Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of AMF Inoculum
2.2. Plant Culture and Treatments
2.3. Experimental Design
2.4. Variable Measurement
2.5. Statistical Analysis
3. Results
3.1. Changes in Mycorrhizal Status
3.2. Changes in Plant Growth Performance
3.3. Changes in Leaf Photosynthetic Physiology
3.4. Changes in Leaf Total Flavonoid Content
3.5. Changes in the Antioxidant Capacity of Leaf Total Flavonoid Compounds
3.6. Changes in Leaf ROS and MDA Levels
3.7. Changes in Key Flavonoid Biosynthesis Enzyme Activities in Leaves
3.8. Changes in Expression Levels of Key Flavonoid Biosynthesis Enzyme Genes in Leaves
3.9. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaffai, R.; Ganesan, M.; Cherif, A. Global drought threat: Impact on food security. In Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms; Chaffai, R., Ganesan, M., Cherif, A., Eds.; Springer Nature: Singapore, 2024; pp. 61–82. [Google Scholar]
- Rehaman, A.; Khan, S.; Rawat, B.; Gaira, K.S.; Asgher, M.; Semwal, P.; Tripathi, V. Mechanistic insights into plant drought tolerance: A multi-level perspective. J. Crop Health 2025, 77, 53. [Google Scholar] [CrossRef]
- Cao, J.L.; He, W.X.; Zou, Y.N.; Wu, Q.S. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiol. 2023, 43, 452–466. [Google Scholar] [CrossRef]
- Zheng, F.L.; Tan, Z.P.; Zhang, Y.; Xu, X.H.; Hashem, A.; Debnath, A.; Wu, Q.S. Enhancing walnut growth and drought tolerance through Serendipita indica: Focus on mitochondrial antioxidant defense. Plant Growth Regul. 2024, 104, 1697–1706. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, M.A.; Kuca, K.; Alqahtani, M.D.; Muthuramalingam, P.; Wu, Q.S. Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi. Plant Cell Rep. 2024, 43, 123. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Ma, D.; Guo, Y.; Ali, I.; Lin, J.; Xu, Y.; Yang, M. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. Plant Physiol. Biochem. 2024, 215, 108960. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Ma, W.Y.; Qin, Q.Y.; Zou, Y.N.; Kuča, K.; Giri, B.; Wu, Q.S.; Hashem, A.; Al-Arjani, A.B.F.; Almutairi, K.F.; Abd_Allah, E.F.; et al. Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression. Front. Plant Sci. 2022, 13, 1089420. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, D.P.; Salwan, R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb. Pathog. 2024, 193, 106772. [Google Scholar] [CrossRef]
- Cheng, S.; Zou, Y.N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front. Microbiol. 2021, 12, 809473. [Google Scholar] [CrossRef]
- Larose, G.; Chênevert, R.; Moutoglis, P.; Gagné, S.; Piché, Y.; Vierheilig, H. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J. Plant Physiol. 2002, 159, 1329–1339. [Google Scholar] [CrossRef]
- Liu, X.Q.; Cheng, S.; Aroca, R.; Zou, Y.N.; Wu, Q.S. Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environ. Exp. Bot. 2022, 204, 105089. [Google Scholar] [CrossRef]
- Engel, R.; Szabó, K.; Abrankó, L.; Rendes, K.; Füzy, A.; Takács, T. Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. J. Agric. Food Chem. 2016, 64, 3733–3742. [Google Scholar] [CrossRef]
- da Silva, F.A.; Sampaio, E.V.S.B.; da Silva, F.S.B.; Maia, L.C. Use of arbuscular mycorrhizal fungi and phosphorus for increase in the concentration of compounds with antioxidant activity in Libidibia ferrea. Res. Soc. Dev. 2021, 10, e13010413827. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Zhu, H.H.; Zhao, H.Q.; Yao, Q. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J. Plant Physiol. 2013, 170, 74–79. [Google Scholar] [CrossRef]
- Mohammadi, E.; Fattahi, M.; Barin, M.; Ashrafi-Saeidlou, S. Arbuscular mycorrhiza and vermicompost alleviate drought stress and enhance yield, total flavonoid concentration, rutin content, and antioxidant activity of buckwheat (Fagopyrum esculentum Moench). S. Afr. J. Bot. 2022, 148, 588–600. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, X.; Zhao, Y.; Wang, L.; Wang, Y. Adaptive response of flavonoids in Robinia pseudoacacia L. affected by the contamination of cadmium and elevated CO2 to arbuscular mycorrhizal symbiosis. Ecotoxicol. Environ. Saf. 2023, 263, 115379. [Google Scholar] [CrossRef]
- Deng, S.; Pan, L.; Ke, T.; Liang, J.; Zhang, R.; Chen, H.; Tang, M.; Hu, W. Rhizophagus irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress. Mycorrhiza 2024, 34, 317–339. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Bethlenfalvay, G.J.; Ames, R.N. Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J. 1987, 51, 834–837. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Wang, A.G.; Luo, G.H. Quantitative relation between the reaction of hydroxylamin and superoxide anion radicals in plants. Plant Physiol. Commun. 1996, 32, 55–57. [Google Scholar]
- Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem. 2014, 10, 509–514. [Google Scholar] [CrossRef]
- Su, S.G.; Wei, Y.L.; Huang, Y.J.; Huang, Y.Q.; Luo, G.X. Study on the antioxidant and free radical scavenging effects of total flavonoids from Rosa laevigata. J. Guangxi Univ. Chin. Med. 2015, 18, 47–48. [Google Scholar]
- Torey, A.; Sasidharan, S.; Latha, L.Y.; Sudhakaran, S.; Ramanathan, S. Antioxidant activity and total phenolic content of methanol extracts of Ixora coccinea. Pharm. Biol. 2010, 48, 1119–1123. [Google Scholar] [CrossRef]
- Wang, X.K.; Huang, J.L. Principles and Techniques of Plant Physiology and Biochemistry Experiments; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Knoblock, K.H.; Hahlbrock, K. Isoenzymes of p-Coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur. J. Biochem. 1975, 52, 311–320. [Google Scholar] [CrossRef]
- Lamb, C.J.; Rubery, P.H. A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity. Anal. Biochem. 1975, 68, 554–561. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Tang, B.; Man, J.; Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions. Global Chang. Biol. 2024, 30, e17409. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, X.F.; Zou, Y.N.; Srivastava, A.K.; Alqahtani, M.D.; Wu, Q.S. Negotiating soil water deficit in mycorrhizal trifoliate orange plants: A gibberellin pathway. Environ. Exp. Bot. 2024, 219, 105658. [Google Scholar] [CrossRef]
- Yang, C.X.; Chen, S.J.; Hong, X.Y.; Wang, L.Z.; Wu, H.M.; Tang, Y.Y.; Hao, G.F. Plant exudates driven microbiome recruitment and assembly facilitates plant health management. FEMS Microbiol. Rev. 2025, 49, fuaf008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zou, Y.N.; Wu, Q.S. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci. Hortic. 2018, 229, 132–136. [Google Scholar] [CrossRef]
- Püschel, D.; Bitterlich, M.; Rydlová, J.; Jansa, J. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: A Gordian knot of roots and hyphae. Mycorrhiza 2020, 30, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.L.; Wang, Y.J.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Mycorrhizae with Funneliformis mosseae regulate the trehalose synthesis and sucrose cleavage for enhancing drought tolerance in trifoliate orange. Sci. Hortic. 2023, 337, 113486. [Google Scholar] [CrossRef]
- Johnson, N.C.; Wilson, G.W.; Wilson, J.A.; Miller, R.M.; Bowker, M.A. Mycorrhizal phenotypes and the law of the minimum. New Phytol. 2015, 205, 1473–1484. [Google Scholar] [CrossRef]
- Chandrasekaran, M. Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: A meta-analysis. J. Fungi 2022, 8, 660. [Google Scholar] [CrossRef]
- Nair, R.S.; Raju, S.; More, S.J.; Puthur, J.T.; Makasana, J.; Ravi, V. Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (Manihot esculenta) subjected to variable high light conditions. Funct. Plant Biol. 2024, 51, FP24118. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Aroca, R.; Zamarreño, Á.M.; Molina, S.; Andreo-Jiménez, B.; Porcel, R.; García-Mina, J.M.; Ruyter-Spira, C.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 2016, 39, 441–452. [Google Scholar] [CrossRef]
- Liu, S.N.; An, X.J.; Xu, C.Q.; He, D.M.; Li, X.N.; Chen, C.X.; Guo, B.L.; Xu, D.; Huang, J. Integrative transcriptomic-physiological analysis deciphers nitrogen-mediated carbon reallocation balancing growth and flavonoid metabolism in Epimedium pubescens. Front. Plant Sci. 2025, 16, 1539445. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.N.; Wu, Q.S.; Kuča, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23, 50–57. [Google Scholar] [CrossRef]
- Singla, P.; Garg, N. Plant flavonoids: Key players in signaling, establishment, and regulation of rhizobial and mycorrhizal endosymbioses. In Mycorrhiza-Function, Diversity, State of the Art; Varma, A., Prasad, R., Tuteja, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 133–176. [Google Scholar]
- Macabuhay, A.; Arsova, B.; Walker, R.; Johnson, A.; Watt, M.; Roessner, U. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends Plant Sci. 2022, 27, 180–190. [Google Scholar] [CrossRef]
- Aseel, D.G.; Rashad, Y.M.; Hammad, S.M. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato Mosaic Virus. Sci. Rep. 2019, 9, 9692. [Google Scholar] [CrossRef]
- Assalve, G.; Lunetti, P.; Zara, V.; Ferramosca, A. In vivo antioxidant activity of common dietary flavonoids: Insights from the yeast model Saccharomyces cerevisiae. Antioxidants 2024, 13, 1103. [Google Scholar] [CrossRef]
- Huang, S.; Ke, W.; Lu, Q.; Gao, L.; Zhou, X.; Ma, C. Effects of total flavonoids from Taraxacum mongolicum Hand.-Mazz. on fermentation quality, antioxidant status and microbial community of Caragana korshinskii Kom. silage. Fermentation 2023, 9, 949. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Marulanda, A.; Porcel, R.; Barea, J.M.; Azcón, R. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb. Ecol. 2007, 54, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Asghari, B.; Hoseinzadeh, M.; Mafakheri, S. Enhancing drought resistance in Dracocephalum moldavica L. through mycorrhizal fungal inoculation and melatonin foliar application. Sci. Rep. 2025, 15, 10051. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Liu, C.; Gao, Y.; Han, L.; Chu, H. Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress. Front. Microbiol. 2022, 13, 991781. [Google Scholar] [CrossRef]
- Fouad, M.O.; Essahibi, A.; Benhiba, L.; Qaddoury, A. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span. J. Agric. Res. 2014, 12, 763–771. [Google Scholar] [CrossRef]
- Wu, Q.S.; He, J.D.; Srivastava, A.K.; Zou, Y.N.; Kuca, K. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 2019, 39, 1149–1158. [Google Scholar] [CrossRef]
- He, J.D.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 2020, 262, 108745. [Google Scholar] [CrossRef]
- Zhang, F.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 2020, 171, 103962. [Google Scholar] [CrossRef]
- Bücking, H.; Kafle, A. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy 2015, 5, 587–612. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Sun, T.; Zhang, C.; Liu, X.; Li, Y. Genome-wide classification and evolutionary analysis reveal diverged patterns of chalcone isomerase in plants. Biomolecules 2022, 12, 961. [Google Scholar] [CrossRef]
- Li, N.; Chen, W.; Wang, B.; Zhang, C.; Wang, Y.; Li, R.; Yan, Y.K.; He, J. Arbuscular mycorrhizal fungi improve the disease resistance of Lycium barbarum to root rot by activating phenylpropane metabolism. Front. Plant Sci. 2024, 15, 1459651. [Google Scholar] [CrossRef]
- Wei, Z.; Wei, H. Deciphering the intricate hierarchical gene regulatory network: Unraveling multi-level regulation and modifications driving secondary cell wall formation. Hortic. Res. 2024, 11, uhad281. [Google Scholar] [CrossRef]
Variables | AMF | DS | AMF × DS | Variables | AMF | DS | AMF × DS |
---|---|---|---|---|---|---|---|
Root mycorrhizal colonization rate | ** | ** | ** | C4H | ** | NS | NS |
Soil hyphal length | ** | ** | ** | PtPAL1 | NS | ** | ** |
Total flavonoids | * | ** | NS | PtCHI | ** | * | ** |
DPPH scavenging rate of flavonoid extracts | ** | ** | NS | Pt4CL | NS | ** | ** |
•OH scavenging rate of flavonoid extracts | ** | ** | NS | PtC4H | NS | ** | NS |
O2•− scavenging rate of flavonoid extracts | ** | NS | NS | H2O2 | ** | ** | NS |
PAL | ** | NS | * | O2•− | ** | ** | ** |
CHI | ** | ** | NS | MDA | ** | ** | NS |
4CL | ** | NS | NS |
Treatments | Root Total Surface Area (cm2) | Root Average Diameter (mm) | Biomass (g FW/Plant) | ||
---|---|---|---|---|---|
Leaf | Stem | Root | |||
WW + AMF | 21.47 ± 0.60 a | 0.68 ± 0.09 a | 0.51 ± 0.03 a | 0.95 ± 0.10 a | 2.33 ± 0.22 a |
WW-AMF | 19.77 ± 0.72 bc | 0.50 ± 0.07 bc | 0.20 ± 0.02 c | 0.37 ± 0.03 c | 1.18 ± 0.12 c |
DS + AMF | 20.06 ± 0.87 b | 0.64 ± 0.12 ab | 0.43 ± 0.05 b | 0.75 ± 0.12 b | 1.86 ± 0.19 b |
DS-AMF | 18.66 ± 0.51 c | 0.42 ± 0.05 c | 0.16 ± 0.02 c | 0.29 ± 0.03 c | 1.01 ± 0.10 c |
AMF | ** | ** | ** | ** | ** |
DS | * | NS | ** | ** | ** |
AMF × DS | NS | NS | NS | NS | * |
Treatments | Pn (µmol/m2/s) | gs (µmol/m2/s) | Ci (μmol/mol) | Tr (mmol/m2/s) | QY_max | QY_Lss | NPQ_Lss |
---|---|---|---|---|---|---|---|
WW + AMF | 2.50 ± 0.51 a | 0.38 ± 0.04 a | 314.60 ± 32.22 a | 1.37 ± 0.21 a | 0.29 ± 0.07 a | 0.23 ± 0.07 b | 0.21 ± 0.04 c |
WW-AMF | 0.67 ± 0.16 c | 0.18 ± 0.03 c | 273.98 ± 23.92 b | 0.24 ± 0.04 c | 0.17 ± 0.0.5 bc | 0.07 ± 0.03 c | 0.66 ± 0.07 b |
DS + AMF | 1.56 ± 0.30 b | 0.27 ± 0.05 b | 294.30 ± 17.27 ab | 0.91 ± 0.11 b | 0.26 ± 0.145 ab | 0.29 ± 0.06 a | 0.29 ± 0.07 c |
DS-AMF | 0.51 ± 0.19 c | 0.16 ± 0.02 c | 235.55 ± 33.07 c | 0.18 ± 0.02 c | 0.15 ± 0.04 c | 0.05 ± 0.01 c | 0.77 ± 0.10 a |
AMF | ** | ** | ** | ** | ** | ** | ** |
DS | ** | ** | * | ** | NS | NS | ** |
AMF × DS | * | * | NS | * | NS | ** | NS |
Root AMF Colonization Rate | Soil Hyphal Length | DPPH Scavenging Capacity of Flavonoid Extracts | •OH Scavenging Capacity of Flavonoid Extracts | O2•− Scavenging Capacity of Flavonoid Extracts | MDA | O2•− | H2O2 | |
---|---|---|---|---|---|---|---|---|
Leaf total flavonoid levels | 0.80 ** | 0.83 ** | 0.55 * | 0.61 ** | 0.76 ** | −0.72 ** | −0.77 ** | −0.74 ** |
Root colonization rate | 1.00 | 0.98 ** | 0.91 ** | 0.57 * | 0.72 ** | −0.65 ** | −0.86 ** | −0.62 * |
Soil hyphal length | 0.98 ** | 1.00 | 0.84 ** | 0.65 ** | 0.76 ** | −0.72 ** | −0.89 ** | −0.67 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Mu, H.-N. Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought. Horticulturae 2025, 11, 910. https://doi.org/10.3390/horticulturae11080910
Liu L, Mu H-N. Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought. Horticulturae. 2025; 11(8):910. https://doi.org/10.3390/horticulturae11080910
Chicago/Turabian StyleLiu, Lei, and Hong-Na Mu. 2025. "Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought" Horticulturae 11, no. 8: 910. https://doi.org/10.3390/horticulturae11080910
APA StyleLiu, L., & Mu, H.-N. (2025). Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought. Horticulturae, 11(8), 910. https://doi.org/10.3390/horticulturae11080910