Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Results
3.2. Flowsheet Development
3.3. Technoeconomic Analysis
3.4. Life Cycle Analysis
- Feedstock preparation (LDPE waste collection and handling or ethane supply),
- Reactor operation (microwave or thermal conversion/steam cracking),
- Separation and purification units,
- Utilities generation (electricity, cooling water, steam, and other energy inputs),
- Waste management (tar/char handling and off-gas treatment).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CAPEX | Capital Cost |
| GWP | Global Warming Potential |
| LCA | Life Cycle Assessment |
| LCOE | Levelized Cost of Ethylene |
| LDPE | Low-Density Polyethylene |
| NPV | Net Present Value |
| OPEX | Operating Cost |
References
- Garside, M. Global Plastic Production 1950–2022. Published by Bruna Alves, Plastic Waste Worldwide—Statistics & Facts. 26 April 2024. Available online: https://www.statista.com/topics/5401/global-plastic-waste/ (accessed on 10 January 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 46. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.; Escola, J. Fuels from waste plastics by thermal and catalytic processes: A review. Ind. Eng. Chem. Res. 2008, 47, 7982–7992. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M. Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2012, 2, 1924–1941. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Tejasvi, R. A Review on Role of Process Parameters on Pyrolysis of Biomass and Plastics: Present Scope and Future Opportunities in Conventional and Microwave-Assisted Pyrolysis Technologies. Process Saf. Environ. Prot. 2022, 162, 435–462. [Google Scholar] [CrossRef]
- Arshad, H.S.; Sulaiman, A.; Hussain, Z.; Naz, Y.; Basrawi, F. Microwave assisted pyrolysis of plastic waste for production of fuels: A review. MATEC Web Conf. 2017, 131, 02005. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Lee, A.; Liew, M.S.; Mater, J. Tertiary recycling of plastics waste: An analysis of feedstock, chemical and biological degradation methods. Cycles Waste Manag. 2021, 23, 32–43. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol. 2014, 4, 1197–1210. [Google Scholar] [CrossRef]
- Brandon, R.; Ashley, C.; Xinwei, B.; Victor, A.; Dushyant, S.; Jianli, H. Catalytic direct conversion of ethane to value-added chemicals under microwave irradiation. Catal. Today 2020, 356, 3–10. [Google Scholar] [CrossRef]
- Xiaoyan, W.; Yuxin, W.; Brandon, R.; Ashley, C.; Jianli, H. Selectivity modulated oxidative dehydrogenation of ethane with CO2 under microwave catalytic processing. Catal. Sci. Technol. 2023, 13, 3499–3504. [Google Scholar] [CrossRef]
- Harrison, K.L.; Yang, K.; Wang, C.; Yilmaz, A.E.; Manthiram, A. Microwave-assisted Low-temperature Growth of Thin Films in Solution. Sci. Rep. 2012, 2, 1003. [Google Scholar]
- Luo, C.; Liu, S.; Li, S.; Robinson, B.; Wu, T.; Hu, J.; Wang, Y. Boosting upcycling polypropylene waste to propylene via microwave catalysis. Appl. Catal. B Environ. Energy 2026, 381, 125834. [Google Scholar] [CrossRef]
- Wang, Y.; Biddle, T.; Jiang, C.; Luong, T.; Chen, R.; Brown, S.; Jie, X.; Hu, J. Microwave-driven upcycling of single-use plastics using zeolite catalyst. Chem. Eng. J. 2023, 465, 142918. [Google Scholar] [CrossRef]
- Tuli, V.; Luo, C.; Robinson, B.; Hu, J.; Wang, Y. Microwave-assisted catalytic technology for sustainable production of valuable chemicals from plastic waste with enhanced catalyst reusability. Chem. Eng. J. 2024, 489, 151551. [Google Scholar] [CrossRef]
- Theis, J. Quality Guidelines for Energy Systems Studies Cost Estimation Methodology for NETL Assessments of Power Plant Performance; National Energy Technology Laboratory: Albany, OR, USA, 2021.
- Douglas, S.T.; Joshua, D.K.; David, T.B. The U.S. Plastics Recycling Economy: Current State, Challenges, and Opportunities; NIST Advanced Manufacturing Series; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024. [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardisation (ISO): Geneve, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation (ISO): Geneve, Switzerland, 2006.
- Chen, Y.; Kuo, M.J.; Lobo, R.; Ierapetritou, M. Ethylene production: Process design, technoeconomic and life-cycle assessments. Green Chem. 2024, 26, 2903–2911. [Google Scholar] [CrossRef]
- Young, B.; Hawkins, T.R.; Chiquelin, C.; Sun, P.; Gracida-Alvarez, U.R.; Elgowainy, A. Environmental life cycle assessment of olefins and by-product hydrogen from steam cracking of natural gas liquids, naphtha, and gas oil. J. Clean. Prod. 2022, 359, 131884. [Google Scholar] [CrossRef]
- Shen, W.; Tian, Z.; Zhao, L.; Qian, F. Life Cycle Assessment and Multiobjective Optimization for Steam Cracking Process in Ethylene Plant. ACS Omega 2022, 7, 15507−15517. [Google Scholar] [CrossRef]
- Pahola, T.B.; Ulises, R.G.; Kirti, R.; Jennifer, P.; Troy, R.H. Cradle-to-Gate greenhouse gas emissions of the production of ethylene from U.S. Corn ethanol and comparison to fossil-derived ethylene production. Bioresour. Technol. 2025, 430, 132565. [Google Scholar]








| Parameter | 500 °C | 600 °C | ||
|---|---|---|---|---|
| LDPE-Thermal (wt. %) | LDPE-MW (wt. %) | LDPE-Thermal (wt. %) | LDPE-MW (wt. %) | |
| Hydrogen | 0.1 | 1.6 | 0.2 | 3.5 |
| Methane | 5.8 | 15.9 | 9.4 | 15.1 |
| Ethylene | 14.9 | 44.7 | 24.3 | 42.9 |
| Ethane | 10.3 | 3.5 | 19.6 | 10.2 |
| Propane | 11.0 | 3.2 | 7.6 | 3.4 |
| Propylene | 18.6 | 9.8 | 25.8 | 16.9 |
| n-butane | 7.3 | 7.7 | 0.0 | 0.0 |
| t-2-butene | 0.0 | 5.5 | 1.8 | 0.8 |
| 1-butene | 1.5 | 0.4 | 0.0 | 0.0 |
| Isobutylene | 1.1 | 0.5 | 1.6 | 0.6 |
| Benzene | 11.5 | 6.4 | 8.3 | 5.8 |
| Toluene | 17.9 | 0.8 | 1.4 | 0.8 |
| TOTAL | 100 | 100 | 100 | 100 |
| Solid residue fraction | 0.33 | 0.004 | 0.002 | 0.15 |
| Gas Compositions | Thermal | Microwave |
|---|---|---|
| C2H6 | 35.88 | 6.34 |
| C2H4 | 44.49 | 80.96 |
| H2 | 0.37 | 2.90 |
| C3H6 | 47.2 | 17.75 |
| CH4 | 17.21 | 28.80 |
| C6H6 | 15.20 | 11.59 |
| C4H6 | 0 | 0.00 |
| C2H2 | 0 | 0.00 |
| C3H8 | 13.91 | 5.80 |
| C4H8 | 6.2 | 11.59 |
| C4H10 | 00 | 13.95 |
| C7H8 | 2.56 | 1.45 |
| Residue | 3.93 | 5.87 |
| Parameter | LDPE | Product | C2H4 | C3H6 | S5 | S6 | S7 | S8 | S9 |
|---|---|---|---|---|---|---|---|---|---|
| Temperature (°C) | 25.00 | 500.00 | −58.44 | 10.51 | 60.00 | −55.00 | −119.5 | −44.14 | 52.55 |
| Pressure (bar) | 1.00 | 1.00 | 8.00 | 8.00 | 8.00 | 8.00 | 1.00 | 8.00 | 8.00 |
| Molar Vapor Fraction | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.79 | 1.00 | 0.00 | 0.00 |
| Mass Flows (t/h) | 187.00 | 187.00 | 76.67 | 17.77 | 181.13 | 181.13 | 33.52 | 8.02 | 44.69 |
| Mass fraction | |||||||||
| C2H6 | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.32 | 0.00 |
| C2H4 | 0.00 | 0.45 | 1.00 | 0.00 | 0.45 | 0.45 | 0.15 | 0.38 | 0.00 |
| H2 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.02 | 0.08 | 0.00 | 0.00 |
| C3H6 | 0.00 | 0.10 | 0.00 | 1.00 | 0.10 | 0.10 | 0.00 | 0.27 | 0.08 |
| CH4 | 0.00 | 0.16 | 0.00 | 0.00 | 0.16 | 0.16 | 0.77 | 0.00 | 0.00 |
| C6H6 | 0.00 | 0.06 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | 0.00 | 0.24 |
| C4H6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C2H2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C3H8 | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.03 | 0.11 |
| C4H8 | 0.00 | 0.06 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | 0.00 | 0.24 |
| C4H10 | 0.00 | 0.08 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.29 |
| C7H8 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.03 |
| LDPE | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Parameter | LDPE | Product | C2H4 | C3H6 | S5 | S6 | S7 | S8 | S9 |
|---|---|---|---|---|---|---|---|---|---|
| Temperature (°C) | 25 | 600 | −58.47 | 10.34 | 50 | −55 | 25 | −40.04 | 37.62 |
| Pressure (bar) | 1 | 1 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Molar Vapor Fraction | 0 | 1 | 1 | 1 | 1 | 0.37 | 1 | 0 | 0 |
| Mass Flows (t/h) | 187.00 | 187.00 | 40.57 | 43.93 | 183.05 | 183.05 | 19.87 | 38.82 | 39.86 |
| Mass fraction | |||||||||
| C2H6 | 0.00 | 0.20 | 0.00 | 0.00 | 0.20 | 0.20 | 0.00 | 0.92 | 0.00 |
| C2H4 | 0.00 | 0.24 | 1.00 | 0.00 | 0.24 | 0.24 | 0.11 | 0.05 | 0.00 |
| H2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
| C3H6 | 0.00 | 0.26 | 0.00 | 1.00 | 0.26 | 0.26 | 0.00 | 0.03 | 0.06 |
| CH4 | 0.00 | 0.09 | 0.00 | 0.00 | 0.09 | 0.09 | 0.86 | 0.00 | 0.00 |
| C6H6 | 0.00 | 0.08 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.38 |
| C4H6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C2H2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C3H8 | 0.00 | 0.08 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.34 |
| C4H8 | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.16 |
| C4H10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C7H8 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.06 |
| LDPE | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Parameter | Value | Parameter | Value |
|---|---|---|---|
| Contingency | 20% | Working Capital | 5%/yr |
| Tax Rate | 21% | Plant Overhead | 50% |
| Desired Internal Rate of Return | 10% | G and A Expense | 8%/yr |
| Salvage Value | 20% | O and M Escalation | 3%/yr |
| Project Capital Escalation | 5%/yr | No. of Period Analysis | 20 yrs |
| Product and Raw Material Escalation | 3%/yr | Operating hours per year | 8000 |
| Utility Escalation | 3%/yr | Length of startup period | 20 weeks |
| Classification | Description | Value |
|---|---|---|
| Raw Material | Ethane (USD/t) | 90 |
| Polyethylene (USD/t) | 0 | |
| Steam (USD/t) | 0 | |
| Product | Ethylene (USD/t) | 780 |
| Propylene (USD/t) | 850 | |
| Benzene (USD/t) | 950 | |
| Toluene (USD/t) | 1030 | |
| Utility | Electricity (USD/kWh) | 0.06 |
| Natural Gas (USD/GJ) | 3.59 |
| Parameter | MW-Catalyzed Process | Thermally Catalyzed Process | Conventional Ethane Steam Cracking Process |
|---|---|---|---|
| Reactor | 109.95 | 200 | 149.96 |
| Extruder | 29.37 | 0.00 | 0.00 |
| Heat Exchanger | 4.55 | 3.34 | 6.68 |
| Compressor | 44.95 | 29.03 | 8.26 |
| Distillation Column | 41.18 | 47.77 | 31.00 |
| Separator | 1.97 | 2.02 | 0.00 |
| EPC, Contingency, Others | 101.87 | 116.13 | 109.63 |
| Total Project CAPEX Cost | 333.84 | 398.29 | 357.38 |
| Parameter | Microwave-Catalyzed Process | Thermally Catalyzed Process | Conventional Ethane Steam Cracking Process |
|---|---|---|---|
| Raw Material and Catalyst | 0.91 | 0.91 | 62.62 |
| Operating Charges | 0.19 | 0.19 | 0.23 |
| Utility | 175.81 | 192.92 | 111.73 |
| O and M | 2.57 | 2.04 | 0.86 |
| Plant Overhead | 1.29 | 1.02 | 0.86 |
| G and A Cost | 14.39 | 15.7 | 14.49 |
| Total Project OPEX Cost | 195.16 | 212.78 | 195.65 |
| Parameter | Ethylene | Propylene | BTX |
|---|---|---|---|
| MW-LDPE | 76.67 | 17.77 | 13.04 |
| Thermal-LDPE | 40.57 | 43.93 | 17.76 |
| Ethane | 76.63 | 8.25 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Haque, M.E.; Luo, C.; Hu, J.; Palanki, S. Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic. Processes 2026, 14, 333. https://doi.org/10.3390/pr14020333
Wang X, Haque ME, Luo C, Hu J, Palanki S. Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic. Processes. 2026; 14(2):333. https://doi.org/10.3390/pr14020333
Chicago/Turabian StyleWang, Xiaoyan, Md. Emdadul Haque, Chunlin Luo, Jianli Hu, and Srinivas Palanki. 2026. "Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic" Processes 14, no. 2: 333. https://doi.org/10.3390/pr14020333
APA StyleWang, X., Haque, M. E., Luo, C., Hu, J., & Palanki, S. (2026). Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic. Processes, 14(2), 333. https://doi.org/10.3390/pr14020333

