Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Anionic (a-CNF) and Cationic (c-CNF) Cellulose Nanofibers
2.2.1. Preparation of Anionic Cellulose
2.2.2. Preparation of Cationic Cellulose
2.2.3. Mechanical Defibrillation to Produce a-CNF and c-CNF
2.3. Preparation of a-CNF/ZnO and c-CNF/ZnO Nanohybrids Employing Cellulose Nanofibers as Templates
2.4. Physicochemical Characterization of Nanomaterials
2.5. Assessment of Antibacterial Activity
2.6. Assessment of Antiviral Activity
2.7. In Vitro Assessment of Cytotoxicity
2.8. LCA of CNF/ZnO Nanohybrids
2.8.1. Goal and Scope
2.8.2. Functional Unit and System Boundaries
2.8.3. Life Cycle Inventory
3. Results and Discussion
3.1. Synthesis and Physicochemical Characterization of Functionalized Cellulose Nanofibers
3.1.1. Anionic Cellulose Nanofibers (a-CNF)
3.1.2. Cationic Cellulose Nanofibers (c-CNF)
3.2. Synthesis and Physicochemical Characterization of a-CNF/ZnO and a-CNF/ZnO Nanohybrids
3.3. Evaluation of Antibacterial Activity
3.4. Evaluation of Antiviral Activity
3.5. In Vitro Evaluation of Cytotoxicity
3.6. LCA of Nanohybrids
3.6.1. Life Cycle Assessment Results
3.6.2. Life Cycle Assessment Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| a-CNF | Anionic cellulose nanofibers |
| AgNO3 | Silver nitrate |
| ATR | Attenuated Total Reflection |
| BCoV | Bovine coronavirus |
| c-CNF | Cationic cellulose nanofibers |
| CFU | Colony Forming Units |
| CLSI | Clinical and Laboratory Standards Institute |
| CNF | Cellulose nanofibers |
| CO2e | Carbon Dioxide Equivalent |
| CRFK | Crandell-Rees Feline Kidney |
| DCF | 2′,7′-Dichlorofluorescein |
| DCFH | 2′,7′-Dichlorodihydrofluorescein |
| DMAO | 7-Dimethylamino-4-methylcoumarin |
| DMEM | Dulbecco’s Modified Eagle Medium |
| E. coli | Escherichia coli |
| EDX | Energy-dispersive X-ray |
| EMEM | Eagle’s minimum essential medium |
| EPTMAC | (2,3-Epoxypropyl)trimethylammonium chloride |
| EthD-III | Ethidium Homodimer III |
| FBS | Fetal bovine serum |
| FCS | Fetal calf serum |
| FCV | Feline calicivirus |
| FTIR | Fourier Transform Infrared Spectroscopy |
| H2DCFDA | 2′,7′-Dichlorodihydrofluorescein diacetate |
| HCl | Hydrochloride |
| HPH | High pressure homogenization |
| ICP-AES | Inductively Coupled Plasma–Atomic Emission Spectrometry |
| LB | Luria–Bertani medium |
| LCA | Life cycle analysis |
| LCI | Life Cycle Inventory |
| LCIA | Life cycle impact assessment |
| MBC | Minimum Bactericidal Concentration |
| MDBK | Bovine kidney epithelial |
| MIC | Minimum Inhibitory Concentration |
| MTT | Thiazolyl blue tetrazolium bromide |
| NaOH | Sodium hydroxide |
| NPs | Nanoparticles |
| PBS | Dulbecco’s phosphate-buffered saline |
| R | Reduction |
| ROS | Reactive oxygen species |
| S. aureus | Staphylococcus aureus |
| SEM | Scanning Electron Microscopy |
| STEM | Scanning Transmission Electron Microscopy |
| TCID50 | 50% Tissue culture infectious dose |
| TEM | Transmission Electron Microscopy |
| TEMPO | 2,2,6,6-Tetramethylpiperidine-1-oxyl |
| TSB | Tryptic soy broth |
| UV–vis | Ultraviolet-visible spectroscopy |
| XRD | X-ray Diffraction |
| ZnO | Zinc oxide |
References
- Lei, H.; Li, Y.; Xiao, S.; Yang, X.; Lin, C.; Norris, S.L.; Wei, D.; Hu, Z.; Ji, S. Logistic Growth of a Surface Contamination Network and Its Role in Disease Spread. Sci. Rep. 2017, 7, 14826. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; de Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Lax-minarayan, R. The Scope of the Antimicrobial Resistance Challenge. Lancet 2024, 403, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antibiotic Resistance. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 15 October 2025).
- Piddock, L.J.V. Reflecting on the final report of the O’Neill Review on Antimicrobial Resistance. Lancet Infect. Dis. 2016, 16, 767–768. [Google Scholar] [CrossRef]
- Mubeen, B.; Ansar, A.N.; Rasool, R.; Ullah, I.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Alzarea, S.I.; Nadeem, M.S.; Kazmi, I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics 2021, 10, 1473. [Google Scholar] [CrossRef]
- Hemeg, H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef]
- Şen Karaman, D.; Ercan, U.K.; Bakay, E.; Topaloğlu, N.; Rosenholm, J.M. Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Adv. Funct. Mater. 2020, 30, 1908783. [Google Scholar] [CrossRef]
- Makabenta, J.M.V.; Nabawy, A.; Li, C.H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36. [Google Scholar] [CrossRef]
- Mashitah, M.D.; Chan, Y.S.; Jason, J. Antimicrobial properties of nanobiomaterials and the mechanism. In Nanobiomaterials in Antimicrobial Therapy; William Andrew: San Diego, CA, USA, 2016; pp. 261–312. [Google Scholar] [CrossRef]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Altern. Med. 2015, 2015, 246012. [Google Scholar] [CrossRef]
- Gupta, A.; Mumtaz, S.; Li, C.H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Lim, C.; Li, S.; Wang, Y.; Song, J.; Lin, T.-W.; Muir, B.W.; Hsu, H.-Y.; Shen, H.-H. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials 2022, 12, 3855. [Google Scholar] [CrossRef]
- Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Prakash, J.; Krishna, S.B.N.; Kumar, P.; Kumar, V.; Ghosh, K.S.; Swart, H.C.; Bellucci, S.; Cho, J. Recent Advances on Metal Oxide Based Nano-Photocatalysts as Potential Antibacterial and Antiviral Agents. Catalysts 2022, 12, 1047. [Google Scholar] [CrossRef]
- Kodaparthi, A.; Hameeda, B.; Bastipati, S.B.; Golla, S. Bactericidal Effects: Microbial Nanoparticles as Next-Generation Antimicrobials. In Microbial Processes for Synthesizing Nanomaterials; Maddela, N.R., Rodríguez Díaz, J.M., Branco da Silva Montenegro, M.C., Prasad, R., Eds.; Springer: Singapore, 2023; pp. 261–283. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric Nanoparticles for Antimicrobial Therapies: An up-to-date Overview. Polymers 2021, 13, 724. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules 2018, 23, 2684. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Pharmaceutical and biomedical applications of cellulose nanofibers: A review. Environ. Chem. Lett. 2021, 19, 2043–2055. [Google Scholar] [CrossRef]
- Rabani, I.; Lee, S.H.; Kim, H.S.; Yoo, J.; Hussain, S.; Maqbool, T.; Seo, Y.S. Engineering-safer-by design ZnO nanoparticles incorporated cellulose nanofiber hybrid for high UV protection and low photocatalytic activity with mechanism. J. Environ. Chem. Eng. 2021, 9, 105845. [Google Scholar] [CrossRef]
- Topçu, A.A.; İnal, M.; Bakhshpour-Yücel, M.; Sağlam, N.; Denizli, A. In-Situ Formation of ZnO Nanorods on Bacterial Cellulose Nanofibers for Antibacterial Efficacy. ChemistrySelect 2025, 10, e02384. [Google Scholar] [CrossRef]
- Audtarat, S.; Wongsinlatam, W.; Thepsiri, J.; Dasri, T. Fabrication of novel composite materials by impregnating ZnO particles into bacterial cellulose nanofibers for antimicrobial applications. Green. Process. Synth. 2025, 14, 20250047. [Google Scholar] [CrossRef]
- Onyszko, M.; Markowska-Szczupak, A.; Rakoczy, R.; Paszkiewicz, O.; Janusz, J.; Gorgon-Kuza, A.; Wenelska, K.; Mijowska, E. The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Sci. Rep. 2022, 12, 1321. [Google Scholar] [CrossRef]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2020, 10, 65. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Mohammed, M.; Oleiwi, J.K.; Ihmedee, F.H.; Adam, T.; Betar, B.O.; Gopinath, S.C. The Anticancer, Antioxidant, and Antimicrobial Properties of Zinc Oxide Nanoparticles: A Comprehensive Review. Nano TransMed 2025, 4, 100097. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Ur Rahman, A.; Tajuddin, N.; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Rahman, P.M.; Mujeeb, V.M.A.; Muraleedharan, K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int. J. Biol. Macromol. 2017, 97, 382–391. [Google Scholar] [CrossRef]
- Mallakpour, S.; Sirous, F.; Hussain, C.M. A Journey to the World of Fascinating ZnO Nanocomposites Made of Chitosan, Starch, Cellulose, and Other Biopolymers: Progress in Recent Achievements in Eco-Friendly Food Packaging, Biomedical, and Water Remediation Technologies. Int. J. Biol. Macromol. 2021, 170, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Prociak, J.; Chwastowski, J.; Kucharski, A.; Banach, M. Functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016, 385, 543–553. [Google Scholar] [CrossRef]
- Khorasani, M.T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol. 2018, 114, 1203–1215. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Nguyen, N.T.T.; Nguyen, T.T.T.; Van Tran, T. Recent advances in the biosynthesis of ZnO nanoparticles using floral waste extract for water treatment, agriculture and biomedical engineering. Nanoscale Adv. 2024, 6, 4047–4061. [Google Scholar] [CrossRef]
- Vibornijs, V.; Zubkins, M.; Strods, E.; Rudevica, Z.; Korotkaja, K.; Ogurcovs, A.; Kundzins, K.; Purans, J.; Zajakina, A. Analysis of Antibacterial and Antiviral Properties of ZnO and Cu Coatings Deposited by Magnetron Sputtering: Evaluation of Cell Viability and ROS Production. Coatings 2024, 14, 14. [Google Scholar] [CrossRef]
- Agarwal, H.; Menon, S.; Kumar, S.V.; Rajeshkumar, S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef]
- Mendes, C.R.; Dilarri, G.; Forsan, C.F.; de Moraes Ruy Sapata, V.; Lopes, P.R.M.; de Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022, 12, 2658. [Google Scholar] [CrossRef]
- da Silva, B.L.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.L.R.; Chiavacci, L.A. Relationship Between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.; Ataei-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycolcoated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 2018, 13, 2675–2690. [Google Scholar] [CrossRef] [PubMed]
- Melk, M.M.; El-Hawary, S.S.; Melek, F.R.; Saleh, D.O.; Ali, O.M.; El Raey, M.A.; Selim, N.M. Antiviral activity of zinc oxide nanoparticles mediated by Plumbago indica L. extract against herpes simplex virus type 1 (HSV-1). Int. J. Nanomed. 2021, 16, 8221–8233. [Google Scholar] [CrossRef]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef]
- Rios-Ibarra, C.P.; Salinas-Santander, M.; Orozco-Nunnelly, D.A.; Bravo-Madrigal, J. Nanoparticle-based antiviral strategies to combat the influenza virus. Biomed. Rep. 2024, 20, 65. [Google Scholar] [CrossRef]
- Gupta, J.; Irfan, M.; Ramgir, N.; Muthe, K.P.; Debnath, A.K.; Ansari, S.; Gandhi, J.; Ranjith-Kumar, C.T.; Surjit, M. Antiviral Activity of Zinc Oxide Nanoparticles and Tetrapods Against the Hepatitis E and Hepatitis C Viruses. Front. Microbiol. 2022, 13, 881595. [Google Scholar] [CrossRef]
- Ibrahim Fouad, G. A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bull. Natl. Res. Cent. 2021, 45, 36. [Google Scholar] [CrossRef]
- Wolfgruber, S.; Rieger, J.; Cardozo, O.; Punz, B.; Himly, M.; Stingl, A.; Farias, P.M.A.; Abuja, P.M.; Zatloukal, K. Antiviral Activity of Zinc Oxide Nanoparticles against SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 8425. [Google Scholar] [CrossRef]
- Obisesan, O.; Katata-Seru, L.; Mufamadi, S.; Mufhandu, H. Applications of nanoparticles for herpes simplex virus (HSV) and human immunodeficiency virus (HIV) treatment. J. Biomed. Nanotechnol. 2021, 17, 793–808. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; Pirhajati-Mahabadi, V.; et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci. 2019, 26, 70. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.L.; Caetano, B.L.; Chiari-Andréo, B.G.; Pietro, R.C.L.R.; Chiavacci, L.A. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B Biointerfaces 2019, 177, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-Dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Babayevska, N.; Przysiecka, Ł.; Iatsunskyi, I.; Nowaczyk, G.; Jarek, M.; Janiszewska, E.; Jurga, S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep. 2022, 12, 8148. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Cai, L.; Wu, Y.; Ji, M.; Jiang, H.; Chen, J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J. Hazard. Mater. 2022, 430, 128436. [Google Scholar] [CrossRef]
- Ng, C.T.; Yong, L.Q.; Hande, M.P.; Ong, C.N.; Yu, L.E.; Bay, B.H.; Baeg, G.H. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomed. 2017, 12, 1621–1637. [Google Scholar] [CrossRef]
- Chong, C.L.; Fang, C.M.; Pung, S.Y.; Ong, C.E.; Pung, Y.F.; Kong, C.; Pan, Y. Current updates on the in vivo assessment of zinc oxide nanoparticles toxicity using animal models. BioNanoScience 2021, 11, 590–620. [Google Scholar] [CrossRef]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef]
- Franklin, N.M.; Rogers, N.J.; Apte, S.C.; Batley, G.E.; Gadd, G.E.; Casey, P.S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41, 8484–8490. [Google Scholar] [CrossRef]
- Esparza-González, S.C.; Sánchez-Valdés, S.; Ramírez-Barrón, S.N.; Loera-Arias, M.J.; Bernal, J.; Meléndez-Ortiz, H.I.; Betancourt-Galindo, R. Effects of Different Surface Modifying Agents on the Cytotoxic and Antimicrobial Properties of ZnO Nanoparticles. Toxicol. Vitr. 2016, 37, 134–141. [Google Scholar] [CrossRef]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Surface-Modified Zinc Oxide Nanoparticles for Antialgal and Antiyeast Applications. ACS Appl. Nano. Mater. 2020, 3, 440–451. [Google Scholar] [CrossRef]
- Luo, M.; Shen, C.; Feltis, B.N.; Martin, L.L.; Hughes, A.E.; Wright, P.F.A.; Turney, T.W. Reducing ZnO Nanoparticle Cytotoxicity by Surface Modification. Nanoscale 2014, 6, 5791–5798. [Google Scholar] [CrossRef]
- Mohammad, F.; Bwatanglang, I.B.; Al-Lohedan, H.A.; Shaik, J.P.; Al-Tilasi, H.H.; Soleiman, A.A. Influence of Surface Coating towards the Controlled Toxicity of ZnO Nanoparticles In Vitro. Coatings 2023, 13, 172. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, X.; Xiong, Z.; Huang, Q.; Yang, X.; Yan, H.; Ma, J.; Feng, Q.; Shen, Z. Novel Micro/Nanostructured TiO2/ZnO Coating with Antibacterial Capacity and Cytocompatibility. Ceram. Int. 2018, 44, 9711–9719. [Google Scholar] [CrossRef]
- Piffet, C.; Thomassin, J.-M.; Stierlin, E.; Tchoumtchoua, J.; Fernández, C.; Mateo, M.; Hernández, L.; Lyra, K.M.; Papavasiliou, A.; Sakellis, E.; et al. Sustainable antibacterial chitin nanofiber/ZnO nanohybrid materials: Ex situ and in situ synthesis, characterization and evaluation. Nanomaterials 2025, 15, 809. [Google Scholar] [CrossRef] [PubMed]
- Odabas, N.; Amer, H.; Bacher, M.; Henniges, U.; Potthast, A.; Rosenau, T. Properties of cellulosic material after cationization in different solvents. ACS Sustain. Chem. Eng. 2016, 4, 2295–2301. [Google Scholar] [CrossRef]
- Odabas, N.; Amer, H.; Henniges, U.; Potthast, A.; Rosenau, T. A comparison of methods to quantify cationization of cellulosic pulps. J. Wood Chem. Technol. 2017, 37, 136–147. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.D.; Andronescu, E.; Holban, A.M. Biodegradable alginate films with ZnO nanoparticles and citronella essential oil—A novel antimicrobial structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- CLSI M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 9th ed. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2012; Approved Standard CLSI Document M07-A9.
- CLSI M26; Methods for Determining Bactericidal Activity of Antimicrobial Agents. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 1999; Approved Guideline CLSI Document M26-A.
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Panagiotaki, K.N.; Lyra, K.-M.; Papavasiliou, A.; Stamatakis, K.; Sideratou, Z. Synthesis of N-sulfopropylated hyperbranched polyethyleneimine with enhanced biocompatibility and antimicrobial activity. ChemPlusChem 2025, 90, e202400454. [Google Scholar] [CrossRef]
- Lyra, K.-M.; Tournis, I.; Subrati, M.; Spyrou, K.; Papavasiliou, A.; Athanasekou, C.; Papageorgiou, S.; Sakellis, E.; Karakassides, M.A.; Sideratou, Z. Carbon Nanodisks Decorated with Guanidinylated Hyperbranched Polyethyleneimine Derivatives as Efficient Antibacterial Agents. Nanomaterials 2024, 14, 677. [Google Scholar] [CrossRef]
- French Standard NF EN 14476+A2 October 2019—Chemical Disinfectants and Antiseptics-Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area-Test Method and Requirements. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-14476-a2/antiseptiques-et-desinfectants-chimiques-essai-quantitatif-de-suspension-po/fa197568/1828 (accessed on 16 March 2023).
- ISO 14040:2006; Environmental Management—Life-Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- EC-European Commission. Commission Recommendation 2013/179/EU of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. ANNEX II: Product Environmental Footprint (PEF) Guide. Off. J. Eur. Union 2013, L124, 1–210. [Google Scholar]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Wang, M.; Miao, X.; Li, H.; Chen, C. Effect of length of cellulose nanofibers on mechanical reinforcement of polyvinyl alcohol. Polymers 2021, 14, 128. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef]
- Ren, J.L.; Sun, R.C.; Liu, C.F.; Lin, L.; He, B.H. Synthesis and characterization of novel cationic SCB hemicelluloses with a low degree of substitution. Carbohydr. Polym. 2007, 67, 347–357. [Google Scholar] [CrossRef]
- Wang, A.; Yuan, Z.; Wang, C.; Luo, L.; Zhang, W.; Geng, S.; Qu, J.; Wei, B.; Wen, Y. Zwitterionic cellulose nanofibrils with high salt sensitivity and tolerance. Biomacromolecules 2020, 21, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose—Structure and characterization. Cellul. Chem. Technol. 2011, 45, 13–21. [Google Scholar]
- Kondo, T. Hydrogen Bonds in Cellulose and Cellulose Derivatives. In Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed.; Severian, D., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 69–98. [Google Scholar]
- Bellamy, L.J. The Infra-Red Spectra of Complex Molecules; Springer: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Tung, N.T.; Nhi, T.T.Y.; Cong, T.D.; Hop, T.T.T.; Mai, D.T. Nanocellulose as promising reinforcement materials for biopolymer nanocomposites: A review. Vietnam. J. Sci. Technol. 2024, 62, 197–221. [Google Scholar] [CrossRef]
- Desmaisons, J.; Boutonnet, E.; Rueff, M.; Dufresne, A.; Bras, J. A New Quality Index for Benchmarking of Different Cellulose Nanofibrils. Carbohydr. Polym. 2017, 174, 318–329. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Q.; Shi, Y.; Cha, R. Preparation and application of cationic modified cellulose fibrils as a papermaking additive. Int. J. Polym. Sci. 2016, 2016, 6978434. [Google Scholar] [CrossRef]
- Heliopoulos, N.S.; Kythreoti, G.; Lyra, K.M.; Panagiotaki, K.N.; Papavasiliou, A.; Sakellis, E.; Papageorgiou, S.; Kouloumpis, A.; Gournis, D.; Katsaros, F.K.; et al. Cytotoxicity effects of water-soluble multi-walled carbon nanotubes decorated with quaternized hyperbranched poly (ethyleneimine) derivatives on autotrophic and heterotrophic gram-negative bacteria. Pharmaceuticals 2020, 13, 293. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Nayem, S.M.A.; Alam, M.S.; Islam, M.I.; Seong, G.; Chowdhury, A.-N. Hydrothermal ZnO Nanomaterials: Tailored Properties and Infinite Possibilities. Nanomaterials 2025, 15, 609. [Google Scholar] [CrossRef] [PubMed]
- Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001. [Google Scholar] [CrossRef]
- Verges, M.A.; Mifsud, A.; Serna, C.J. Formation of Rod-like Zinc Oxide Microcrystals in Homogeneous Solutions. J. Chem. Soc. Faraday Trans. 1990, 86, 959–963. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Study of ZnO sol-gel films: Effect of annealing. Mater. Lett. 2010, 64, 1147–1149. [Google Scholar] [CrossRef]
- Yang, Z.; Ye, Z.; Xu, Z.; Zhao, B. Effect of the morphology on the optical properties of ZnO nanostructures. Phys. E Low. Dimens. Syst. Nanostruct. 2009, 42, 116–119. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2013, 21, 885–896. [Google Scholar] [CrossRef]
- Nemeş, N.S.; Ardean, C.; Davidescu, C.M.; Negrea, A.; Ciopec, M.; Duţeanu, N.; Negrea, P.; Paul, C.; Duda-Seiman, D.; Muntean, D. Antimicrobial Activity of Cellulose Based Materials. Polymers 2022, 14, 735. [Google Scholar] [CrossRef] [PubMed]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Jose, J.; Bhat, S.G. A Modified Fluorescent Probe Protocol for Evaluating the Reactive Oxygen Species Gen-eration by Metal and Metal Oxide Nanoparticles in Gram-Positive and Gram-Negative Organisms. Results Eng. 2024, 24, 102925. [Google Scholar] [CrossRef]
- Arvidsson, R.; Kushnir, D.; Sandén, B.A.; Molander, S. Prospective Life Cycle Assessment of Graphene Production by Ultrasonication and Chemical Reduction. Environ. Sci. Technol. 2014, 48, 4529−4536. [Google Scholar] [CrossRef]
- Turk, J.; Oven, P.; Poljanšek, I.; Lešek, A.; Knez, F.; Malovrh Rebec, K. Evaluation of an Environmental Profile Comparison for Nanocellulose Production and Supply Chain by Applying Different Life Cycle Assessment Methods. J. Cleaner Prod. 2020, 247, 119107. [Google Scholar] [CrossRef]
- Serrano-Luján, L.; Víctor-Román, S.; Toledo, C.; Sanahuja-Parejo, O.; Mansour, A.E.; Abad, J.; Amassian, A.; Benito, A.M.; Maser, W.K.; Urbina, A. Environmental Impact of the Production of Graphene Oxide and Reduced Graphene Oxide. SN Appl. Sci. 2019, 1, 179. [Google Scholar] [CrossRef]
- Arfelis, S.; Aguado, R.J.; Civancik, D.; Fullana-i-Palmer, P.; Pèlach, M.À.; Tarrés, Q.; Delgado-Aguilar, M. Sustainability of cellulose micro-/nanofibers: A comparative life cycle assessment of pathway technologies. Sci. Total Environ. 2023, 874, 162482. [Google Scholar] [CrossRef] [PubMed]















| Samples | E. coli | S. aureus | ||
|---|---|---|---|---|
| MIC (μg/mL) | MBC (μg/mL) | MIC (μg/mL) | MBC (μg/mL) | |
| a-CNF | >500 | >500 | >500 | >500 |
| c-CNF | >500 | >500 | >500 | >500 |
| a-CNF/ZnO | 500 | >500 | 100 | 300 |
| c-CNF/ZnO | 200 | 300 | 50 | 100 |
| c-CNF/ZnO | |||||
| Bovine coronavirus | Feline Calicivirus | ||||
| µg/mL | R | % | µg/mL | R | % |
| 500 | 2.1 | 99.21 | 500 | 4.8 | 99.99 |
| 200 | 0.8 | 84.15 | 200 | 4.9 | >99.999 |
| 100 | 0.6 | 74.88 | 100 | 4.9 | >99.999 |
| 20 | 0.7 | 80.05 | 20 | 2.5 | 99.68 |
| 10 | 0.5 | 68.38 | 10 | 0.9 | 87.41 |
| a-CNF/ZnO | |||||
| Bovine coronavirus | Feline Calicivirus | ||||
| µg/mL | R | % | µg/mL | R | % |
| 500 | 0.6 | 74.88 | 500 | 0.8 | 84.15 |
| 200 | 0.7 | 80.05 | 200 | 0.9 | 87.41 |
| 100 | 0.6 | 74.88 | 100 | 0.7 | 80.05 |
| 20 | 0.7 | 80.05 | 20 | 0.8 | 84.15 |
| 10 | 0.5 | 68.38 | 10 | 0.6 | 74.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lyra, K.M.; Papavasiliou, A.; Piffet, C.; Gumusboga, L.; Thomassin, J.-M.; Marie, Y.; Hoareau, A.; Moulès, V.; Alcodori, J.; Camilleri Lledó, P.; et al. Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties. Materials 2026, 19, 346. https://doi.org/10.3390/ma19020346
Lyra KM, Papavasiliou A, Piffet C, Gumusboga L, Thomassin J-M, Marie Y, Hoareau A, Moulès V, Alcodori J, Camilleri Lledó P, et al. Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties. Materials. 2026; 19(2):346. https://doi.org/10.3390/ma19020346
Chicago/Turabian StyleLyra, Kyriaki Marina, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, and et al. 2026. "Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties" Materials 19, no. 2: 346. https://doi.org/10.3390/ma19020346
APA StyleLyra, K. M., Papavasiliou, A., Piffet, C., Gumusboga, L., Thomassin, J.-M., Marie, Y., Hoareau, A., Moulès, V., Alcodori, J., Camilleri Lledó, P., Násner, A. M. L., Gallego, J., Sakellis, E., Katsaros, F. K., Tsiourvas, D., & Sideratou, Z. (2026). Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties. Materials, 19(2), 346. https://doi.org/10.3390/ma19020346

