Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol of the Complexation of Fe3O4 Nanoparticles with Beta-Cyclodextrin (β-CD)
2.2. Physicochemical Characterization
2.3. Cell Culture
2.4. Stock Solution
2.5. Alamar Blue Colorimetric Test
2.6. DAPI (4′,6-Diamidino-2-Phenylindole) Staining
2.7. Annexin V/PI Assay for the Quantification of Apoptosis and Necrosis
3. Results
3.1. Physicochemical Investigation of Fe3O4@β-CD
3.2. Cell Viability Assessment Through the Alamar Blue Colorimetric Test
3.3. DAPI Staining
3.4. Annexin V/PI Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Zeng, H.; Li, J.; Hou, K.; Wu, Y.; Chen, H.; Ning, Z. Melanoma and Nanotechnology-Based Treatment. Front. Oncol. 2022, 12, 858185. [Google Scholar] [CrossRef]
- Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Chapter 1: Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma., J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; ISBN-13: 978-0-9944381-4-0. [Google Scholar] [PubMed]
- Díaz, E.; Quezada, V.; Cifuentes, J.; Morales, N.Y.A.; Reyes, L.H.; Muñoz-Camargo, C.; Cruz, J.C. Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates. ACS Omega 2024, 9, 45402–45420. [Google Scholar] [CrossRef]
- El-Kenawy, A.E.M.; Constantin, C.; Hassan, S.M.A.; Mostafa, A.M.; Neves, A.F.; de Araújo, T.G.; Neagu, M. Chapter 10 Nanomedicine in Melanoma: Current Trends and Future Perspectives. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma., J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; ISBN-13: 978-0-9944381-4-0. [Google Scholar] [PubMed]
- Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol. 2018, 144, 2283–2302. [Google Scholar] [CrossRef] [PubMed]
- Moacă, E.A.; Farcaş, C.; Coricovac, D.; Avram, S.; Mihali, C.V.; Drâghici, G.A.; Loghin, F.; Păcurariu, C.; Dehelean, C. Oleic Acid Double Coated Fe3O4 Nanoparticles as Anti-Melanoma Compounds with a Complex Mechanism of Activity-In Vitro and In Ovo Assessment. J. Biomed. Nanotechnol. 2019, 15, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Coricovac, D.E.; Moacă, E.A.; Pinzaru, I.; Cîtu, C.; Soica, C.; Mihali, C.V.; Păcurariu, C.; Tutelyan, V.A.; Tsatsakis, A.; Dehelean, C.A. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. Front. Pharmacol. 2017, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, H.; He, N.; Deng, Y. Effects of surface modifications on the physicochemical properties of iron oxide nanoparticles and their performance as anticancer drug carriers. Chin. Chem. Lett. 2018, 29, 1829–1833. [Google Scholar] [CrossRef]
- Mai, T.; Hilt, J.Z. Functionalization of iron oxide nanoparticles with small molecules and the impact on reactive oxygen species generation for potential cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2019, 576, 9–14. [Google Scholar] [CrossRef]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Cravotto, G. Cyclodextrins in Skin Formulations and Transdermal Delivery. J. Skin. Stem Cell 2020, 6, e102561. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 2019, 17, 129–143. [Google Scholar] [CrossRef]
- Braga, S.S.; Pais, J. Chapter 10—Getting under the skin: Cyclodextrin inclusion for the controlled delivery of active substances to the dermis. In Design of Nanostructures for Versatile Therapeutic Applications, 1st ed.; Grumezescu, A.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 407–449. [Google Scholar] [CrossRef]
- Pooja, D.; Rekha, R. β-Cyclodextrin nanosponges for enhanced anti-melanoma potential of silymarin with functions of anti-oxidant, anti-inflammatory, and anti-tyrosinase. Results Chem. 2023, 6, 101006. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.; Lee, J.-S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.-R.; Hsiao, C.-D. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Sinha, D.K.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the art on the magnetic iron oxide Nanoparticles: Synthesis, Functionalization, and applications in wastewater treatment. Results Chem. 2024, 7, 101388. [Google Scholar] [CrossRef]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef]
- Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Appl. Sci. 2020, 10, 1594. [Google Scholar] [CrossRef]
- Ianos, R.; Taculescu, A.; Pacurariu, C.; Lazau, I. Solution Combustion Synthesis and Characterization of Magnetite, Fe3O4, Nanopowders. J. Am. Ceram. Soc. 2012, 95, 2236–2240. [Google Scholar] [CrossRef]
- Fabricky, M.M.C.; Gabor, A.-G.; Milutinovici, R.A.; Watz, C.G.; Avram, Ș.; Drăghici, G.; Mihali, C.V.; Moacă, E.-A.; Dehelean, C.A.; Galuscan, A.; et al. Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. Materials 2021, 14, 2266. [Google Scholar] [CrossRef]
- Danciu, C.; Muntean, D.; Alexa, E.; Farcas, C.; Oprean, C.; Zupko, I.; Bor, A.; Minda, D.; Proks, M.; Buda, V.; et al. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative, and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2019, 24, 13. [Google Scholar] [CrossRef]
- Ghiulai, R.; Avram, S.; Stoian, D.; Pavel, I.Z.; Coricovac, D.; Oprean, C.; Vlase, L.; Farcas, C.; Mioc, M.; Minda, D.; et al. Lemon Balm Extracts Prevent Breast Cancer Progression In Vitro and Ovo on Chorioallantoic Membrane Assay. Evid. Based Complement. Altern. Med. 2020, 2020, 6489159. [Google Scholar] [CrossRef]
- Lombrea, A.; Watz, C.G.; Bora, L.; Dehelean, C.A.; Diaconeasa, Z.; Dinu, S.; Turks, M.; Lugiņina, J.; Peipiņš, U.; Danciu, C. Enhanced Cytotoxicity and Antimelanoma Activity of Novel Semisynthetic Derivatives of Betulinic Acid with Indole Conjugation. Plants 2023, 13, 36. [Google Scholar] [CrossRef]
- Khaled, Z.; Ilia, G.; Watz, C.; Macașoi, I.; Drăghici, G.; Simulescu, V.; Merghes, P.E.; Varan, N.I.; Dehelean, C.A.; Vlaia, L.; et al. The Biological Impact of Some Phosphonic and Phosphinic Acid Derivatives on Human Osteosarcoma. Curr. Issues Mol. Biol. 2024, 46, 4815–4831. [Google Scholar] [CrossRef]
- Wu, P.-Y.; You, Y.-J.; Liu, Y.-J.; Hou, C.-W.; Wu, C.-S.; Wen, K.-C.; Lin, C.-Y.; Chiang, H.-M. Sesamol Inhibited Melanogenesis by Regulating Melanin-Related Signal Transduction in B16F10 Cells. Int. J. Mol. Sci. 2018, 19, 1108. [Google Scholar] [CrossRef]
- Neganova, M.; Liu, J.; Aleksandrova, Y.; Klochkov, S.; Fan, R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers 2021, 13, 6062. [Google Scholar] [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Watz, C.G.; Moacă, E.A.; Cioca, A.; Șuta, L.M.; Krauss Maldea, L.; Magyari-Pavel, I.Z.; Nicolov, M.; Sîrbu, I.O.; Loghin, F.; Dehelean, C.A. Cutaneous Evaluation of Fe3O4 Nanoparticles: An Assessment Based on 2D and 3D Human Epidermis Models Under Standard and UV Conditions. Int. J. Nanomedicine 2025, 20, 3653–3670. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Moacă, E.-A.; Socoliuc, V.; Stoian, D.; Watz, C.; Flondor, D.; Păcurariu, C.; Ianoș, R.; Rus, C.I.; Barbu-Tudoran, L.; Semenescu, A.; et al. Synthesis and Characterization of Bioactive Magnetic Nanoparticles from the Perspective of Hyperthermia Applications. Magnetochemistry 2022, 8, 145. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Kok, H.P.; Cressman, E.N.K.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; Ter Haar, G.; Wust, P.; Crezee, J. Heating technology for malignant tumors: A review. Int. J. Hyperthermia 2020, 37, 711–741. [Google Scholar] [CrossRef]
- Moacă, E.-A.; Watz, C.-G.; Socoliuc, V.; Racoviceanu, R.; Păcurariu, C.; Ianoş, R.; Cîntă-Pînzaru, S.; Tudoran, L.B.; Nekvapil, F.; Iurciuc, S.; et al. Biocompatible Magnetic Colloidal Suspension Used as a Tool for Localized Hyperthermia in Human Breast Adenocarcinoma Cells: Physicochemical Analysis and Complex In Vitro Biological Profile. Nanomaterials 2021, 11, 1189. [Google Scholar] [CrossRef] [PubMed]
- Caizer, C.; Caizer, I.S.; Racoviceanu, R.; Watz, C.G.; Mioc, M.; Dehelean, C.A.; Bratu, T.; Soica, C. Fe3O4-PAA–(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia. Nanomaterials 2022, 12, 2577. [Google Scholar] [CrossRef] [PubMed]
- Argenziano, M.; Haimhoffer, A.; Bastiancich, C.; Jicsinszky, L.; Caldera, F.; Trotta, F.; Scutera, S.; Alotto, D.; Fumagalli, M.; Musso, T.; et al. In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics 2019, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, C.A.A.; de Oliveira Júnior, R.G.; de Oliveira, A.P.; Groult, H.; Beaugeard, L.; Picot, L.; de Alencar Filho, E.B.; Almeida, J.R.G.D.S.; Nunes, X.P. Complexation with β-cyclodextrin enhances apoptosis-mediated cytotoxic effect of harman in chemoresistant BRAF-mutated melanoma cells. Euro J. Pharm. Sci. 2020, 150, 105353. [Google Scholar] [CrossRef]
- Ebrahimiasl, H.; Azarifar, D.; Mohammadi, M.; Keypour, H.; Abadi, M.M. Synthesis of Fe3O4-supported Schiff base Cu (II) complex: A novel efficient and recyclable magnetic nanocatalyst for one-pot three-component synthesis of quinolin-5-one, chromene-3-carbonitrile and phthalazine-5,10-dione derivatives. Res. Chem. Intermed. 2021, 47, 683–707. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, P.C.; Lu, M. β-cyclodextrin coated Fe3O4 nanoparticles: A simple preparation and application for selective oxidation of alcohols in water. J. Braz. Chem. Soc. 2013, 24, 171–176. [Google Scholar] [CrossRef]
- Sun, J.; Xu, B.; Mu, Y.; Ma, H.; Qu, W. Functional Magnetic Nanoparticles for Highly Efficient Cholesterol Removal. J. Food Sci. 2018, 83, 122–128. [Google Scholar] [CrossRef]
- Emara, N.; Amin, R.; Youssef, A.; Elfeky, S. Recycling of steel industry waste acid in the preparation of Fe3O4 nanocomposite for heavy metals remediation from wastewater. Rev. Chim. 2021, 71, 34–46. [Google Scholar] [CrossRef]
- Stamate, M.; Gafițanu, C.; Stamate, C.; Gafiţanu, E. The characterization of ketoprofen–hydroxypropyl–β–cyclodextrin complex with modified drug release properties. Solid State Phenom. 2012, 188, 70–75. [Google Scholar]
- Ishii, M.; Nakahira, M. Infrared absorption spectra and cation distribution in (Mn, Fe)3O4. Solid State Commun. 1972, 11, 209–212. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Raman, A. The application of infrared spectroscopy to the study of rust systems-II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite(γ-Fe2O3) and hematite (α-Fe2O3). Corros. Sci. 1993, 34, 1355–1365. [Google Scholar] [CrossRef]
- Yew, Y.P.; Shameli, K.; Mohamad, S.E.; Lee, K.X.; Teow, S.-Y. Green synthesized montmorillonite/carrageenan/Fe3O4 nanocomposites for pH-responsive release of protocatechuic acid and its anticancer activity. Int. J. Mol. Sci. 2020, 21, 4851. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, T.M.; Al-Rasheed, H.H.; Alaqil, Z.M.; Hajri, A.K.; Elsayed, N.H. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS Omega 2023, 8, 32067–32077. [Google Scholar] [CrossRef]
- Shelat, R.; Chandra, S.; Khanna, A. Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications. Int. J. Biol. Macromol. 2018, 110, 357–365. [Google Scholar] [CrossRef]
- Sanganeria, P.; Sachar, S.; Chandra, S.; Bahadur, D.; Ray, P.; Khanna, A. Cellular internalization and detailed toxicity analysis of protein-immobilized iron oxide nanoparticles. J. Biomed. Mater. Res. B 2015, 103, 125–134. [Google Scholar] [CrossRef]
- Tang, S.; Kong, L.; Ou, J.; Liu, Y.; Li, X.; Zou, H. Application of cross-linked beta-cyclodextrin polymer for adsorption of aromatic amino acids. J. Mol. Recognit. 2006, 19, 39–48. [Google Scholar] [CrossRef]
- Monteiro, A.P.F.; Caminhas, L.D.; Ardisson, J.D.; Paniago, R.; Cortés, M.E.; Sinisterra, R.D. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr. Polym. 2017, 163, 1–9. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Huff, C.; Abdel-Fattah, T. Organo-nanocups assist the formation of ultra-small palladium nanoparticle catalysts for hydrogen evolution reaction. Materials 2022, 15, 2692. [Google Scholar] [CrossRef]
- Gasztych, M.; Malamis, A.; Musiał, W. The Influence of Initiators, Particle Size, and Composition on the Electrokinetic Potential of N-(Isopropyl)acrylamide Derivatives. Polymers 2024, 16, 907. [Google Scholar] [CrossRef]
- Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297. [Google Scholar] [CrossRef] [PubMed]
- Guillen-Romero, L.D.; Oropeza-Guzmán, M.T.; López-Maldonado, E.A.; Iglesias, A.L.; Paz-González, J.A.; Ng, T.; Serena-Gómez, E.; Villarreal-Gómez, L.J. Synthetic hydroxyapatite and its use in bioactive coatings. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800018817463. [Google Scholar] [CrossRef]
- Wei, B.; Xu, X.; Jin, Z.; Tian, Y. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis. PLoS ONE. 2014, 9, e86024. [Google Scholar] [CrossRef]
- Wu, K.; Liu, J.; Saha, R.; Ma, B.; Su, D.; Chugh, V.; Wang, J.P. Stable and monodisperse iron nitride nanoparticle suspension for magnetic diagnosis and treatment: Development of synthesis and surface functionalization strategies. ACS Appl. Nano Mater. 2021, 4, 4409–4418. [Google Scholar] [CrossRef]
- Dutz, S.; Kuntsche, J.; Eberbeck, D.; Müller, R.; Zeisberger, M. Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles. Nanotechnology 2012, 23, 355701. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Mettenbrink, E.; DeAngelis, P.; Wilhelm, S. Nanoparticle toxicology. Ann. Rev. Pharmacol. Toxicol. 2021, 61, 269–289. [Google Scholar] [CrossRef]
- Al Saqr, A.; Khafagy, E.S.; Alalaiwe, A.; Aldawsari, M.F.; Alshahrani, S.M.; Anwer, M.K.; Khan, S.; Lila, A.S.A.; Arab, H.H.; Hegazy, W.A.H. Synthesis of Gold Nanoparticles by Using Green Machinery: Characterization and In Vitro Toxicity. Nanomaterials 2021, 11, 808. [Google Scholar] [CrossRef]
- Soliwoda, K.; Tomaszewska, E.; Tkacz-Szczesna, B.; Mackiewicz, E.; Rosowski, M.; Bald, A.; Blanck, C.; Schmutz, M.; Novák, J.; Schreiber, F.; et al. Effect of the alkyl chain length of secondary amines on the phase transfer of gold nanoparticles from water to toluene. Langmuir 2014, 30, 6684–6693. [Google Scholar] [CrossRef]
- Hinterwirth, H.; Wiedmer, S.K.; Moilanen, M.; Lehner, A.; Allmaier, G.; Waitz, T.; Lindner, W.; Lämmerhofer, M. Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J. Sep. Sci. 2013, 36, 2952–2961. [Google Scholar] [CrossRef] [PubMed]
- Gomes Moura, C.; Pereira, R.S.F.; Andritschky, M.; Barros Lopes, A.L.; de Freitas Grilo, J.P.; Maribondo do Nascimento, R.; Silva, F.S. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid. Opt. Laser Technol. 2017, 97, 20–28. [Google Scholar] [CrossRef]
- Naderi-Samani, H.; Shoja Razavi, R.; Mozaffarinia, R. Investigating the effect of 532 nm and 1064 nm wavelengths and different liquid media on the qualities of silver nanoparticles yielded through laser ablation. Mater. Chem. Phys. 2023, 305, 128001. [Google Scholar] [CrossRef]
- Pourali, P.; Dzmitruk, V.; Benada, O.; Svoboda, M.; Benson, V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: Evaluation of transfection efficiency. Sci. Rep. 2023, 13, 14669. [Google Scholar] [CrossRef]
- Kora, A.J.; Rastogi, L. Bacteriogenic synthesis of selenium nanoparticles by Escherichia coli ATCC 35218 and its structural characterisation. IET Nanobiotechnol. 2017, 11, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Sarmphim, P.; Soontaranon, S.; Sirisathitkul, C.; Harding, P.; Kijamnajsuk, S.; Chayasombat, B.; Pinitsoontorn, S.; Chingunpitak, J. FePt3 nanosuspension synthesized from different precursors—a morphological comparison by SAXS, DLS and TEM. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 79–84. [Google Scholar] [CrossRef]
- Fang, W.; Dai, Y.J.; Wang, T.; Gao, H.T.; Huang, P.; Yu, J.; Huang, H.P.; Wang, D.L.; Zong, W.L. Aminated β-cyclodextrin-grafted Fe3O4-loaded gambogic acid magnetic nanoparticles: Preparation, characterization, and biological evaluation. RSC Adv. 2019, 9, 27136–27146. [Google Scholar] [CrossRef]
- Manivannan, A.; Anandan, M.; Chinnasamy, E.; Gopinath, V.; Balamurugan, K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta A 2015, 135, 536–539. [Google Scholar] [CrossRef]
- Dharmawan, V.F.; Rahmawati, I.; Sanjaya, A.R.; Dewi, B.E.; Saepudin, E.; Ivandini, T.A. A High Selective and Sensitive Spectrophotometric Cholesterol Detection Using β-Cyclodextrin/Fe3O4 Composite as the Identification Agent. Int. J. Technol. 2025, 16, 672. [Google Scholar] [CrossRef]
- Saepudin, E.; Willyam, S.J.; Ivandini, T.A. Preparation and characterization of β-Cyclodextrin/Fe3O4 nanocomposite. IOP Conf. Ser. Mater. Sci. Eng. 2020, 902, 012005. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Rastogi, N.K. β-Cyclodextrin capped graphene-magnetite nanocomposite for selective adsorption of Bisphenol-A. Carbohydr. Polym. 2017, 168, 129–137. [Google Scholar] [CrossRef]
- Almutairi, S.T. Fabrication and catalytic activity of TiO2/Fe3O4 and Fe3O4/β-cyclodextrin nanocatalysts for safe treatment of industrial wastewater. Heliyon 2024, 10, e35400. [Google Scholar] [CrossRef]
- Taherkhani, A.; Fazli, H.; Taherkhani, F. Application of janus magnetic nanoparticle Fe3O4@ SiN functionalized with beta-cyclodextrin in thymol drug delivery procedure: An in vitro study. Appl. Organomet. Chem. 2021, 35, e6399. [Google Scholar] [CrossRef]
Element | Wt % | At % | K-Ratio |
---|---|---|---|
C k | 53.15 | 60.34 | 0.2886 |
O k | 46.40 | 39.55 | 0.0815 |
Fe k | 0.45 | 0.11 | 0.0042 |
Total | 100.00 | 100.00 |
Conc. (μg/mL) | Viable Cells (%) | Early Apoptotic Cells (%) | Late Apoptotic Cells (%) | Necrotic Cells (%) |
---|---|---|---|---|
HaCaT | ||||
0 | 91.69 ± 1.77 | 5.25 ± 1.39 | 1.77 ± 0.49 | 1.27 ± 0.92 |
10 | 92.40 ± 4.93 | 5.85 ± 4.93 | 0.96 ± 0.27 * | 0.79 ± 0.22 |
15 | 91.68 ± 5.23 | 5.92 ± 4.42 | 1.19 ± 0.44 | 1.21 ± 0.61 |
20 | 91.12 ± 5.28 | 6.53 ± 4.93 | 1.18 ± 0.43 | 1.17 ± 0.43 |
A375 | ||||
0 | 80.82 ± 6.62 | 15.98 ± 8.47 | 0.62 ± 0.16 | 3.58 ± 2.99 |
10 | 78.90 ± 4.52 | 16.86 ± 2.96 | 1.46 ± 0.09 ** | 2.78 ± 2.49 |
15 | 83.07 ± 3.89 | 13.77 ± 4.83 | 0.90 ± 0.53 | 2.26 ± 2.06 |
20 | 81.85 ± 5.40 | 14.85 ± 5.11 | 0.93 ± 0.31 | 2.39 ± 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watz, C.G.; Mihali, C.-V.; Oprean, C.; Krauss Maldea, L.; Tatu, C.A.; Nicolov, M.; Sîrbu, I.-O.; Dehelean, C.A.; Socoliuc, V.; Moacă, E.-A. Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment. Nanomaterials 2025, 15, 1192. https://doi.org/10.3390/nano15151192
Watz CG, Mihali C-V, Oprean C, Krauss Maldea L, Tatu CA, Nicolov M, Sîrbu I-O, Dehelean CA, Socoliuc V, Moacă E-A. Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment. Nanomaterials. 2025; 15(15):1192. https://doi.org/10.3390/nano15151192
Chicago/Turabian StyleWatz, Claudia Geanina, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc, and Elena-Alina Moacă. 2025. "Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment" Nanomaterials 15, no. 15: 1192. https://doi.org/10.3390/nano15151192
APA StyleWatz, C. G., Mihali, C.-V., Oprean, C., Krauss Maldea, L., Tatu, C. A., Nicolov, M., Sîrbu, I.-O., Dehelean, C. A., Socoliuc, V., & Moacă, E.-A. (2025). Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment. Nanomaterials, 15(15), 1192. https://doi.org/10.3390/nano15151192