstract
Life-cycle assessment is crucial for evaluating materials’ environmental impact and guiding the development of low-carbon and sustainable buildings. However, conventional LCA methods often overlook critical impacts during the operation and maintenance stage. To address this gap, this study proposes an improved framework using [...] Read more.
Life-cycle assessment is crucial for evaluating materials’ environmental impact and guiding the development of low-carbon and sustainable buildings. However, conventional LCA methods often overlook critical impacts during the operation and maintenance stage. To address this gap, this study proposes an improved framework using four composite indicators to enable systematic evaluation of six wall materials across China’s five climate zones. Using a university teaching building in the Hot Summer and Cold Winter Zone as a case study, this study quantitatively analyzed the economic viability and carbon reduction potential of each material. Results indicate that lower thermal conductivity does not necessarily imply superior economic and carbon reduction performance. Factors including the material carbon emission factor, cost, and thermal properties, must be comprehensively considered. Buffering materials also exhibit climate dependency—WPM and BWPM (moisture-buffering plastering mortars) perform better in hot–humid zones than temperate zones. All five buffer materials reduce operational energy consumption; WPM and BWPM stand out with 15.7% and 16.7% life-cycle cost savings and 17.3% and 18.0% carbon emission reductions, respectively. This study addresses the limitations of traditional LCC/LCA and provides theoretical and practical support for scientific material selection and low-carbon building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 6376 KB  
Article
Carbon Reduction Benefits and Economic Performance Analysis of Lattice Structural Systems Utilizing Small-Diameter Round Timber as the Primary Material
by Ying Wu, Jianmei Wu, Hongpeng Xu, Jiayi Li and Yuncheng Ji
Buildings 2026, 16(2), 372; https://doi.org/10.3390/buildings16020372 - 15 Jan 2026
Viewed by 82
Abstract
To address the imbalance between the “ecological advantage” and “economic benefit” of wooden structure buildings, this study examines two structural construction methods utilizing inexpensive and readily available small-diameter round timber as the primary material. It demonstrates the advantages of these two structural systems [...] Read more.
To address the imbalance between the “ecological advantage” and “economic benefit” of wooden structure buildings, this study examines two structural construction methods utilizing inexpensive and readily available small-diameter round timber as the primary material. It demonstrates the advantages of these two structural systems in terms of material consumption, life cycle carbon emissions, and economic efficiency. Through the research methods and processes of “Preliminary analysis–Proposing the construction system–The feasibility analysis of structural technology–Efficiency assessment”, the sustainable wood structure technical system suitable for the development of China is explored. The main conclusions are as follows: (1) Employing the preliminary analysis method, this paper examines and analyzes construction cases that primarily utilize small-diameter round timber as the main material. It delineates specific construction types based on the characteristics of small-diameter round timber. Additionally, it technically reconstructs the methodology for utilizing small-diameter round timber. (2) Two lattice structural systems are proposed, leveraging the mechanical properties and fundamental morphological characteristics of inexpensive and readily available small-diameter round timber of fast-growing Northeast larch. The technical feasibility of these two small-diameter log structure systems is validated through simulation analysis of their spatial threshold suitability. (3) This study conducted a comprehensive comparison between the two small-diameter round timber structural systems and the conventional grain-parallel glued laminated timber (Cross-Laminated Timber) frame structural systems. The analysis was performed from three perspectives. As the primary structural material, grain-parallel glued laminated timber frame structural systems exhibits significant advantages in terms of timber utilization per unit area of the structural system. From a life cycle carbon emission analysis perspective, compared to grain-parallel glued laminated timber frame structures, small-diameter round timber structures can achieve carbon emission reductions ranging from 79.19% to 97.74%. Additionally, the unit area cost of small-diameter round timber structures is reduced by 21.02% to 40.42% relative to grain-parallel glued laminated timber frame structures. Consequently, it can be concluded that small-diameter round timber structural systems possess technical feasibility and construction advantages for small and medium-sized buildings, offering practical value in optimizing technical systems to meet the objective needs of ecological construction. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 545 KB  
Perspective
Multi-Criteria Sustainability Assessment in Energy and Agricultural Systems: Challenges and Pathways for Low-Carbon Transition
by Justas Streimikis
Energies 2026, 19(2), 436; https://doi.org/10.3390/en19020436 - 15 Jan 2026
Viewed by 196
Abstract
The accelerating low-carbon transition requires decision-support approaches capable of addressing complex, interdependent sustainability challenges across multiple sectors. While Multi-Criteria Decision-Making (MCDM) techniques are gaining popularity in assessing sustainability within energy and agricultural systems, their current application remains fragmented, sector-focused, and poorly aligned with [...] Read more.
The accelerating low-carbon transition requires decision-support approaches capable of addressing complex, interdependent sustainability challenges across multiple sectors. While Multi-Criteria Decision-Making (MCDM) techniques are gaining popularity in assessing sustainability within energy and agricultural systems, their current application remains fragmented, sector-focused, and poorly aligned with the fundamental system characteristics of uncertainty, circularity, and social equity. This Perspective employs a systematized conceptual analysis to integrate different MCDM techniques, methodological trends, and integration challenges in energy and agricultural systems. Through a literature review, this work provides a critical view of the predominant structural deficiencies, which stem from methodological isolation, the use of disparate and heterogeneous datasets, ad hoc treatment of uncertainty, and the lack of incorporation of the circular economy (CE) and equity dimensions in the analysis. Given the presence of multifunctionality, circularity, climate sensitivity, and strong social characteristics, the analysis underscores that agriculture is a prime candidate to serve as a system-level testbed for the development of integrated MCDM frameworks. Based on this analysis, the paper articulates the fundamental characteristics of next-generation MCDM frameworks that are cross-sectoral, flexible, adaptive, uncertainty-resilient, and actionable. In doing so, it prioritizes integrated approaches that combine MCDM with life cycle assessment (LCA), data analytics, and nexus modelling. This paper stresses that structural deficiencies need to be addressed for MCDM to evolve from sectoral and fragmented analytical frameworks to cohesive decision-support systems that can guide energy and agricultural systems transitions towards equity, circularity, and climate change adaptation. As a perspective, this paper does not aim to provide empirical validation but instead articulates conceptual design principles for next-generation MCDM frameworks that integrate uncertainty, circularity, and social equity across energy and agricultural systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 2387 KB  
Article
Decarbonising and Advancing the Sustainability of Construction and Demolition Waste Management in Australia: A Regionalised Life Cycle Assessment Across States
by Yue Chen, Boshi Qian and Jianfeng Xue
Sustainability 2026, 18(2), 902; https://doi.org/10.3390/su18020902 - 15 Jan 2026
Viewed by 89
Abstract
The construction sector generates a substantial proportion of Australia’s total solid waste, underscoring the urgent need for sustainable and circular resource management approaches to mitigate environmental impacts. This study evaluates the environmental performance and circularity potential of construction and demolition waste (C&DW) management [...] Read more.
The construction sector generates a substantial proportion of Australia’s total solid waste, underscoring the urgent need for sustainable and circular resource management approaches to mitigate environmental impacts. This study evaluates the environmental performance and circularity potential of construction and demolition waste (C&DW) management across five Australian states. Three representative building cases were modelled using both national-average and state-specific recycling rates and electricity generation mixes. A Life Cycle Assessment (LCA) was conducted to compare two end-of-life pathways: landfill and recycling. Key parameters, including transport distance and substitution ratio, were also examined to assess their influence on carbon outcomes. The results show that regional variations in electricity generation mix and recycling rate have a strong influence on the total Global Warming Potential of C&DW management. States with cleaner electricity grids and higher recycling rates, such as South Australia, exhibited notably lower recycling-related emissions than those relying on fossil-fuel-based power. The findings highlight the importance of incorporating regional characteristics into sustainability assessments of C&DW management and provide practical insights to support Australia’s transition toward a circular and low-carbon construction industry. Full article
Show Figures

Figure 1

16 pages, 1954 KB  
Review
Toward Low-Carbon Construction: A Review of Red Mud Utilization in Cementitious Materials and Geopolymers for Sustainability and Cost Benefits
by Zhiping Li
Buildings 2026, 16(2), 362; https://doi.org/10.3390/buildings16020362 - 15 Jan 2026
Viewed by 89
Abstract
Red mud (RM), an industrial byproduct generated during bauxite refining, has accumulated to more than 5 billion tons worldwide, posing serious environmental challenges. In response, substantial research over recent decades has focused on the sustainable utilization of RM, particularly in the field of [...] Read more.
Red mud (RM), an industrial byproduct generated during bauxite refining, has accumulated to more than 5 billion tons worldwide, posing serious environmental challenges. In response, substantial research over recent decades has focused on the sustainable utilization of RM, particularly in the field of construction materials. This review first summarizes the generation process and chemical composition of RM, and then systematically examines its potential applications in the production of artificial aggregates, partial replacement of cementitious materials, and synthesis of geopolymers. Existing studies demonstrate that RM exhibits considerable potential in construction applications: when used as an aggregate, it can reduce concrete porosity, enhance compressive strength, and improve overall mechanical performance. Moreover, RM can partially substitute cement or serve as a geopolymer precursor, contributing to the immobilization of toxic elements such as Pb and Cr while simultaneously improving the mechanical properties of both cementitious systems and geopolymers. The reactivity and performance of RM-based materials can be further enhanced through carbonation curing and other modification techniques. Finally, this review highlights the significant sustainability and economic benefits of RM-based concrete, supported by life-cycle assessment and cost–benefit analyses. Full article
(This article belongs to the Special Issue Research on Energy Efficiency and Low-Carbon Pathways in Buildings)
Show Figures

Figure 1

30 pages, 8636 KB  
Article
Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
by Kyriaki Marina Lyra, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, Albany Milena Lozano Násner, Jose Gallego, Elias Sakellis, Fotios K. Katsaros, Dimitris Tsiourvas and Zili Sideratou
Materials 2026, 19(2), 346; https://doi.org/10.3390/ma19020346 - 15 Jan 2026
Viewed by 212
Abstract
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical [...] Read more.
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical characterization confirmed efficient cellulose functionalization and high-quality nanofibrillation, as well as the formation of uniformly dispersed ZnO nanoparticles (≈10–20 nm) strongly integrated within the cellulose network. The ZnO content was 30 and 20 wt. % for a-CNF/ZnO and c-CNF/ZnO, respectively. Antibacterial evaluation against Escherichia coli and Staphylococcus aureus revealed enhanced activity for both hybrids, with c-CNF/ZnO displaying the lowest MIC/MBC values (50/100 μg/mL). Antiviral assays revealed complete feline calicivirus inactivation at 100 μg/mL for c-CNF/ZnO, while moderate activity was observed against bovine coronavirus, highlighting the role of surface charge. Cytotoxicity assays on mammalian cells demonstrated high biocompatibility at antimicrobial concentrations. Life cycle assessment showed that c-CNF/ZnO exhibits a lower overall environmental burden than a-CNF/ZnO, with electricity demand being the main contributor, indicating clear opportunities for further reductions through process optimization and scale-up. Overall, these results demonstrate that CNF/ZnO nanohybrids effectively combine renewable biopolymers with ZnO antimicrobial functionality, offering a sustainable and safe platform for biomedical and environmental applications. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

27 pages, 2279 KB  
Article
Sustainability-Driven Design Optimization of Aircraft Parts Using Mathematical Modeling
by Aikaterini Anagnostopoulou, Dimitris Sotiropoulos, Ioannis Sioutis and Konstantinos Tserpes
Aerospace 2026, 13(1), 95; https://doi.org/10.3390/aerospace13010095 - 15 Jan 2026
Viewed by 61
Abstract
The design of aircraft components is a complex process that must simultaneously account for environmental impact, manufacturability, cost and structural performance to meet modern regulatory requirements and sustainability objectives. When these factors are integrated from the early design stages, the approach transcends traditional [...] Read more.
The design of aircraft components is a complex process that must simultaneously account for environmental impact, manufacturability, cost and structural performance to meet modern regulatory requirements and sustainability objectives. When these factors are integrated from the early design stages, the approach transcends traditional eco-design and becomes a genuinely sustainability-oriented design methodology. This study proposes a sustainability-driven design framework for aircraft components and demonstrates its application to a fuselage panel consisting of a curved skin, four frames, seven stringers, and twenty-four clips. The design variables investigated include the material selection, joining methods, and subcomponent thicknesses. The design space is constructed through a combinatorial generation process coupled with compatibility and feasibility constraints. Sustainability criteria are evaluated using a combination of parametric Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) regression models, parametric Finite Element Analysis (FEA), and Random Forest surrogate modeling trained on a stratified set of simulation results. Two methodological pathways are introduced: 1. Cluster-based optimization, involving customized clustering followed by multi-criteria decision-making (MCDM) within each cluster. 2. Global optimization, performed across the full decision matrix using Pareto front analysis and MCDM techniques. A stability analysis of five objective-weighting methods and four normalization techniques is conducted to identify the most robust methodological configuration. The results—based on a full cradle-to-grave assessment that includes the use phase over a 30-year A319 aircraft operational lifetime—show that the thermoplastic CFRP panel joined by welding emerges as the most sustainable design alternative. Full article
(This article belongs to the Special Issue Composite Materials and Aircraft Structural Design)
Show Figures

Figure 1

23 pages, 1468 KB  
Review
Advances and Prospects of Modified Activated Carbon-Based Slow Sand Filtration for Microplastic Removal
by Zhuangzhuang Qu, Ulan Zhantikeyev, Ulan Kakimov, Kainaubek Toshtay, Kanay Rysbekov, Nur Nabihah Binti Yusof, Ronny Berndtsson and Seitkhan Azat
Water 2026, 18(2), 228; https://doi.org/10.3390/w18020228 - 15 Jan 2026
Viewed by 181
Abstract
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and [...] Read more.
With the increasing prevalence of microplastics (MPs) and nanoplastics (NPs) in global aquatic environments, their potential ecotoxicological and health impacts have become a major concern in environmental science. Slow sand filtration (SSF) is widely recognized for its low energy demand, ecological compatibility, and operational stability; however, its efficiency in removing small or neutrally buoyant MPs remains limited. In recent years, integrating modified activated carbon (MAC) into SSF systems has emerged as a promising approach to enhance MP removal. This review comprehensively summarizes the design principles, adsorption and bio-synergistic mechanisms, influencing factors, and recent advancements in MAC-SSF systems. The results indicate that surface modification of activated carbon—through controlled pore distribution, functional group regulation, and hydrophilic–hydrophobic balance—significantly enhances the adsorption and interfacial binding of MPs. Furthermore, the coupling between MAC and biofilm facilitates a multi-mechanistic removal process involving electrostatic attraction, hydrophobic interaction, physical entrapment, and biodegradation. In addition, this review discusses the operational stability, regeneration performance, and environmental sustainability of MAC-SSF systems, emphasizing the need for future research on green and low-cost modification strategies, interfacial mechanism elucidation, microbial community regulation, and life-cycle assessment. Overall, MAC-SSF technology provides an efficient, economical, and sustainable pathway for microplastic control, offering valuable implications for a safe water supply and aquatic ecosystem protection in the future. Full article
Show Figures

Figure 1

25 pages, 2560 KB  
Article
Parametric Material Optimization and Structural Performance of Engineered Timber Thin-Shell Structures: Comparative Analysis of Gridshell, Segmented, and Hybrid Systems
by Michał Golański, Justyna Juchimiuk, Paweł Ogrodnik, Jacek Szulej and Agnieszka Starzyk
Materials 2026, 19(2), 341; https://doi.org/10.3390/ma19020341 - 15 Jan 2026
Viewed by 249
Abstract
In response to the growing interest in sustainable and material-efficient architectural solutions, this study focuses on innovative applications of engineered timber in lightweight structural systems. It investigates the material optimization and structural performance of engineered timber thin-shell structures through an integrated parametric design [...] Read more.
In response to the growing interest in sustainable and material-efficient architectural solutions, this study focuses on innovative applications of engineered timber in lightweight structural systems. It investigates the material optimization and structural performance of engineered timber thin-shell structures through an integrated parametric design approach. The study compares three prefabricated, panelized building systems, gridshell, segmented full-plate shell, and ribbed shell, to evaluate their efficiency in terms of material intensity, stiffness, and geometric behavior. Using Rhinoceros and Grasshopper environments with Karamba3D, Kiwi3D, and Kangaroo plugins, a comprehensive parametric workflow was developed that integrates geometric modeling, structural analysis, and material evaluation. The results show that segmented ribbed shell and two segmented gridshell variants offer up to 70% reduction in material usage compared with full-plate segmented timber shells, with hybrid timber shells achieving the best balance between stiffness and mass, offering functional advantages (roofing without additional load). These findings highlight the potential of parametric and computational design methods to enhance both the environmental efficiency (LCA) and digital fabrication readiness of timber-based architecture. The study contributes to the ongoing development of computational timber architecture, emphasizing the role of design-to-fabrication strategies in sustainable construction and the digital transformation of architectural practice. Full article
(This article belongs to the Special Issue Engineered Timber Composites: Design, Structures and Applications)
Show Figures

Graphical abstract

47 pages, 2952 KB  
Review
Beyond Waste: Future Sustainable Insights for Integrating Complex Feedstocks into the Global Energy Mix
by Malkan Kadieva, Anton Manakhov, Maxim Orlov, Mustafa Babiker and Abdulaziz Al-Qasim
Energies 2026, 19(2), 413; https://doi.org/10.3390/en19020413 - 14 Jan 2026
Viewed by 67
Abstract
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived [...] Read more.
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived products (plastics, tires) and biomass, in addition to heavy oil feedstocks. Particular emphasis is placed on hydrogen addition pathways, specifically, residue hydroconversion facilitated by dispersed nanocatalysts and waste co-processing methodologies. Beyond nanoscale catalyst design and reaction performance, this work also addresses refinery-level sustainability impacts. The advanced catalytic conversion of heavy oil residue demonstrates superior conversion efficiency, significant coke suppression, and improved carbon utilization, while life cycle and illustrative techno-economic comparisons indicate greenhouse gas reductions and a net economic gain of approximately USD 2–3 per barrel relative to conventional refining under scenarios assuming decarbonized hydrogen production. Co-processing of plastics, tires, and biomass with heavy oil feedstocks is highlighted as a practical and effective approach. Together, these findings outline a rational catalytic pathway toward optimized refining systems. Within the framework of the circular carbon economy, these catalytic processes enable enhanced feedstock utilization, integration of low-carbon hydrogen, and coupling with carbon-capture technologies. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

25 pages, 7235 KB  
Article
Sustainable Incorporation of Recycled Tire Steel and Textile Fibers as a Hybrid Mix in Concrete
by Zeeshan Tariq, Ali Bahadori-Jahromi and Shah Room
Sustainability 2026, 18(2), 786; https://doi.org/10.3390/su18020786 - 13 Jan 2026
Viewed by 120
Abstract
Sustainability concerns over the management and handling of the growing volume of waste tires have necessitated the exploration of potential applications for the reuse and recycling of this resource, as they are categorized as hazardous wastes and are typically incinerated through thermal processing [...] Read more.
Sustainability concerns over the management and handling of the growing volume of waste tires have necessitated the exploration of potential applications for the reuse and recycling of this resource, as they are categorized as hazardous wastes and are typically incinerated through thermal processing or dumped in landfills, resulting in significant environmental issues. The recycled steel and textile fibers from tires can be incorporated in concrete to assist in mitigating this impending environmental calamity, primarily by enhancing the efficacy of concrete. The present study aims to investigate the effect of using recycled tire steel fibers (RTSF) and recycled tire textile fibers (RTTF) in concrete, as economically viable and environmentally friendly alternatives to commercially available fibers. Although literature on the use of recycled fibers in concrete is available, the research is very limited in terms of their hybrid use and with minimal environmental analysis. Consequently, to address the gaps, this research concentrates on the use of RTSF and RTTF as a hybrid mix in concrete with life cycle assessment (LCA) to balance the mechanical performance and environmental sustainability. The experimental work is formulated to suggest an optimum dose of RTSF and RTTF, as a hybrid mix form, to be incorporated in concrete that imparts sufficient strength and workability. The fibers were integrated with dosages of 0.75%, 1%, and 1.25% for RTSF and 0.25%, 0.5%, and 0.75% for RTTF, respectively, by volume in non-hybrid form, while in hybrid form, they were reinforced as four different combinations (1%:0.5%, 0.75%, 0.75%, 0.5%, 0.5%:0.5%, and 0.75%:0.25%) by volume of RTSF and RTTF, respectively. Fresh and hardened properties of concrete were tested according to the ASTM standards. The results showed that concrete with hybrid fibers outperformed the concrete with normal individual fibers in both fresh and hardened states tests. The mechanical strength results showed that the synergistic use of RTSF and RTTF can enhance the strength, toughness, ductility, and crack resistance of the concrete. The hybrid mix H1 comprising 1% RTSF and 0.5% RTTF was ascertained as the optimal mix showing the highest mechanical performance with embodied CO2 and energy values only slightly higher than the control mix, while offering the significant sustainability benefit of utilizing recycled fibers. Full article
Show Figures

Figure 1

Back to TopTop