Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (194)

Search Parameters:
Keywords = l-phenylalanine ammonia-lyase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 - 4 Aug 2025
Viewed by 137
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 238
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1196 KiB  
Article
Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts
by Zhangqin Ye, Jing Zhang, Xin Tian, Zhengfei Yang, Jiangyu Zhu and Yongqi Yin
Plants 2025, 14(14), 2201; https://doi.org/10.3390/plants14142201 - 16 Jul 2025
Viewed by 323
Abstract
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which [...] Read more.
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which are regulated by developmental cues. Research has established that methyl jasmonate (MeJA) application enhances secondary metabolite production in plant systems. This investigation examined MeJA’s influence on flavonoid accumulation and physiological responses in finger millet sprouts to elucidate the molecular mechanisms underlying MeJA-mediated flavonoid accumulation. The findings revealed that MeJA treatment significantly suppressed sprout elongation while enhancing the biosynthesis of total flavonoids and phenolic compounds. MeJA treatment triggered oxidative stress responses, with hydrogen peroxide and superoxide anion concentrations increasing 1.84-fold and 1.70-fold compared to control levels at 4 days post-germination. Furthermore, the antioxidant defense mechanisms in finger millet were upregulated following treatment, resulting in significant enhancement of catalase and peroxidase enzymatic activities and corresponding transcript abundance. MeJA application augmented the activities of key phenylpropanoid pathway enzymes—phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H)—and upregulated their respective gene expression. At 4 days post-germination, EcPAL and EcC4H transcript levels were elevated 3.67-fold and 2.61-fold, respectively, compared to untreated controls. MeJA treatment significantly induced the expression of downstream structural genes and transcriptional regulators. This study provides a deeper understanding of the mechanism of flavonoid accumulation in foxtail millet induced by MeJA, and lays a foundation for exogenous conditions to promote flavonoid biosynthesis in plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 352
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

20 pages, 2519 KiB  
Article
Slightly Acidic Electrolyzed Water Improves the Postharvest Quality of Litchi Fruit by Regulating the Phenylpropane Pathway
by Xuanjing Jiang, Xiangzhi Lin, Yuzhao Lin, Yazhen Chen, Yihui Chen and Hongbin Chen
Horticulturae 2025, 11(7), 751; https://doi.org/10.3390/horticulturae11070751 - 1 Jul 2025
Viewed by 351
Abstract
The market value of litchi fruit is declining quickly due to its susceptibility to disease and rapid pericarp browning. Slightly acidic electrolyzed water (SAEW) treatment is recognized as a safe disinfection technology that not only preserves the quality of postharvest produce, but also [...] Read more.
The market value of litchi fruit is declining quickly due to its susceptibility to disease and rapid pericarp browning. Slightly acidic electrolyzed water (SAEW) treatment is recognized as a safe disinfection technology that not only preserves the quality of postharvest produce, but also enhances disease resistance. This study assessed the efficacy of SAEW in preserving litchi fruit and boosting its resistance to disease. Litchi fruit underwent treatment with SAEW at various available chlorine concentrations (ACC) (10, 25, 50, and 75 mg/L) and subsequently stored at 25 °C for a duration of six days. The results revealed that SAEW with an ACC of 25 mg/L markedly improved the postharvest quality of litchi fruits, reduced disease incidence, and enhanced the appearance of the pericarp and nutrient levels in the arils. Additionally, this treatment enhanced the levels of disease resistance-related compounds, including lignin, flavonoids, and total phenolics, in the pericarp of litchis during the later storage stages (p < 0.05). Furthermore, in the final three days of storage, there were also noticeable increases (p < 0.01) in the activities of pericarp disease resistance enzymes (DREs), such as phenylalanine ammonialyase, cinnamate-4-hydroxylase, 4-coumarate CoA ligase, cinnamyl alcohol dehydrogenase, peroxidase, polyphenol oxidase, chitinase, and β-1,3-glucanase. Based on these results, it was concluded that SAEW triggered DRE activities and increased the accumulation of disease resistance-related compounds by regulating the phenylpropane pathway to suppress disease development, and elevated the storage quality of harvested litchi fruit. Consequently, SAEW has proven to be an effective and safe method for enhancing the storability of litchi fruit. Full article
Show Figures

Figure 1

23 pages, 3020 KiB  
Article
Effects of Monoterpene-Based Biostimulants on Chickpea (Cicer arietinum L.) Plants: Functional and Molecular Insights
by Lamyae Et-Tazy, Riccardo Fedeli, Oussama Khibech, Abdeslam Lamiri, Allal Challioui and Stefano Loppi
Biology 2025, 14(6), 657; https://doi.org/10.3390/biology14060657 - 5 Jun 2025
Cited by 1 | Viewed by 853
Abstract
This study evaluated the physiological and biochemical responses of chickpea (Cicer arietinum L.) to foliar application of cineole, carvacrol, and thymol at concentrations of 500 and 1000 ppm. Carvacrol at 1000 ppm significantly enhanced fresh biomass (+15.4%) and aerial biomass (+46.2%), whereas [...] Read more.
This study evaluated the physiological and biochemical responses of chickpea (Cicer arietinum L.) to foliar application of cineole, carvacrol, and thymol at concentrations of 500 and 1000 ppm. Carvacrol at 1000 ppm significantly enhanced fresh biomass (+15.4%) and aerial biomass (+46.2%), whereas thymol significantly reduced plant height (−20.2%) and overall biomass, yet notably increased chlorophyll content (+23.3%) and vitamin C levels (+41.4%) at the same concentration. Cineole significantly improved antioxidant capacity by increasing total phenolic content (+15.5% at 1000 ppm) and total flavonoid content (+19.1% at 500 ppm), but simultaneously decreased soluble protein synthesis and chlorophyll content (−39% at 500 ppm). Mineral analysis showed notable increases in calcium content following treatment with cineole (+30.5% at 1000 ppm) and carvacrol (+32% at 500 ppm), while thymol at 1000 ppm significantly reduced phosphorus, potassium, manganese, iron, copper, and zinc accumulation. Molecular docking and dynamic simulations revealed strong interactions of thymol and carvacrol with essential enzymes, specifically ascorbate peroxidase and phenylalanine ammonia-lyase, which are involved in antioxidant and phenolic metabolism pathways. These molecular interactions suggest potential contributions of thymol and carvacrol to plant stress resilience mechanisms, although further experimental validation is needed to confirm their roles in vivo. These findings emphasize the importance of optimizing monoterpene concentrations, indicating that carefully calibrated treatments could effectively enhance chickpea growth, nutritional quality, and stress tolerance within sustainable agricultural practices. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 2070 KiB  
Article
Type III Secretion System-Mediated Induction of Systemic Resistance by Pseudomonas marginalis ORh26 Enhances Sugar Beet Defence Against Pseudomonas syringae pv. aptata
by Marija Nedeljković, Aleksandra Mesaroš, Marija Radosavljević, Nikola Đorđević, Slaviša Stanković, Jelena Lozo and Iva Atanasković
Plants 2025, 14(11), 1621; https://doi.org/10.3390/plants14111621 - 26 May 2025
Viewed by 703
Abstract
The increasing demand for sustainable agricultural practises has sparked interest in microbes that promote plant immunity. Among these, Pseudomonas species have shown the potential to enhance induced systemic resistance (ISR) in crops. While type III secretion systems (T3SSs) in pathogenic bacteria have been [...] Read more.
The increasing demand for sustainable agricultural practises has sparked interest in microbes that promote plant immunity. Among these, Pseudomonas species have shown the potential to enhance induced systemic resistance (ISR) in crops. While type III secretion systems (T3SSs) in pathogenic bacteria have been widely studied for their role in local immunosuppression, their function in beneficial Pseudomonas species and on a systemic level remains largely unexplored. We show for the first time that the T3SS of a plant-beneficial Pseudomonas strain induces ISR by root colonisation. T3SS-positive Pseudomonas isolates were applied to the roots of sugar beet (Beta vulgaris L.) and systemic effects on plant immunity were assessed in leaves exposed to the pathogen P. syringae pv. aptata P21. Our results show that P. marginalis ORh26 reduced lesion size and pathogen proliferation in sugar beet leaves. ORh26 activated peroxidase and phenylalanine ammonia-lyase and upregulated NPR1 and MYC2 defence genes. Remarkably, a T3SS-deficient mutant of ORh26 failed to induce these effects. Genomic analysis identified T3SS structural genes and effector proteins, including a pectate lyase and an effector of the HopJ family, that may mediate these responses. This study reveals a previously uncharacterised role of T3SS in the induction of ISR and improves our understanding of plant–microbe interactions. Full article
Show Figures

Graphical abstract

17 pages, 2229 KiB  
Article
Effect of Ethephon on Sensitivity Difference of Lodging Resistance in Different Maize Inbred Lines
by Siyao Liu, Feng Guo, Mengzhu Chai, Shiwei Gu, Dacheng Wang, Zihao Wang, Yidan Chen, Tenglong Xie, Deguang Yang and Qian Zhang
Agronomy 2025, 15(5), 1248; https://doi.org/10.3390/agronomy15051248 - 21 May 2025
Viewed by 443
Abstract
Lodging imposes substantial constraints on maize yield potential and agronomic efficiency, critically undermining productivity and resource optimization in cultivation systems. This study aimed to elucidate the mechanism whereby ethephon enhances lodging resistance and analyze the sensitivity differences to ethephon among distinct maize inbred [...] Read more.
Lodging imposes substantial constraints on maize yield potential and agronomic efficiency, critically undermining productivity and resource optimization in cultivation systems. This study aimed to elucidate the mechanism whereby ethephon enhances lodging resistance and analyze the sensitivity differences to ethephon among distinct maize inbred lines. Through exogenous application of ethephon (200 and 400 mg/L, S1 and S2 treatments) to four classic maize inbred lines (Zheng58, Chang7-2, PH6WC, and PH4CV), we systematically evaluated its effects on plant morphology, stalk biomechanical properties, and lignin biosynthesis. Results demonstrated that ethephon optimized plant morphology through reductions in plant height, ear height, leaf area, leaf angle, and internode length. Significant augmentations in stalk bending resistance (a maximum increase of 52.61% in PH4CV) and puncture strength (most pronounced in Zheng58) were mechanistically associated with increased lignin content and enhanced activity of key biosynthetic enzymes [cinnamyl alcohol dehydrogenase (CAD), phenylalanine ammonia-lyase (PAL), and 4-coumarate-CoA ligase (4CL)], with PH6WC exhibiting the most robust enzymatic response. These findings underscored genotype-specific regulatory effects of ethephon, bridging the knowledge gap regarding its molecular–physiological interplay with maize genotypes. The study provides critical insights for precision breeding and optimization strategies employing plant growth regulators to improve maize lodging resistance. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 3372 KiB  
Article
Hydro-Electro Hybrid Priming Synchronizes Cell Wall Remodeling to Accelerate Carrot (Daucus carota L.) Seed Germination
by Yufan Sun, Yilu Yin, Guobin Wang, Xin Han, Yubin Lan, Danfeng Huang and Shuo Zhao
Agronomy 2025, 15(5), 1147; https://doi.org/10.3390/agronomy15051147 - 7 May 2025
Viewed by 522
Abstract
The novel hydro-electro hybrid priming (HEHP) technique, which synergistically combines controlled hydration and electrostatic field application, represents an innovative chemical-free approach to improve seed germination synchrony. However, the regulatory mechanism of HEHP on cell wall remodeling during post-imbibition remains unclear. Here, we demonstrate [...] Read more.
The novel hydro-electro hybrid priming (HEHP) technique, which synergistically combines controlled hydration and electrostatic field application, represents an innovative chemical-free approach to improve seed germination synchrony. However, the regulatory mechanism of HEHP on cell wall remodeling during post-imbibition remains unclear. Here, we demonstrate that HEHP accelerates carrot (Daucus carota L.) seed germination by synchronizing cell wall hydrolysis and synthesis pathways. Comparative transcriptomics revealed 4591 differentially expressed genes (DEGs) between HEHP-treated and untreated seeds, with significant enrichment in cell wall organization (GO terms) and phenylpropanoid biosynthesis (KEGG pathway). HEHP significantly induced the expression of expansin (EXP), hydrolases (xyloglucan endotransglucosylase (XET), pectinesterase (PE), and phenylalanine ammonia lyase (PAE)), and synthases (cellulose synthase (CesA)), reducing endosperm rupture force considerably at S20 compared to hydropriming (HYD). Enzymatic assays confirmed earlier activity peaks for XET and PE in HEHP, correlating with the sustained expression of key genes. Notably, HEHP pre-activated germination-related metabolism, evidenced by fewer post-imbibition DEGs, and synchronized lignin deposition via transient phenylalanine ammonia lyase (PAL) and 4-coumarate/CoA ligase (4CL) activation. These synergies enabled faster radicle emergence than HYD. Our findings reveal that HEHP optimizes cell wall loosening–reinforcement dynamics through transcriptional priming, offering a tailored solution for mechanized sowing in Apiaceae crops. Full article
(This article belongs to the Special Issue Modern Seed Technologies for Developing Dynamic Agriculture)
Show Figures

Figure 1

18 pages, 10646 KiB  
Article
Overexpression of the Glycyrrhiza uralensis Phenylalanine Ammonia-Lyase Gene GuPAL1 Promotes Flavonoid Accumulation in Arabidopsis thaliana
by Xifeng Chen, Chao Jiang, Mengqian Long, Xiangxiang Hu, Shouhao Xu, Haotong Huo, Ruixin Shi, Qing Xu, Shuangquan Xie, Zihan Li, Haitao Shen, Fei Wang, Guanghui Xiao, Quanliang Xie, Shandang Shi and Hongbin Li
Int. J. Mol. Sci. 2025, 26(9), 4073; https://doi.org/10.3390/ijms26094073 - 25 Apr 2025
Cited by 1 | Viewed by 531
Abstract
Phenylalanine ammonia-lyase (PAL) serves as a pivotal regulatory enzyme at the initial branching point of the phenylpropanoid pathway, exerting a profound influence on downstream reactions essential for flavonoid biosynthesis. Glycyrrhiza species are important medicinal plants and provide plenty of roots as raw materials [...] Read more.
Phenylalanine ammonia-lyase (PAL) serves as a pivotal regulatory enzyme at the initial branching point of the phenylpropanoid pathway, exerting a profound influence on downstream reactions essential for flavonoid biosynthesis. Glycyrrhiza species are important medicinal plants and provide plenty of roots as raw materials for further utilization, with the components of glycyrrhizic acid and flavonoids as two major active ingredients. However, functional studies of the PAL genes in the medicinal Glycyrrhiza species remain limited. In this study, we identified seven PAL family genes from each of the three medicinal Glycyrrhiza species, Glycyrrhiza uralensis Fisch., G. inflata Bat., and G. glabra L., and comprehensively analyzed their phylogenetic relationships, gene structures, motif distributions, and promoter cis-elements. Gene expression profiling revealed that PAL1 is highly expressed in roots and significantly induced by drought and salt stresses. We further selected G. uralensis GuPAL1 for functional investigation in Arabidopsis. GuPAL1-overexpression lines (GuPAL1-OE) demonstrated significant enhancements in plant growth, flavonoid accumulation, and hormone levels in Arabidopsis thaliana. Conversely, the Atpal1 mutant plants displayed marked reductions in these traits, while the transgenic lines of GuPAL1-OE in the Atpal1 mutant (Atpal1/GuPAL1) recovered to the normal phenotypes similar to wild type (WT). Transcriptomic analysis of the GuPAL1-OE plants compared to WT demonstrated that several key genes in the phenylpropanoid and flavonoid metabolic pathways (4CL, CCoAOMT, CAD, POD, F3H, FLS) were significantly enriched, suggesting that GuPAL1 may promote plant growth and flavonoid biosynthesis by regulating diverse cellular functions, metabolic pathways, and associated gene expressions. These findings highlight the functional importance of GuPAL1 in flavonoid biosynthesis, and provide valuable insights into the molecular mechanisms underlying the medicinal properties of Glycyrrhiza species. Full article
Show Figures

Figure 1

22 pages, 9942 KiB  
Article
Exogenous Melatonin Application Enhances Pepper (Capsicum annuum L.) Fruit Quality via Activation of the Phenylpropanoid Metabolism
by Feibiao Gao, Kangning Han, Weilan Ma, Jing Zhang and Jianming Xie
Foods 2025, 14(7), 1247; https://doi.org/10.3390/foods14071247 - 3 Apr 2025
Cited by 3 | Viewed by 613
Abstract
Melatonin (MT) is an elicitor that stimulates phenolic compounds biosynthesis and accumulation in fruits and vegetables. However, its role in regulating phenolic compounds and the phenylpropane metabolism during pepper ripening is unclear. To investigate how exogenous MT regulates phenolic compounds biosynthesis during pepper [...] Read more.
Melatonin (MT) is an elicitor that stimulates phenolic compounds biosynthesis and accumulation in fruits and vegetables. However, its role in regulating phenolic compounds and the phenylpropane metabolism during pepper ripening is unclear. To investigate how exogenous MT regulates phenolic compounds biosynthesis during pepper ripening, pepper plant surfaces were sprayed with different MT concentrations (0 and 100 µmol·L−1) 10 days after anthesis. MT treatment improved pepper fruits quality. In particular, total phenolics and flavonoids compounds levels were elevated, indicating that MT affected phenolic compounds metabolism. Furthermore, metabolomics identified 15 substances exhibiting high fold-change values after MT treatment, including chlorogenic acid, gallic acid, ferulic acid, caffeic acid, cynarin, p-coumaric acid, cinnamic acid, gentianic acid, benzoic acid, sinapic acid, p-hydroxybenzoic acid, protocatechuic acid, rutin, quercetin, and kaempferol. Shikimate dehydrogenase, phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumarate-Coa ligase, chalcone synthase, and chalcone isomerase activities were also evaluated. MT upregulated the expression of genes involved in phenolic compounds synthesis during pepper ripening and that of corresponding genes involved in the endogenous MT anabolic pathway, promoting endogenous. The polyphenolics and carbohydrates are indicators of the botanical and geographical origin of Serbian autochthonous clones of red spice MT synthesis throughout pepper ripening. In summary, exogenous MT accelerates phenolic compounds synthesis in pepper fruits by activating phenylpropane metabolism and modulating endogenous hormone signaling networks. This is expected to offer a revolutionary strategy to reinforce pepper plants resistance and quality. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 2427 KiB  
Article
The Status of Esca Disease and the Disinfection of the Scion Prior to Grafting Affect the Phenolic Composition and Phenylpropanoid-Related Enzymes in the Callus of Vine Hetero-Grafts
by Saša Krošelj, Maja Mikulic-Petkovsek, Matevž Likar, Andreja Škvarč, Heidi Halbwirth, Katerina Biniari and Denis Rusjan
Horticulturae 2025, 11(4), 371; https://doi.org/10.3390/horticulturae11040371 - 30 Mar 2025
Viewed by 458
Abstract
Vegetative propagation of European grapevine (Vitis vinifera L.) requires grafting onto American rootstocks due to susceptibility to phylloxera. However, the grafting yield is compromised by the presence of grapevine trunk diseases (GTDs) such as Esca. This study investigates the phenolic response and [...] Read more.
Vegetative propagation of European grapevine (Vitis vinifera L.) requires grafting onto American rootstocks due to susceptibility to phylloxera. However, the grafting yield is compromised by the presence of grapevine trunk diseases (GTDs) such as Esca. This study investigates the phenolic response and enzyme activity in grapevine callus from grafts obtained by scions with different GTD status (healthy, asymptomatic, and symptomatic) treated with different disinfection methods (Beltanol, Beltanol in combination with thermotherapy, Serenade® ASO, Remedier, BioAction ES, and sodium bicarbonate). Twenty-three phenolic compounds were identified in the graft callus, with flavanols, stilbenes, and condensed tannins predominating. Scion disinfection with BioAction ES led to a significant increase in total phenolic content in the callus, especially in symptomatic scions, for on average 510.3 µg/g fresh weight (FW) higher total phenolic content, compared to grafts where scions were treated with Beltanol. Phenolics such as epicatechin gallate, procyanidin derivatives, and resveratrol hexoside were significantly increased, indicating a strong elicitor effect of BioAction ES. Enzymatic activity analysis showed that the disinfection methods affected the activity of key enzymes involved in the phenylpropanoid metabolic pathway. In particular, BioAction ES significantly increased phenylalanine ammonia lyase (PAL) activity in callus from grafts with healthy scions by 3.4-fold and flavanone 3β-hydroxylase (FHT) activity in callus from grafts with infected scions by 4.9-fold (asymptomatic) and 6.9-fold (symptomatic) compared to callus from grafts with Beltanol-treated scions. The results highlight the potential of environmentally friendly disinfection methods, particularly BioAction ES, in influencing phenolic content and enzymatic activity in graft callus, potentially affecting the success of grapevine grafting. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Graphical abstract

22 pages, 3962 KiB  
Article
Potential of Three Plant Extracts in Suppressing Potato Dry Rot Caused by Fusarium incarnatum Under Normal and Cold Storage
by Asmaa El-Nagar, Yasser S. A. Mazrou, Abdelnaser A. Elzaawely, Abeer H. Makhlouf, Mohamed Hassan, Hassan M. El-Zahaby and Tran Dang Xuan
Agronomy 2025, 15(3), 593; https://doi.org/10.3390/agronomy15030593 - 27 Feb 2025
Viewed by 839
Abstract
The potato (Solanum tuberosum L.) is one of the most widely consumed vegetable crops worldwide. During storage, potato tubers are vulnerable to various phytopathogenic fungi. Dry rot, caused by Fusarium incarnatum, is a common and serious disease that affects potato tubers, [...] Read more.
The potato (Solanum tuberosum L.) is one of the most widely consumed vegetable crops worldwide. During storage, potato tubers are vulnerable to various phytopathogenic fungi. Dry rot, caused by Fusarium incarnatum, is a common and serious disease that affects potato tubers, leading to partial or complete decay during storage. The current study assessed the effectiveness of three ethanolic extracts including cinnamon bark (CIB), clove buds (CLB), and avocado seeds (AVS) in controlling potato dry rot under both normal and cold storage conditions. In vitro bioassay demonstrated that all tested extracts exhibited a dose-dependent fungistatic effect against F. incarnatum, with inhibition percentages of 83.33% for CIB, 72.22% for CLB, and 67.77% for AVS at the highest tested concentration. Moreover, dipping potato tubers in the tested extracts markedly reduced the severity of dry rot disease under both normal and cold storage conditions. Additionally, treated tubers showed increased activities of defense-related enzymes, including catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. Furthermore, there were higher levels of total soluble phenolics and flavonoids, along with an increase in lignin content and a reduction in the weight loss of stored potato tubers compared to the control group. Moreover, the extracts mitigated infection stress and lowered malondialdehyde levels in the treated potato tubers. These extracts show potential as environmentally friendly alternatives to chemical fungicides for managing potato dry rot caused by F. incarnatum under normal and cold storage. Full article
(This article belongs to the Special Issue Extraction and Analysis of Bioactive Compounds in Crops—2nd Edition)
Show Figures

Figure 1

17 pages, 3458 KiB  
Article
Ursolic Acid Induces Multifaceted Defense Responses Against Postharvest Blue Mold Rot in Apple Fruit
by Chang Shu, Wenxiao Jiao, Kuanbo Cui, Jiankang Cao and Weibo Jiang
Foods 2025, 14(5), 761; https://doi.org/10.3390/foods14050761 - 23 Feb 2025
Viewed by 759
Abstract
The disease resistance and defense mechanisms induced by ursolic acid (UA) in apple fruit were studied in this paper. UA was directly mixed with potato dextrose agar and broth media to assay its antifungal activity in vitro. The results showed that UA exerted [...] Read more.
The disease resistance and defense mechanisms induced by ursolic acid (UA) in apple fruit were studied in this paper. UA was directly mixed with potato dextrose agar and broth media to assay its antifungal activity in vitro. The results showed that UA exerted inherent antifungal activity and directly inhibited the in vitro growth and spore germination of Penicillium expansum. Its half-maximal inhibitory concentration for hyphal growth was 175.6 mg L−1. Apple fruit were immersed in UA solution, followed by inoculation with P. expansum, to measure their disease response. The results demonstrated that UA induced significant disease resistance in apple fruit and that its mechanisms are multifaceted and associated with defensive and antioxidative enzymes and the phenylpropanoid pathway. Chitinase, β-1,3-glucanase, peroxidase, and polyphenol oxidase were activated and maintained at relatively high levels. The activities of enzymes and their metabolites in the phenylpropanoid pathway, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase were significantly increased; accordingly, total phenolics, flavonoid, and lignin contents were significantly increased. The activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase were enhanced upon UA treatment, while catalase activity was suppressed, which regulates hydrogen peroxide accumulation to defend against pathogens. These results suggest that UA induces defense responses against postharvest blue mold rot in apple fruit and that it may be a promising elicitor to induce fruit disease resistance to control postharvest decay. Full article
(This article belongs to the Special Issue Postharvest Technologies and Applications in Food and Its Products)
Show Figures

Figure 1

Back to TopTop