Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
Abstract
1. Introduction
2. Results and Discussion
2.1. Molecular Docking of MMP-2 in Computer-Aided Drug Design
2.2. Synthesis and Characterization of Chol-PEG2K-GPLGVRG and Chol-PEG2K-GPLGVRG-PEG5K
2.3. Characterization of MMP-2 Responsive Peptide-Modified Liposomes
2.4. Effects of GPLGVRG and MMP-2 Enzyme on the Quantitative Uptake by 4T1 Cells
2.5. Clone Formation Assay for Uptake Efficiency
2.6. Confocal Microscopy for Intracellular Distribution
2.7. Cytotoxicity
2.8. Effects of pH and MMP-2 Enzyme Concentration on Drug Release
3. Materials and Methods
3.1. Materials
3.2. Molecular Docking of MMP-2 in Computer-Aided Drug Design
3.3. Synthesis and Characterization of Chol-PEG2K-GPLGVRG-PEG5K
3.4. Preparation and Characterization of MMP-2-Responsive Peptide-Modified Liposomes
3.5. Cell Culture
3.6. Quantitative Analysis of Cellular Uptake
3.7. Clone Formation Assay for Uptake Efficiency
3.8. Confocal Microscopy for Intracellular Distribution
3.9. Cytotoxicity
3.10. Impact of pH and MMP-2 Enzyme Concentration on Drug Release In Vitro
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Dan, V.M.; Raveendran, R.S.; Baby, S. Resistance to intervention: Paclitaxel in breast cancer. Mini Rev. Med. Chem. 2021, 21, 1237–1268. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.O. Interplay between paclitaxel, gap junctions, and kinases: Unraveling mechanisms of action and resistance in cancer therapy. Mol. Biol. Rep. 2024, 51, 472. [Google Scholar] [CrossRef]
- Zhou, M.; Han, S.; Aras, O.; An, F. Recent advances in paclitaxel-based self-delivery nanomedicine for cancer therapy. Curr. Med. Chem. 2021, 28, 6358–6374. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, R.; Liu, L.; Yang, D.; Xiang, Q.; Li, L.; Tang, J.; Qiu, Z.; Peng, W.; Wang, Y.; et al. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-kappaB signaling to trigger pyroptosis in breast cancer. Theranostics 2021, 11, 5214–5231. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, Z.H.; Ma, L.X.; Wu, S.Y.; Wu, J.; Yu, K.D.; Sui, X.Y.; Xu, Y.; Liu, X.Y.; Chen, L.; et al. Optimising first-line subtyping-based therapy in triple-negative breast cancer (FUTURE-SUPER): A multi-cohort, randomised, phase 2 trial. Lancet Oncol. 2024, 25, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.W.Y.; Sharma, K.; Chan, A.W.; Al Khaifi, M.; Oldenburger, E.; Chuk, E. A narrative review of the challenges and impact of breast cancer treatment in older adults beyond cancer diagnosis. Ann. Palliat. Med. 2024, 13, 1521–1529. [Google Scholar] [CrossRef]
- Luque-Michel, E.; Imbuluzqueta, E.; Sebastian, V.; Blanco-Prieto, M.J. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin. Drug Deliv. 2017, 14, 75–92. [Google Scholar] [CrossRef]
- Wolosowicz, M.; Prokopiuk, S.; Kaminski, T.W. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int. J. Mol. Sci. 2024, 25, 13691. [Google Scholar] [CrossRef]
- Wu, C.; Sun, W.; Shen, D.; Li, H.; Tong, X.; Guo, Y. TEM1 up-regulates MMP-2 and promotes ECM remodeling for facilitating invasion and migration of uterine sarcoma. Discov. Oncol. 2023, 14, 5. [Google Scholar] [CrossRef]
- Abdelmawgoud, H.; El Awady, R.R. Effect of Sirtuin 1 inhibition on matrix metalloproteinase 2 and Forkhead box O3a expression in breast cancer cells. Genes Dis. 2017, 4, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Li, T.; Tang, X.; Zhao, W.; Guo, R.; Cun, X.; Zang, S.; Zhang, Z.; Li, M.; He, Q. Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy. Nanoscale 2021, 13, 13328–13343. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, S.; Xu, Y.; Zuo, S.; Zha, Z.; Ke, W.; He, C.; Ge, Z. Smart asymmetric vesicles with triggered availability of inner cell-penetrating shells for specific intracellular drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 17727–17735. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wang, H.; Cui, H.; Wang, Y.; Zhang, M.; Li, H.; Liu, Y.; Wang, J.; Chen, Q.; Zhao, Y. Synthetic genomic nanomedicine with triple-responsiveness for systemic anti-tumor therapy. J. Colloid Interface Sci. 2024, 672, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Ke, W.; Dirisala, A.; Toh, K.; Tanaka, M.; Li, J. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 2023, 198, 114895. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Guo, J.; Yu, B.; Yu, Y.; Liu, C. Light-activated PEG deshielding core-shell nanoparticles for enhanced chemo-photodynamic combination therapy. Nanoscale 2023, 15, 9783–9791. [Google Scholar] [CrossRef]
- Zalba, S.; Ten Hagen, T.L.M.; Burgui, C.; Garrido, M.J. Stealth nanoparticles in oncology: Facing the PEG dilemma. J. Control. Release 2022, 351, 22–36. [Google Scholar] [CrossRef]
- Sui, D.; Wang, Y.; Sun, W.; Wei, L.; Li, C.; Gui, Y.; Qi, Z.; Liu, X.; Song, Y.; Deng, Y. Cleavable-branched polymer-modified liposomes reduce accelerated blood clearance and enhance photothermal therapy. ACS Appl. Mater. Interfaces 2023, 15, 32110–32120. [Google Scholar] [CrossRef]
- Dariva, C.G.; Figueiredo, J.P.H.; Ferreira, C.; Laranjo, M.; Botelho, M.F.; Fonseca, A.C.; Coelho, J.F.J.; Serra, A.C. Development of red-light cleavable PEG-PLA nanoparticles as delivery systems for cancer therapy. Colloids Surf. B: Biointerfaces 2020, 196, 111354. [Google Scholar] [CrossRef]
- Zhu, L.; Kate, P.; Torchilin, V.P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012, 6, 3491–3498. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Toh, K.; Liu, X.; Dirisala, A.; Ke, W.; Wen, P.; Zhou, H.; Wang, Z.; Xiao, S.; et al. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer. Adv. Mater. 2021, 33, e2105254. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.G.O.; Costa, A.L.; Pereira, C. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle. Int. J. Hydrog. Energy 2019, 44, 14536–14549. [Google Scholar] [CrossRef]
- Parakkal, S.C.; Datta, R.; Muthu, S.; Al-Saadi, A.A. Structure of molecule, density gradient, orbital locator and reactivity of 5,6-dichloro-1-cyclopentyl-2-(methylsulfinyl)-1H-benzimidazole- potent inhibitor of map kinase. J. Mol. Struct. 2023, 1289, 135794. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, X.; Russell, P.; Li, J.; Pan, W.; Fu, J.; Zhang, A. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022, 233, 113323. [Google Scholar] [CrossRef]
- Echeverry-Vargas, L.; Ocampo-Carmona, L.; Gutiérrez, L. Molecular dynamic simulation of the interaction of a deep eutectic solvent based on tetraethylammonium bromide with La3+ in acidic media. Minerals 2024, 14, 711. [Google Scholar] [CrossRef]
- Congrave, D.G.; Hsu, Y.T.; Batsanov, A.S.; Beeby, A.; Bryce, M.R. Sky-blue emitting bridged diiridium complexes: Beneficial effects of intramolecular pi-pi stacking. Dalton. Trans. 2018, 47, 2086–2098. [Google Scholar] [CrossRef]
- Hernandez-Bures, A.; Pieper, J.B.; Bidot, W.A.; O’Dell, M.; Sander, W.E.; Maddox, C.W. Survey of dermatophytes in stray dogs and cats with and without skin lesions in Puerto Rico and confirmed with MALDI-TOF MS. PLoS ONE 2021, 16, e0257514. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Li, W.; Chen, Q.; Shao, J.; Zhang, J.; Wang, Y.; Li, Y. Developing a novel P-glycoprotein inhibitor and pairing it with oral paclitaxel liposomes for enhanced cancer therapy. Biomed. Pharmacother. 2024, 180, 117577. [Google Scholar] [CrossRef]
- Ma, P.; Mumper, R.J. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today 2013, 8, 313–331. [Google Scholar] [CrossRef]
- Liu, H.; He, S.; Niu, L.Y.; Gao, X.W.; Feng, K.; Yang, S.; Shao, J.; Zhao, W.; Xie, N.; Yang, Q.Z. Peptide photowrapping of gold-silica nanocomposites for constructing MMP-responsive drug capsules for chemo-photothermal therapy. Chem. Commun. 2023, 59, 5059–5062. [Google Scholar] [CrossRef]
- Karhana, S.; Dabral, S.; Garg, A.; Bano, A.; Agarwal, N.; Khan, M.A. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing. J. Cell. Biochem. 2023, 124, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Dewaker, V.; Park, S.T.; Jun Lee, J.; Kim, H.S. Discovery and exploration of small molecule binders for CT83: Computational insights from homology modeling, virtual screening, MD simulations, interaction fingerprint, and network communications. ACS Omega 2025, 10, 22884–22908. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, J.; Chen, Q.; Ni, M.; Zhang, J.; Wu, Y.; Jia, R.; Wang, Y. Design, synthesis, evaluation, and SAR of 5-phenylisoindoline derivatives, a potent class of small-molecule inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction. J. Med. Chem. 2025, 68, 7291–7312. [Google Scholar] [CrossRef] [PubMed]
- Le, H.T.; Nguyen, D.P.L.; Jung, G.T.; Kim, E.; Yang, S.H.; Lee, S.M.; Lee, E.A.; Jung, W.; Kim, T.W.; Kim, K.P. Enrichment and MALDI-TOF MS analysis of phosphoinositides in brain tissue. J. Am. Soc. Mass Spectrom. 2024, 35, 1069–1075. [Google Scholar] [CrossRef]
- Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J. Correction to “A two-dimensional biodegradable niobium carbide (Mxene) for photothermal tumor eradication in NIR-I and NIR-II biowindows”. J. Am. Chem. Soc. 2020, 142, 10567. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Zhang, R.; Kong, Z. DAB2IP-knocking down resulted in radio-resistance of breast cancer cells is associated with increased hypoxia and vasculogenic mimicry formation. Int. J. Radiat. Biol. 2023, 99, 1595–1606. [Google Scholar] [CrossRef]
Liposomes | Size (nm) | Zeta (mV) | PDI | EE (%) | DL (%) |
---|---|---|---|---|---|
Lip | 136.8 ± 0.3 | 8.1 ± 0.5 | 0.057 ± 0.002 | 91.4 ± 4.0 | 4.41 ± 0.26 |
Lip-PEG2K | 186.5 ± 1.4 | −23.6 ± 0.4 | 0.078 ± 0.003 | 92.7 ± 3.5 | 4.17 ± 0.43 |
S-Peps | 158.9 ± 4.2 | −25.8 ± 0.9 | 0.095 ± 0.003 | 94.6 ± 2.1 | 4.22 ± 0.41 |
S-Peps-PEG5K | 179.9 ± 0.7 | −26.3 ± 0.3 | 0.060 ± 0.002 | 90.3 ± 4.5 | 3.99 ± 0.21 |
Liposomes | Raw Materials | Molar Ratio |
---|---|---|
Lip | EPC:Chol:PTX | 45:50:5 |
Lip-PEG2k | EPC:Chol:Chol-PEG2k-NHS:PTX | 45:45:5:5 |
S-Peps | EPC:Chol:Chol-PEG2k-GPLGVRG:PTX | 45:45:5:5 |
S-Peps-PEG5k | EPC:Chol:Chol-PEG2k-GPLGVRG-PEG5k:PTX | 45:45:5:5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, Y. Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery. Pharmaceuticals 2025, 18, 1042. https://doi.org/10.3390/ph18071042
Zhao X, Li Y. Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery. Pharmaceuticals. 2025; 18(7):1042. https://doi.org/10.3390/ph18071042
Chicago/Turabian StyleZhao, Xingyu, and Yinghuan Li. 2025. "Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery" Pharmaceuticals 18, no. 7: 1042. https://doi.org/10.3390/ph18071042
APA StyleZhao, X., & Li, Y. (2025). Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery. Pharmaceuticals, 18(7), 1042. https://doi.org/10.3390/ph18071042