Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = internal hydrophobicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8591 KiB  
Article
Targeting Cellular Senescence with Liposome-Encapsulated Fisetin: Evidence of Senomorphic Effect
by Agata Henschke, Bartosz Grześkowiak, Olena Ivashchenko, María Celina Sánchez-Cerviño, Emerson Coy and Sergio Moya
Int. J. Mol. Sci. 2025, 26(15), 7489; https://doi.org/10.3390/ijms26157489 (registering DOI) - 2 Aug 2025
Viewed by 221
Abstract
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected [...] Read more.
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected for this study to evaluate its efficiency when delivered in a liposomal formulation. The experiment evaluated the impact of liposome-encapsulated fisetin on senescent cells induced by doxorubicin (DOX) from two cell lines: WI-38 (normal lung fibroblasts) and A549 (lung carcinoma). Senescence was characterized by SA-β-galactosidase (SA-β-gal) activity, proliferation, morphology, and secretion of pro-inflammatory interleukin 6 (IL-6) and interleukin 8 (IL-8). Due to fisetin’s hydrophobic nature, it was encapsulated in liposomes to enhance cellular delivery. Cellular uptake studies confirmed that the liposomes were effectively internalized by both senescent cell types. Treatment with fisetin-loaded liposomes revealed a lack of senolytic effects but showed senomorphic activity, as evidenced by a significant reduction in IL-6 and IL-8 secretion in senescent cells. The liposomal formulation enhanced fisetin’s therapeutic efficacy, showing comparable results even at the lowest tested concentration. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

14 pages, 2649 KiB  
Article
Study on the Liquid Transport on the Twisted Profile Filament/Spun Combination Yarn in Knitted Fabric
by Yi Cui, Ruiyun Zhang and Jianyong Yu
Polymers 2025, 17(15), 2065; https://doi.org/10.3390/polym17152065 - 29 Jul 2025
Viewed by 214
Abstract
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport [...] Read more.
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport properties primarily compares the wicking results, without considering the varying requirements of testing conditions due to differences in human sweating rates during daily activities. Moreover, the understanding of moisture transport mechanisms in yarns within fabrics under different testing conditions remains insufficient. In this study, two types of twisted combination yarns, composed of hydrophobic profiled polyester filaments and hydrophilic spun yarns to form a hydrophobic-hydrophilic gradient along the axial direction of the yarn, were developed and compared with profiled polyester filaments to understand the liquid migration behaviors in the knitted fabrics formed by these yarns. Results showed that hydrophobic profiled polyester filament yarn demonstrated superior liquid transport performance with infinite saturated liquid supply (vertical wicking test). In contrast, the twisted combination yarns exhibited better moisture diffusion properties under limited liquid droplet supply conditions (droplet diffusion test and moisture management test). These contradictory findings indicated that the amount of liquid moisture supply in testing conditions significantly affected the moisture transport performance of yarns within fabrics. It was revealed that the liquid moisture in the twisted combination yarns migrated through capillary wicking for moisture transfer. Under an infinite saturated liquid supply condition, the higher the content of hydrophilic fibers in the spun yarns, the greater the amount of moisture transferred, demonstrating an excellent liquid transport performance. Under the limited liquid droplet supply conditions, both the volume of liquid water and the moisture absorption capacity of the yarn jointly influence internal moisture migration within the yarn. It provided a theoretical reference for testing the internal moisture wicking performance of fabrics under different states of human sweating. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 278
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 4069 KiB  
Article
Influence of Silane-Modified Coal Gangue Ceramsite on Properties of Ultra-High-Performance Concrete
by Yuanjie Qin, Sudong Hua, Dongrui Zhang and Hongfei Yue
Appl. Sci. 2025, 15(14), 7968; https://doi.org/10.3390/app15147968 - 17 Jul 2025
Viewed by 262
Abstract
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has [...] Read more.
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has an adverse effect on the working performance of UHPC and may lead to the decrease of mechanical properties. This study found that a 5% silane coupling agent KH560 can make CGC hydrophobic, and cause its contact angle to increase from 0° to 111.32°. Adding 100% hydrophobic modified CGC into UHPC will significantly improve its working performance, with the highest increase of 38.51%. At the same time, the addition of 20% modified CGC can further improve the compressive strength of UHPC (28 days reached 150.1 MPa), reduce the internal porosity by 21.4%, and make the interface bond more compact. In addition, the hydration degree of UHPC has also been improved, a result caused by the cement obtaining more free water for a more complete hydration reaction. This study can provide a new scheme for solving the problem of the solid waste of coal gangue. Full article
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Viewed by 499
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 283
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

16 pages, 1765 KiB  
Article
Towards Understanding the Basis of Brucella Antigen–Antibody Specificity
by Amika Sood, David R. Bundle and Robert J. Woods
Molecules 2025, 30(14), 2906; https://doi.org/10.3390/molecules30142906 - 9 Jul 2025
Viewed by 354
Abstract
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied [...] Read more.
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied to investigate the interaction of the four murine monoclonal antibodies (mAbs) YsT9.1, YsT9.2, Bm10, and Bm28 with hexasaccharide fragments of the A and M epitopes. Through stringent stability criteria, based on interaction energies and mobility of the antigens, high-affinity binding of A antigen with YsT9.1 antibody and M antigen with Bm10 antibody was predicted. In both the complexes hydrophobic interactions dominate the antigen–antibody binding. These findings align well with experimental epitope mapping, indicating YsT9.1’s preference for internal sequences of the A epitope and Bm10’s preference for internal elements of the M epitope. Interestingly, no stable complexes were identified for YsT9.2 or Bm28 interacting with A or M antigen. This study provides valuable insights into the mechanism of molecular recognition of Brucella O-antigens that can be applied for the development of improved diagnostics, synthetic glycomimetics, and improved vaccine strategies. Full article
Show Figures

Graphical abstract

21 pages, 3955 KiB  
Article
Mechanical Characteristics of Tara Gum/Orange Peel Films Influenced by the Synergistic Effect on the Rheological Properties of the Film-Forming Solutions
by Nedelka Juana Ortiz Cabrera, Luis Felipe Miranda Zanardi and Martin Alberto Massuelli
Polymers 2025, 17(13), 1767; https://doi.org/10.3390/polym17131767 - 26 Jun 2025
Viewed by 436
Abstract
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final [...] Read more.
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final concentrations of 0.6%, 0.8%, and 1.0% (w/v). GL (30% and 50%) and OP (0%, 20%, and 50%) were incorporated based on the dry weight of TG, meaning their amounts were calculated relative to TG content to ensure consistent formulation ratios. Rheological parameters, including the flow behavior index, consistency coefficient, storage modulus (G′), and loss modulus (G″), were characterized via steady shear and oscillatory rheometry. Mechanical properties, such as the Young’s modulus, tensile strength, and elongation at break, were also evaluated. A strong positive correlation (R2 = 0.840) was observed between G′ and the Young’s modulus, indicating that solutions with higher internal network strength yield films with greater stiffness. The synergistic interaction between TG and OP was critical: TG primarily enhanced stiffness and mechanical reinforcement, whereas OP improved structural cohesion and stability. GL functioned as a plasticizer, increasing film flexibility while reducing stiffness. These interactions led to a reduction in film solubility by up to 62.43%, particularly in formulations without orange peel powder. In contrast, mechanical strength increased by up to 50.21% in films containing orange peel powder, as those without it exhibited significantly lower tensile strength. Flexibility, expressed as elongation at break, was enhanced by up to 78.86% in formulations with higher glycerol content. Barrier properties were also improved, demonstrated by decreased water vapor permeability and increased hydrophobicity, attributed to the TG–OP synergy. A regression model (R2 = 0.928) substantiated the contributions of TG to stiffness, OP to matrix reinforcement, and GL to flexibility modulation. This study underscores the pivotal role of rheological behavior in defining film performance and presents a novel analytical framework applicable to the design of sustainable, high-performance biopolymeric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

36 pages, 23106 KiB  
Article
Phylogenetic and Structural Insights into Melatonin Receptors in Plants: Case Study in Capsicum chinense Jacq
by Adrian Toledo-Castiñeira, Mario E. Valdés-Tresanco, Georgina Estrada-Tapia, Miriam Monforte-González, Manuel Martínez-Estévez and Ileana Echevarría-Machado
Plants 2025, 14(13), 1952; https://doi.org/10.3390/plants14131952 - 26 Jun 2025
Viewed by 602
Abstract
Recently, it has been proposed that plant melatonin receptors belong to the superfamily of G protein-coupled receptors (GPCRs). However, a detailed description of the phylogeny, protein structure, and binding properties of melatonin, which is still lacking, can help determine the signaling and function [...] Read more.
Recently, it has been proposed that plant melatonin receptors belong to the superfamily of G protein-coupled receptors (GPCRs). However, a detailed description of the phylogeny, protein structure, and binding properties of melatonin, which is still lacking, can help determine the signaling and function of this compound. Melatonin receptor homologs (PMTRs) were identified in 90 Viridiplantae sensu lato proteomes using profile Hidden Markov Models (HMM), which yielded 174 receptors across 87 species. Phylogenetic analysis revealed an expansion of PMTR sequences in angiosperms, which were grouped into three clades. Docking studies uncovered a conserved internal melatonin-binding site in PMTRs, which was analogous to the site in human MT1 receptors. Binding affinity simulations indicated this internal site exhibits stronger melatonin binding compared to a previously reported superficial pocket. Ligand–receptor interaction analysis and alanine scanning highlighted a major role of hydrophobic interactions, with hydrogen bonds contributing predominantly at the internal site, while non-interacting charged residues stabilize the binding pocket. Tunnel and ligand transport simulations suggested melatonin moves favorably through the internal cavity to access the binding site. Also, we presented for the first time details of these pockets in a non-model species, Capsicum chinense. Taken together, the structural analyses presented here illustrate opportunities and theoretical evidence for performing structure–function studies via mutations in specific residues within the proposed new melatonin-binding site in PMTRs, shedding light on their role in plant melatonin signaling. Full article
Show Figures

Figure 1

20 pages, 5668 KiB  
Article
A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness
by Xiaodong Zhai, Xingdan Ma, Yue Sun, Yuhong Xue, Wanwan Ban, Wenjun Song, Tingting Shen, Zhihua Li, Xiaowei Huang, Qing Sun, Kunlong Wu, Zhilong Chen, Wenwu Zou, Biao Liu, Liang Zhang and Jiaji Zhu
Foods 2025, 14(13), 2200; https://doi.org/10.3390/foods14132200 - 23 Jun 2025
Viewed by 479
Abstract
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The [...] Read more.
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The hydrophobic fluorescent films were fabricated by incorporating FAM@RHB probes into polyvinylidene fluoride (PVDF) at varying molar ratios through electrospinning. The FR-2 film with a 2:8 ratio of 5(6)-FAM to RHB exhibited the best performance, demonstrating excellent hydrophobicity with a water contact angle (WCA) of 113.45° and good color stability, with a ΔE value of 2.05 after 14 days of storage at 4 °C. Gas sensitivity tests indicated that FR-2 exhibited a limit of detection (LOD) of 0.54 μM for trimethylamine (TMA). In the application of monitoring the freshness of pork and beef at 4 °C, the fluorescence color of the FR-2 film significantly changed from orange–yellow to green, enabling the visual monitoring of meat freshness. Hence, this study provides a new approach for intelligent food packaging. Full article
(This article belongs to the Special Issue Novel Smart Packaging in Foods)
Show Figures

Figure 1

18 pages, 466 KiB  
Article
Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations
by Paloma De Oro-Carretero and Jon Sanz-Landaluze
J. Xenobiot. 2025, 15(3), 93; https://doi.org/10.3390/jox15030093 - 16 Jun 2025
Viewed by 523
Abstract
The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro [...] Read more.
The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro approach using the zebrafish liver cell line (ZFL) for assessing bioaccumulation and biotransformation of the compound BDE-47, which is more hydrophobic than phenanthrene, and is the compound used in the previous study. For this purpose, experimentally, the internal concentrations in the cells (Ccell) and the exposure medium of both BDE-47 and its main metabolites were quantified at different exposure times by GC-MS. Additionally, the free bioavailable concentration (Cfree) was determined with a solid-phase microextraction (SPME) experiment. With the aim of refine models, Ccell and Cfree were also estimated using a predictive chemical distribution model (MBM). Bioconcentration factors (BCFs) were determined by relating all these values, as well as by toxicokinetic fitting and by in vitro–in vivo extrapolation modelling (IVIVE). The results showed a high concordance with the values obtained in vivo. Moreover, the study highlighted the importance of experimentally determining Cfree and Ccell, as the predicted values can vary depending on the chemical, thereby influencing the BCF outcome. This variation occurs because models do not account for the absorption and biotransformation kinetics of the compounds. The data presented may contribute to refining predictive models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

20 pages, 3709 KiB  
Article
An Effective Oral Nanodelivery Material for Curcumin: Ingenious Utilization of Gastrointestinal Absorption Characteristics
by Qiuxu An, Yuanyuan Liu, Guodong Liang, Yuewu Wang, Fengying Liang, Yunyang Bai, Chaolu Eerdun, Riqing Cheng, Haifeng Zhang and Xiaojie Lv
Molecules 2025, 30(12), 2536; https://doi.org/10.3390/molecules30122536 - 10 Jun 2025
Viewed by 470
Abstract
Curcumin exhibits compromised bioavailability upon oral administration due to its inherent limitations, including low aqueous solubility, poor membrane permeability, and chemical instability. Inspired by the efficient mechanism by which viruses penetrate mucus and cells, we constructed an electrically neutral and hydrophilic nanocarrier (C60-CPP5/Pser@CUR) [...] Read more.
Curcumin exhibits compromised bioavailability upon oral administration due to its inherent limitations, including low aqueous solubility, poor membrane permeability, and chemical instability. Inspired by the efficient mechanism by which viruses penetrate mucus and cells, we constructed an electrically neutral and hydrophilic nanocarrier (C60-CPP5/Pser@CUR) using fullerene C60 as the matrix modified with cell-penetrating peptides and phosphoserine. CPP5 facilitates efficient cellular internalization of therapeutic agents, while the incorporation of phosphoserine serves as a charge reversal strategy. This design enables dynamic surface charge modulation to enhance curcumin’s trans-barrier delivery efficiency. Systematic in vitro and in vivo evaluations demonstrated that the synthesized carrier significantly improved the synergistic effects of mucus penetration and cellular uptake. The Caco-2 cellular uptake of curcumin-loaded carriers was 2.26 times higher than that of free drugs. In a single-pass intestinal perfusion study in rat models, this nanocarrier significantly enhanced the absorption of curcumin in the duodenal and colonic regions. In the in vivo experiments, compared with free curcumin, its Cmax and AUC0–t achieved improvements of 2.60 times and 14.70 times, respectively. This virus-mimetic platform dynamically adapts to micro-environmental demands through charge reversal mechanisms, effectively overcoming sequential biological barriers and providing a robust strategy for oral delivery of hydrophobic therapeutics. Full article
Show Figures

Graphical abstract

18 pages, 8613 KiB  
Review
Sensitive Chemical and Biological Sensors Based on Phosphorus Dendrimers
by Anne-Marie Caminade
Polymers 2025, 17(12), 1591; https://doi.org/10.3390/polym17121591 - 6 Jun 2025
Viewed by 465
Abstract
Dendrimers are a special type of ball-shaped hyperbranched polymers consisting of branched monomers organized stepwise around a multifunctional core. They possess many reactive functions, and they are easily accessible as they are located on the surface of the dendrimers. By modifying their terminal [...] Read more.
Dendrimers are a special type of ball-shaped hyperbranched polymers consisting of branched monomers organized stepwise around a multifunctional core. They possess many reactive functions, and they are easily accessible as they are located on the surface of the dendrimers. By modifying their terminal functions, it is possible to change the specificities of dendrimers to give them the desired properties. Dendrimers have been used as catalysts, in diverse fields of nanomedicine, and for the elaboration or modification of materials. The internal structure of dendrimers should be carefully chosen depending on the sought-after properties. Poly(phosphorhydrazone) (PPH) dendrimers possess a relatively rigid and hydrophobic internal structure and an easily functionalized surface, which make them appealing in the field of materials. Indeed, they can be used as a matrix, as glue for stabilizing multilayers, or as multifunctional tools. This review describes the use of PPH dendrimers and dendrons (dendritic wedges) for elaborating sensitive chemical, electrochemical, and biological sensors. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

16 pages, 922 KiB  
Article
Humic Acids Properties of Luvisol of 40-Year Fertilizer Experiment
by Bożena Dębska and Magdalena Banach-Szott
Agronomy 2025, 15(6), 1405; https://doi.org/10.3390/agronomy15061405 - 6 Jun 2025
Viewed by 404
Abstract
The purpose of this research was to determine the properties of humic acids isolated from soil samples taken from a 40-year static experiment—the experimental factors were fertilization with manure (30 t ha−1; FYM) and nitrogen at rates of 40, 60 and [...] Read more.
The purpose of this research was to determine the properties of humic acids isolated from soil samples taken from a 40-year static experiment—the experimental factors were fertilization with manure (30 t ha−1; FYM) and nitrogen at rates of 40, 60 and 120 t ha−1. From the soil samples (Luvisol), humic acids (HAs) were extracted and the following were determined: elemental composition, hydrophilic and hydrophobic properties and spectrometric properties in the UV–VIS and IR range. The HAs of the soil fertilized with manure and N compared to the HAs of the soil fertilized with N (without manure) were characterized by a higher degree of aliphaticity and, consequently, a higher share of hydrophilic fractions and lower values of internal oxidation. Based on the spectrometric parameters, it was indicated that the HA particles of the manure-fertilized soil are characterized by a higher share of undecomposed lignin fragments, a lower degree of humification and at the same time, a higher susceptibility to oxidation. The obtained relationships showed that the aromaticity and hydrophobicity of the HA molecules of the manure-fertilized soil can be increased at certain N doses (60 and 120 t ha−1), which is particularly important in terms of the role that humic substances play in carbon sequestration. Full article
Show Figures

Figure 1

26 pages, 3067 KiB  
Article
Mechanical Properties, Physical Properties and VOC Emissions of Three-Layer Particleboards with Recycled Automotive Plastics in the Core Layer
by Anna Darabošová, Tatiana Bubeníková, Iveta Čabalová, Miroslav Badida, Çağrı Olgun, Önder Tor and Mustafa Öncel
Polymers 2025, 17(11), 1438; https://doi.org/10.3390/polym17111438 - 22 May 2025
Viewed by 556
Abstract
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core [...] Read more.
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core layer of three-layer particleboards (P) and evaluates its impact on physical properties (water absorption—WA and thickness swelling—TS), mechanical properties (internal bonding strength—IB, modulus of rupture—MOR, modulus of elasticity—MOE and screw driving torque—SDT) and volatile organic compounds—VOC emissions. The boards were produced using conventional hot-pressing technology and analyzed according to applicable standards. Based on the results, the density of the reference (P) was 0.72 g·cm−3, while wood–plastic composites ranged from 0.70 g·cm−3 to 0.72 g·cm−3. After 24 h, WA reached 40% for reference (P) and from 36.9% (for (P) containing unpainted bumpers) to 41.9% (for (P) containing fuel tanks). TS reached 18% for (P) and from 16.8% (for (P) containing unpainted bumpers and fuel tanks) to 18.1% (for (P) containing painted bumpers). Plastic is a hydrophobic material and it is assumed that by increasing the proportion of plastic filler in the particleboards, the WA and TS of prepared boards will decrease. From the point of view of mechanical properties, values for (P) containing plastic filler were slightly lower compared to reference (P). The lowest value of IB (0.39 MPa) were reached for (P) containing painted bumpers. Plastic surface treatment could interfere with adhesion between the plastic and adhesive, weakening the bond in the core layer. For this reason, is preferable to use unpainted fillers, which provide better adhesive properties and higher structural integrity. VOC emissions from wood components consisted primarily of monoterpenes such as α-pinene, 3-carene and limonene. Adding 10% plastic to the particleboard did not increase overall VOC emissions. On the other hand, combining wood and plastic particles resulted in a reduction in overall VOC emissions. The findings confirm that recycled automotive plastics can be effectively incorporated into particleboards, maintaining standard performance while reducing reliance on virgin wood materials, making them a viable and sustainable alternative for furniture and interior applications. Full article
(This article belongs to the Special Issue Life Cycle and Utilization of Lignocellulosic Materials)
Show Figures

Figure 1

Back to TopTop