Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,392)

Search Parameters:
Keywords = keratinocyte cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 240
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

23 pages, 5771 KiB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 - 1 Aug 2025
Viewed by 133
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 167
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

17 pages, 6016 KiB  
Article
Role of Kindlin-2 in Cutaneous Squamous Carcinoma Cell Migration and Proliferation: Implications for Tumour Progression
by Anamika Dutta, Michele Calder and Lina Dagnino
Int. J. Mol. Sci. 2025, 26(15), 7426; https://doi.org/10.3390/ijms26157426 - 1 Aug 2025
Viewed by 98
Abstract
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal [...] Read more.
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal keratinocytes. However, the role of Kindlin-2 in transformed epidermal keratinocytes has remained virtually unexplored. In this study, we used siRNA approaches to generate Kindlin-2-depleted cells in three isogenic transformed keratinocyte lines. PM1, MET1, and MET4 cells model, respectively, a precancerous lesion, a primary cSCC, and a metastatic lesion of the latter. MET1 cells express both Kindlin-1 and -2. However, Kindlin-1 was not detectable in PM1 and MET4 cells. FERMT2 silencing in PM1 and MET4, but not in MET1 cells, reduced proliferation and the ability to adhere to culture surfaces and spreading. Furthermore, Kindlin-2-depleted PM1 and MET4, but not MET1 cells, exhibited decreased numbers of focal adhesions, as well as an altered F-actin and microtubule cytoskeletal organization. Significantly, FERMT2 silencing reduced the directional migration in all three cell types. These findings are consistent with the concept that, in the absence of other Kindlin orthologues, Kindlin-2 plays a prominent role in the modulation of the proliferation, spreading, focal adhesion assembly, and motility of transformed keratinocytes, as exemplified by PM1 and MET4 cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

28 pages, 13735 KiB  
Article
Immunohistopathological Analysis of Spongiosis Formation in Atopic Dermatitis Compared with Other Skin Diseases
by Ryoji Tanei and Yasuko Hasegawa
Dermatopathology 2025, 12(3), 23; https://doi.org/10.3390/dermatopathology12030023 - 1 Aug 2025
Viewed by 221
Abstract
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis [...] Read more.
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis in AD compared with those in other eczematous dermatitis and inflammatory skin diseases by using immunohistochemical methods. Infiltration of IDECs (CD11c+ cells and/or CD206+ cells) and T-lymphocytes, accompanied by degenerated keratinocytes and aggregated LCs (CD207+ cells), was frequently observed as a common feature of spongiosis in multiple conditions. However, IDECs expressing IgE were identified exclusively in IgE-mediated AD. Aggregation of IDECs was predominantly observed in the spongiosis of adaptive immune-mediated eczematous disorders, such as AD and allergic contact dermatitis. These IDEC aggregations constituted the major components of the epidermal dendritic cell clusters seen in AD and other eczematous or eczematoid dermatoses, and may serve as a useful distinguishing marker from Pautrier collections seen in cutaneous T-cell lymphoma. These findings suggest that IDECs, in cooperation with other immune cells, may play a pivotal role in spongiosis formation in AD and various skin diseases, although the underlying immunopathological mechanisms differ among these conditions. Full article
Show Figures

Figure 1

17 pages, 7013 KiB  
Article
A Novel HDAC6 Inhibitor Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice
by Anqi Cao, Yurong Li, Yanqiao Feng, Xiaoquan Wang, Wenyu Wei, Hongyan Sun and Junmin Quan
Molecules 2025, 30(15), 3224; https://doi.org/10.3390/molecules30153224 - 31 Jul 2025
Viewed by 246
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of psoriasis. These compounds effectively attenuated LPS-induced inflammation in vitro, and the optimal candidate CS1 ameliorated imiquimod-induced psoriasis-like inflammation in mice. Mechanistically, CS1 bound and inhibited the deacetylase HDAC6, subsequently inhibited the AKT, MAPK, and STAT3 pathways, attenuated the hyperproliferation and altered differentiation of keratinocytes and reduced the infiltration of immune cells. These findings suggest that HDAC6 may serve as a potential target for drug development in the treatment of psoriasis. Full article
Show Figures

Graphical abstract

21 pages, 3935 KiB  
Article
The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes
by Silvia Pomella, Lucrezia D’Archivio, Matteo Cassandri, Francesca Antonella Aiello, Ombretta Melaiu, Francesco Marampon, Rossella Rota and Giovanni Barillari
Cancers 2025, 17(15), 2519; https://doi.org/10.3390/cancers17152519 - 30 Jul 2025
Viewed by 144
Abstract
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the [...] Read more.
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the effects that IL-1 beta, IL-6, and IL-8, inflammatory cytokines expressed in specimens from OPMDs and OSCCs, have on NOKs and OSCC cells. Methods: AKT activation and EMT induction were assessed along with cellular invasiveness. Results: IL-1 beta, IL-6, and IL-8 induced EMT in NOKs, ex novo conferring them invasive capacity. The same cytokines exacerbated the constitutive EMT and invasiveness of OSCC cells. Since these phenomena were accompanied by AKT activation, we tested whether they could be influenced by RTV, a long-used anti-HIV drug that was previously found to block the activation of human AKT and exert antitumor effects. We observed that therapeutic amounts of RTV counteract all the above-mentioned tumorigenic activities of ILs. Finally, consistent with the key role that AKT and EMT play in OSCC radio-resistance, RTV increased OSCC cells’ sensitivity to therapeutic doses of ionizing radiation. Conclusions: These preliminary in vitro findings encourage the use of RTV to prevent the malignant evolution of OPMDs, reduce the risk of OSCC metastasis, and improve the outcomes of anti-OSCC radiotherapy. Full article
Show Figures

Figure 1

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 395
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

24 pages, 2611 KiB  
Article
Enhancing the Cosmetic Potential of Aloe Vera Gel by Kombucha-Mediated Fermentation: Phytochemical Analysis and Evaluation of Antioxidant, Anti-Aging and Moisturizing Properties
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Wójciak, Ireneusz Sowa, Dariusz Szczepanek and Zofia Nizioł-Łukaszewska
Molecules 2025, 30(15), 3192; https://doi.org/10.3390/molecules30153192 - 30 Jul 2025
Viewed by 301
Abstract
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria [...] Read more.
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria and yeast, carried out for 10 and 20 days (samples F10 and F20, respectively). The resulting ferments and unfermented gel were subjected to chromatographic analysis to determine the content of biologically active compounds. The permeability and accumulation of these compounds in pig skin were evaluated. In addition, the methods of DPPH, ABTS and the determination of intracellular free radical levels in keratinocytes (HaCaT) and fibroblasts (HDF) cell lines were used to determine antioxidant potential. The results showed a higher content of phenolic acids and flavonoids and better antioxidant properties of the ferments, especially after 20 days of fermentation. Cytotoxicity tests against HaCaT and HDF cells confirmed the absence of toxic effects; moreover, samples at the concentrations tested (mainly 10 and 25 mg/mL) showed cytoprotective effects. The analysis of enzymatic activity (collagenase, elastase and hyaluronidase) by the ELISA technique showed higher levels of inhibition for F10 and F20. The kombucha ferments also exhibited better moisturizing properties and lower levels of transepidermal water loss (TEWL), confirming their cosmetic potential. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

16 pages, 1930 KiB  
Article
A Microfluidic System for Real-Time Monitoring and In Situ Metabolite Detection of Plasma-Enhanced Wound Healing
by Zujie Gao, Jinlong Xu, Hengxin Zhao, Xiaobing Zheng, Zijian Lyu, Qiwei Liu, Hao Chen, Yu Zhang, He-Ping Li and Yongjian Li
Biomolecules 2025, 15(8), 1077; https://doi.org/10.3390/biom15081077 - 25 Jul 2025
Viewed by 286
Abstract
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a [...] Read more.
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a microfluidic experimental system that integrates a CAP treatment module with multiparametric in situ sensing capabilities, along with precise environmental control of temperature, humidity, and CO2 concentration. A stratified microfluidic chip was engineered to co-culture HaCaT keratinocytes and HSF fibroblasts. CAP treatment was applied within this platform, and the dynamic processes of cell migration, proliferation, and multiple metabolic markers were simultaneously monitored. The experimental results show that the system can not only achieve real-time observation in the healing process under plasma intervention, but also find that the healing process is closely related to the concentration of NO2. In addition, the study also found that keratin KRT14, which is thought to be closely related to wound healing, decreased significantly in the process of plasma-induced healing. The platform provides high-resolution experimental tools to elucidate the biological effects of CAP and has the potential for parameter optimization, material evaluation, and personalized therapeutic development to advance plasma research and clinical translational applications. Full article
(This article belongs to the Special Issue Advances in Plasma Bioscience and Medicine: 2nd Edition)
Show Figures

Figure 1

18 pages, 2876 KiB  
Article
The Secretome of Human Deciduous Tooth-Derived Mesenchymal Stem Cells Enhances In Vitro Wound Healing and Modulates Inflammation
by Thais Simião Payão, Vanessa Pellegrini, Joseane Morari, Gisele Mara Silva Gonçalves, Maria Carolina Ximenes de Godoy, Alessandra Gambero, Leonardo O. Reis, Lício Augusto Velloso, Eliana Pereira Araújo and Lívia Bitencourt Pascoal
Pharmaceutics 2025, 17(8), 961; https://doi.org/10.3390/pharmaceutics17080961 - 25 Jul 2025
Viewed by 342
Abstract
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) [...] Read more.
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) in promoting skin wound healing. Methods: After confirming the mesenchymal identity and multipotent differentiation potential of hDP-MSCs by using flow cytometry and histological staining, the effects of the secretome on human keratinocyte (HaCaT) cultures were evaluated. Results: Scratch assays, performed under high- and low-glucose conditions, demonstrated that the secretome significantly promoted keratinocyte migration and wound closure without compromising cell viability. Additionally, the secretome modulated the expression of key genes involved in inflammation and tissue regeneration, including IL-1β, TNF-α, TGF-β1, and VEGF-α, in a time-dependent manner. Under inflammatory conditions induced by lipopolysaccharide, co-treatment with the secretome significantly reduced TNF-α expression and increased TGF-β1 expression, suggesting an anti-inflammatory effect. Conclusions: These findings indicate the potential of the hDP-MSC-derived secretome as a promising cell-free therapeutic strategy capable of accelerating skin regeneration and modulating the inflammatory response during the wound healing process. Full article
Show Figures

Graphical abstract

14 pages, 16834 KiB  
Article
Topical MTH1 Inhibition Suppresses SKP2-WNT5a-Driven Psoriatic Hyperproliferation
by Cecilia Bivik Eding, Ines Köhler, Lavanya Moparthi, Florence Sjögren, Blanka Andersson, Debojyoti Das, Deepti Verma, Martin Scobie, Ulrika Warpman Berglund and Charlotta Enerbäck
Int. J. Mol. Sci. 2025, 26(15), 7174; https://doi.org/10.3390/ijms26157174 - 25 Jul 2025
Viewed by 176
Abstract
Topically applied TH1579 alleviated the psoriatic phenotype in the imiquimod-induced psoriasis mouse model by decreasing CD45+, Ly6b+, and CD3+ cell infiltration and downregulating the expression of the proliferation marker PCNA. Moreover, TH1579 strongly suppressed IL-17 expression in mouse [...] Read more.
Topically applied TH1579 alleviated the psoriatic phenotype in the imiquimod-induced psoriasis mouse model by decreasing CD45+, Ly6b+, and CD3+ cell infiltration and downregulating the expression of the proliferation marker PCNA. Moreover, TH1579 strongly suppressed IL-17 expression in mouse skin, accompanied by reduced infiltration of IL-17-producing γδ-T cells. Furthermore, TH1579 decreased keratinocyte viability and proliferation. Mass spectrometry data analysis revealed the enrichment of proteins associated with nucleotide excision repair and cell cycle regulation. The key cell cycle regulatory protein F-box protein S-phase kinase-associated protein 2 (SKP2) was significantly downregulated, along with the psoriasis-associated proliferation marker WNT5a, identified as a SKP2 downstream target. The downregulation of SKP2 and WNT5a was confirmed in MTH1i-treated mouse skin. Our findings support the topical administration of MTH1i TH1579 as a psoriasis treatment. The therapeutic effects depended on the SKP2/WNT5a pathway, which mediates psoriatic hyperproliferation. This study introduces a conceptually innovative topical treatment for psoriasis patients with mild-to-moderate disease who have limited therapeutic options. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

18 pages, 2540 KiB  
Article
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
by Angélica L. R. Pavanelli, Maria Eduarda S. Lopes, André T. Reis, Flávio A. Carvalho, Sven Zalewski, André G. dos Santos, Joni A. Cirelli, James Deschner and Andressa V. B. Nogueira
Antioxidants 2025, 14(8), 901; https://doi.org/10.3390/antiox14080901 - 23 Jul 2025
Viewed by 327
Abstract
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed [...] Read more.
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed to investigate the effects of C. sylvestris on the synthesis of pro- and anti-inflammatory, proteolytic, and antioxidant molecules and on wound healing in epithelial cells. A human telomerase-immortalized gingival keratinocyte cell line (TIGKs) was used, and cells were exposed to Escherichia coli lipopolysaccharide (LPS) in the presence and absence of C. sylvestris extract, its diterpene-concentrated fraction, and its clerodane diterpene casearin J for 24 h and 48 h. Gene expression and protein synthesis were analyzed by RT-qPCR and ELISA, respectively. Nitric oxide (NO) and NF-κB activation were analyzed by Griess reaction and immunofluorescence, respectively. Additionally, cell viability was evaluated by alamarBlue® assay, and an automated scratch assay was used for wound healing. LPS significantly increased the expression of cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-17), proteases (MMP-1 and MMP-13), iNOS as well as NO synthesis, and triggered NF-κB nuclear translocation. It also reduced IL-4 expression, cell viability, and cellular wound repopulation. Treatment with C. sylvestris derivatives significantly abrogated all aforementioned LPS-induced effects by 80–100%. Furthermore, even at higher concentrations, C. sylvestris did not affect cell viability, thus proving the safety of its derivatives. C. sylvestris exerts anti-inflammatory, antiproteolytic, and antioxidant effects on gingival keratinocytes, highlighting its potential as a valuable adjunct in the prevention and treatment of periodontal diseases. Full article
Show Figures

Figure 1

17 pages, 2400 KiB  
Article
Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis
by JinKyeong Kim, SoYeon Yu, JeongHyeop Choo, HyeonYeong Lee and Seung Yong Hwang
Int. J. Mol. Sci. 2025, 26(15), 7085; https://doi.org/10.3390/ijms26157085 - 23 Jul 2025
Viewed by 191
Abstract
Environmental exposure to per- and polyfluoroalkyl substances (PFASs) has been increasingly associated with skin disorders, including atopic dermatitis (AD); however, the underlying molecular mechanisms remain unclear. This study aimed to evaluate the effects of perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA)—two widely detected [...] Read more.
Environmental exposure to per- and polyfluoroalkyl substances (PFASs) has been increasingly associated with skin disorders, including atopic dermatitis (AD); however, the underlying molecular mechanisms remain unclear. This study aimed to evaluate the effects of perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA)—two widely detected PFASs—on epidermal function and gene expression in Human Epithelial Keratinocyte, neonatal (HEKn). We assessed cell viability, morphology, and transcriptomic changes using in vitro assays and RNA-seq analysis from a neonatal cohort. PFASs induced dose-dependent cytotoxicity and downregulation of barrier-related genes. Ingenuity pathway analysis identified calcitriol as a suppressed upstream regulator. Functional validation revealed that calcitriol partially reversed the PFAS-induced suppression of antimicrobial peptide genes. These findings support the hypothesis that PFASs may contribute to AD-like skin pathology by impairing vitamin D receptor signaling and antimicrobial defense, and calcitriol demonstrates potential as a protective modulator. This study provides mechanistic insights into the impact of environmental toxicants on skin homeostasis and suggests a potential protective role for calcitriol in PFAS-induced skin barrier damage. Full article
(This article belongs to the Special Issue Dermatology: Advances in Pathophysiology and Therapies (3rd Edition))
Show Figures

Figure 1

Back to TopTop