A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ratiometric Fluorescent Probes
2.3. Preparation of Electrospun Ratiometric Fluorescent Films
2.4. Scanning Electron Microscopy (SEM) of Indicator Films
2.5. Laser Confocal Image of the Indicator Film
2.6. Fourier Transform Infrared Spectroscopy (FTIR) of Indicator Films
2.7. Water Contact Angle (WCA) of the Indicator Film
2.8. Stability of Indicator Films
2.9. Response of Indicator Films to TMA
2.10. Application of Indicator Films for Livestock Meat Freshness Monitoring
2.11. Statistical Analysis
3. Results and Discussion
3.1. Optical Properties of 5(6)-FAM and RHB
3.2. Construction and Ratio Optimization of FAM@RHB Fluorescent Probe
3.3. UV–Vis Spectra of FAM@RHB
3.4. FAM@RHB Assay for TMA
3.5. Microstructure of the Indicator Film
3.6. Hydrophobicity of the Indicator Film
3.7. Laser Confocal Images of the Indicator Films
3.8. FTIR Spectral Analysis of the Indicator Film
3.9. Storage Stability of the Indicator Film
3.10. Fluorescent Color Response of Indicator Films to TMA
3.11. Application of Indicator Film in Livestock Meat Freshness Monitoring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.Y.; Liu, C.A.P.; Li, Z.H.; Huang, X.W.; Zhai, X.D.; Hu, X.T.; Zhang, X.A.; Zhang, D.; Zou, X.B. Detection of Low Chromaticity Difference Foreign Matters in Soy Protein Meat Based on Hyperspectral Imaging Technology. Spectrosc. Spectr. Anal. 2022, 42, 1299–1305. [Google Scholar] [CrossRef]
- Fan, L.; Chen, Y.; Zeng, Y.; Yu, Z.; Dong, Y.; Li, D.; Zhang, C.; Ye, C. Application of visual intelligent labels in the assessment of meat freshness. Food Chem. 2024, 460, 140562. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liang, L.; Yan, X.; Zou, X.; Wang, T.; Liu, X.; Li, J. Detection of Freshness Indexes of Imported Chilled Beef Using Hyperspectral Imaging Technology. Food Sci. 2020, 41, 315–323. [Google Scholar]
- Zhang, D.; Wang, Y.; Geng, W.; Liu, H. Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sens. Actuators B-Chem. 2019, 285, 546–552. [Google Scholar] [CrossRef]
- Lee, E.-J.; Shin, H.-S. Development of a freshness indicator for monitoring the quality of beef during storage. Food Sci. Biotechnol. 2019, 28, 1899–1906. [Google Scholar] [CrossRef]
- Shi, T.; Hu, H.; Xiong, Z.; Wang, L.; Yuan, L.; Gao, R. Application and Mechanism of High-Sensitivity Indicator Film for Monitoring Fish Freshness. Food Sci. 2023, 44, 150–158. [Google Scholar]
- Hashim, S.B.; Tahir, H.E.; Lui, L.; Zhang, J.; Zhai, X.; Mahdi, A.A.; Ibrahim, N.A.; Mahunu, G.K.; Hassan, M.M.; Xiaobo, Z. Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. Food Chem. 2023, 399, 133824. [Google Scholar] [CrossRef]
- Shao, X.; Lin, H.; Wang, Z.; Li, Y.; Chen, Q. Design and application of portable intelligent rice freshness detection system. Food Mach. 2023, 39, 45–52,104. [Google Scholar]
- Guo, Z.; Zhang, P.; Li, Z.; Xu, B.; Shi, J.; Zou, X.; Chen, J. Advance of Food Intelligent Storage and Packaging Technology and High-end Equipment. J. Chin. Inst. Food Sci. Technol. 2025, 25, 12–25. [Google Scholar]
- Wang, K.; Wang, R.; Li, Y.; Bai, F.; Gao, R.; Wang, J.; Xu, P.; Zhao, Y. Effects of alpha-Tocopherol and Vacuum Packaging on the Quality of Sturgeon Surimi Incorporated with Chicken Meat during Frozen Storage. Food Sci. 2021, 42, 195–204. [Google Scholar]
- Zhang, Z.; Zhou, R.; Ke, L.; Li, J.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Xu, F.; Yun, D.; Yong, H.; Liu, J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll. 2022, 124, 107293. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, H.; Liu, Z.; Li, C.; Feng, X.; Chen, L. Ammonia/pH super-sensitive colorimetric labels based on gellan gum, sodium carboxymethyl cellulose, and dyes for monitoring freshness of lamb meat. Int. J. Biol. Macromol. 2024, 274, 133227. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Yuan, S.; Shi, S.; Wang, Y.; Liu, L.; Song, L.; Dong, T. Amine-responsive PVA-based fluorescent indicator films incorporating β-Glucan/FITC for visual detection of chilled meat freshness. Food Biosci. 2024, 62, 105584. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yu, Z.; Ye, C.; Pan, L.; Song, Y. Principle, development and application of time-temperature indicators for packaging. Pack. Technol. Sci. 2023, 36, 833–853. [Google Scholar] [CrossRef]
- Jia, R.; Tian, W.; Bai, H.; Zhang, J.; Wang, S.; Zhang, J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 2019, 10, 795. [Google Scholar] [CrossRef]
- Zhou, J.; Bi, X.; Li, L.; You, T. Research progress of synthesis of carbon dots and fluorescent sensor based on carbon dots for mercury detection. Trans. Chin. Soc. Agric. Eng. 2020, 36, 134–142. [Google Scholar]
- Hu, X.T.; Shi, J.Y.; Li, Y.X.; Shi, Y.Q.; Li, W.T.; Zou, X.B. Sensitive Determination of Trypsin in Urine Using Carbon Nitride Quantum Dots and Gold Nanoclusters. Spectrosc. Spectr. Anal. 2019, 39, 2901–2906. [Google Scholar]
- Yuan, H.; Li, Y.; Lv, J.; An, Y.; Guan, D.; Liu, J.; Tu, C.; Wang, X.; Zhou, H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules 2023, 28, 5604. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Peng, D.; Zhou, Y.; Zhuang, J.; Zhang, X.; Lei, B.; Liu, Y.; Hu, C. pH-Responsive carbon dots with red emission for real-time and visual detection of amines. J. Mater. Chem. C 2020, 8, 11563–11571. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.; Wang, J.; Zhang, Z.; Du, X.; Zhang, J.; Wang, J. Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Hydrogen Sulfide in Food Spoilage, Living Cells, and Zebrafish. J. Agric. Food Chem. 2022, 70, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Cao, S.; Jin, B.; Yuan, X.; Han, Y.; Wang, K. Construction of a Novel Fluorescent Probe for On-site Measuring Hydrogen Sulfide Levels in Food Samples. Foods Anal. Methods 2019, 12, 852–858. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, C.; He, J.; Hou, X. A dual-color ratiometric fluorescence sensor of biogenic amines with dye encapsulated covalent organic framework for meat freshness. Lwt-Food Sci. Technol. 2024, 209, 116788. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. [Google Scholar] [CrossRef]
- Shi, J.Y.; Li, W.T.; Hu, X.T.; Shi, Y.Q.; Zou, X.B. A New Ratiometric Fluorescence Probe Based on CuNCs and CQDs and Its Application in the Detection of Hg2+. Spectrosc. Spectr. Anal. 2019, 39, 3925–3931. [Google Scholar]
- Xing, Y.; Zhu, Y.; Tang, Y.; Mao, Y.; Han, J.; Wang, Y.; Ni, L. Construction and application of a ratiometric fluorescent probe for detecting endogenous ClO~. Chin. J. Anal. Lab. 2020, 39, 772–776. [Google Scholar]
- Sun, Y.; Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Li, Z. A ratiometric fluorescent sensor based on silicon quantum dots and silver nanoclusters for beef freshness monitoring. Foods 2023, 12, 1464. [Google Scholar] [CrossRef]
- Hu, X.; Cao, H.; Dong, W.; Tang, J. Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission. Talanta 2021, 233, 122480. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Hu, X.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Shi, J.; Zou, X. Visual detection of nitrite in sausage based on a ratiometric fluorescent system. Food Control 2019, 106, 106704. [Google Scholar] [CrossRef]
- Long, L.; Han, Y.; Yuan, X.; Cao, S.; Liu, W.; Chen, Q.; Wang, K.; Han, Z. A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples. Food Chem. 2020, 331, 127359. [Google Scholar] [CrossRef]
- Fang, X.; Liu, T.; Xue, C.; Xue, G.; Wu, M.; Liu, P.; Hammock, B.D.; Lai, W.; Peng, J.; Zhang, C. Competitive ratiometric fluorescent lateral flow immunoassay based on dual emission signal for sensitive detection of chlorothalonil. Food Chem. 2024, 433, 137200. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, C.; Zhao, Q.; Yang, Y.; Yang, S.; Zhang, R.; Wang, Y.; Wang, K.; Qian, J.; Long, L. Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food. Foods 2024, 13, 1758. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W.; Yang, Z.; Tong, F.; Wang, L.; Zhu, L.; Yu, Z.; Zheng, M.; Xiao, Y.; Zhou, Y. Intelligent biogenic amine-responsive fluorescent label for visual and real-time monitoring of seafood freshness. Food Chem. 2022, 388, 132963. [Google Scholar] [CrossRef]
- Han, G.; Cai, J.; Yang, L.; Li, X.; Wang, X. Fluorescent Paper Based on CQDs/Rhodamine B: A Ratio and Sensitive Detection Platform for On-Site Fe3+ Sensing. Molecules 2024, 29, 1658. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Shi, W.; Yu, Y.; Jiang, C.; Zhang, H.; Zhang, P.; Sun, W. Intelligent pH-responsive ratiometric fluorescent nanofiber films for visual and real-time seafood freshness monitoring. Food Chem. 2025, 466, 142240. [Google Scholar] [CrossRef]
- Chen, L.-J.; Wang, J.-Y.; Zhao, X.; Yan, X.-P. Biogenic amine-responsive ratiometric fluorescent microneedle sensor for real-time visualization of meat freshness. Food Chem. 2025, 482, 144144. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, P.; Bi, M.; Xu, L.; Du, F.; Ming, J. Monitoring Xylem Transport in the Stem of Lilium lancifolium Using Fluorescent Dye 5(6)-Carboxyfluorescein Diacetate. Phyton-Int. J. Exp. Bot. 2024, 93, 1057–1066. [Google Scholar] [CrossRef]
- Li, K.; Cai, J.; Zhang, Z.; Wu, S. Research Progress of Electrospun Natural Polymer Water Treatment Membranes. Polymer Bull. 2022, 35, 28–36. [Google Scholar]
- Li, K.; Cai, J.; Zhang, Z.; Tao, J.; Wu, J.; Zeng, S.; Wu, S. Application of electrospun bio-based nanofibrous membranes in water treatment. J. Funct. Mater. 2021, 52. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Zhang, J.; Liu, L.; Shi, J.; Muhammad, A.; Zhai, X.; Zou, X.; Xiao, J.; Li, Z.; et al. Development of nanofiber indicator with high sensitivity for pork preservation and freshness monitoring. Food Chem. 2022, 381, 132224. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Guan, Y.; Huang, X.; Arslan, M.; Shi, J.; Li, Z.; Gong, Y.; Holmes, M.; Zou, X. High- sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem. 2022, 394, 133439. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, T.; Jiang, Q.; Li, J.; Ali, U.; Miao, Y.; Farooq, S.; Hu, Y.; Zhang, H. Real-time shrimp freshness detection by anthocyanin-enriched wheat gluten/gelatin electrospun nanofiber films. Food Chem. 2025, 469, 142542. [Google Scholar] [CrossRef]
- Zhai, X.; Xue, Y.; Song, W.; Sun, Y.; Shen, T.; Zhang, X.; Li, Y.; Ding, F.; Zhang, D.; Zhou, C.; et al. A ratiometric fluorescent electrospun film with high amine sensitivity and stability for visual monitoring of livestock meat freshness. Food Chem.-X 2024, 24, 101801. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhai, X.; Shi, J.; Zou, X.; Xue, Y.; Sun, Y.; Sun, W.; Zhang, J.; Huang, X.; Li, Z.; et al. A ratiometric fluorescence amine sensor based on carbon quantum dot-loaded electrospun polyvinylidene fluoride film for visual monitoring of food freshness. Food Chem. 2024, 434, 137423. [Google Scholar] [CrossRef] [PubMed]
- Povedailo, V.A.; Tikhomirov, S.A.; Yakovlev, D.L.; Lysenko, I.L.; Fan, F.; Shmanai, V.V. Fluorescence of the 5-and 6-Carboxyfluorescein Bifluorophores. J. Appl. Spectrosc. 2021, 88, 33–39. [Google Scholar] [CrossRef]
- Kravets, L.; Vinogradov, I.; Rossouw, A.; Gorberg, B.; Nechaev, A.; Apel, P. Functionalization of PET track-etched membranes with electrospun PVDF nanofibers for hybrid membranes fabrication in water desalination. Sep. Purif. Technol. 2025, 371, 133395. [Google Scholar] [CrossRef]
- Rashid, A.; Qayum, A.; Liang, Q.; Kang, L.; Raza, H.; Chi, Z.; Chi, R.; Ren, X.; Ma, H. Preparation and characterization of ultrasound-assisted essential oil-loaded nanoemulsions stimulated pullulan-based bioactive film for strawberry fruit preservation. Food Chem. 2023, 422, 136254. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Abdel-Samie, M.A.; Cui, H.; Lin, L. Unraveling the inhibitory mechanism of clove essential oil against Listeria monocytogenes biofilm and applying it to vegetable surfaces. LWT-Food Sci. Technol. 2020, 134, 110210. [Google Scholar] [CrossRef]
- Kang, L.; Liang, Q.; Chen, H.; Zhou, Q.; Chi, Z.; Rashid, A.; Ma, H.; Ren, X. Insights into ultrasonic treatment on the properties of pullulan/oat protein/nisin composite film:mechanical, structural and physicochemical properties. Food Chem. 2023, 402, 134237. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, Q.; Li, C.; Khin, M.N.; Lin, L. Schiff base cross-linked dialdehyde β-cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on ready-to-eat foods. Food Hydrocoll. 2023, 141, 108744. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, M.; Deng, J.; Cheng, C.; Xu, Z.; Hou, W.; Yi, Y.; McClements, D.J.; Chen, S. Intelligent carrageenan-based composite films containing color indicator-loaded nanoparticles for monitoring fish freshness. Food Packag. Shelf Life 2025, 47, 101420. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Zhang, J.; Yang, Z.; Sun, Y.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Povey, M.; et al. Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag. Shelf Life 2020, 26, 100595. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, S.; Chen, M.; Ma, H.; Wang, T.; Liu, T.; Yin, J.; Sun, M.; Wu, C.; Su, G.; et al. Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chem. Eng. J. 2023, 454, 140492. [Google Scholar] [CrossRef]
- GB 5009.228-2016; National Food Safety Standard—Determination of Volatile Basic Nitrogen in Foods. Standards Press of China: Beijing, China, 2016.
- Zhang, X.; Chen, X.; Dai, J.; Cui, H.; Lin, L. A pH indicator film based on dragon fruit peel pectin/cassava starch and cyanidin/alizarin for monitoring the freshness of pork. Food Packag. Shelf Life 2023, 40, 101215. [Google Scholar] [CrossRef]
- Bei, Y.; Arkin, K.; Zheng, Y.; Ma, X.; Zhao, J.; Jin, H.; Shang, Q. Construction of a ratiometric fluorescent probe for visual detection of urea in human urine based on carbon dots prepared from Toona sinensis leaves and 5-carboxyfluorescein. Anal. Chim. Acta 2023, 1240, 340733. [Google Scholar] [CrossRef]
- Sasazawa, K.; Yamada, Y.; Sawada, H. Preparation and properties of fluoroalkyl end-capped oligomer/fluoresceins nanocomposites. J. Mater. Sci. 2008, 43, 1366–1375. [Google Scholar] [CrossRef]
- Wen, D.; Liu, Q.; Cui, Y.; Kong, J.; Yang, H.; Liu, Q. DNA based click polymerization for ultrasensitive IFN-γ fluorescent detection. Sens. Actuators B-Chem. 2018, 276, 279–287. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, L.; Luo, X. Electrochemical Oxidation of Rhodamine B: Optimization and Degradation Mechanism. Int. J. Electrochem. 2017, 12, 4265–4276. [Google Scholar] [CrossRef]
- Bao, Y.; Cui, H.; Tian, J.; Ding, Y.; Tian, Q.; Zhang, W.; Wang, M.; Zang, Z.; Sun, X.; Li, D.; et al. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control 2022, 131, 108441. [Google Scholar] [CrossRef]
- Sali, R.; Naik, L.; Mohan, S. Optical and Microstructural Changes in 5(6)-Carboxyfluorescein Doped PVA. J. Polym. Compos. 2016, 4, 45–51. [Google Scholar]
- Ji, Y.; Liu, J.; Jiang, Y.; Liu, Y. Analysis of Raman and infrared spectra of poly(vinylidene fluoride) irradiated by KrF excimer laser. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 297–300. [Google Scholar] [CrossRef]
- Won, K.; Jang, N.Y.; Jeon, J. A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging. J. Agric. Food Chem. 2016, 64, 9675–9679. [Google Scholar] [CrossRef] [PubMed]
- Mokrzycki, W.; Tatol, M. Colour difference∆ EA survey. Mach. Graph. Vis 2011, 20, 383–411. [Google Scholar]
- Han, Q.; Yang, M.; Zhang, Z.; Bai, X.; Liu, X.; Qin, Z.; Zhang, W.; Wang, P.; Zhu, L.; Shu, Z.; et al. Amine vapor-responsive ratiometric sensing tag based on HPTS/TPB-PVA fluorescent film for visual determination of fish freshness. Food Chem. X 2024, 21, 101152. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Huang, T.; Yang, X.; Huang, J.; Huang, M. Preparation of an ammonia-responsive sensor based on bacterial cellulose film with enhanced AIE/ESIPT emission of fluorescent molecules bound to europium-based metal–organic framework. Chem. Eng. J. 2025, 513, 163034. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Cheng, J.; Xia, Y.; Duan, C.; Zhong, R.; Zhao, X.; Li, X.; Ni, Y. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring. Food Chem. 2024, 453, 139673. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Pina, J.; Magalhães, J.M.C.S.; Barroso, M.F.; Durães, L. One-pot synthesis of lanthanide-doped silica film as a ratiometric fluorescent probe for selective amine vapours detection. Opt. Mater. 2023, 145, 114396. [Google Scholar] [CrossRef]
- Huang, K.; Wang, L.; Deng, Y.; Zheng, H.; Wu, S.; Li, Z.; Lei, H.; Yu, Q.; Guo, Z. Development of amine-sensitive intelligent film with MIL-100(Fe) as function filler based on anthocyanins/pectin for monitoring chilled meat freshness. Int. J. Biol. Macromol. 2024, 270, 132463. [Google Scholar] [CrossRef]
- Teymouri, Z.; Shekarchizadeh, H.; Karami, K. Innovative real-time monitoring of fish freshness via agar-based film embedded with Cu-MOF colorimetric indicators. Chem. Eng. J. 2025, 510, 161751. [Google Scholar] [CrossRef]
- Zheng, M.; Ma, Q.; Li, L.; Wang, Y.; Suo, R.; Wang, W.; Sun, J.; Wang, J.; Liu, H. Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. LWT 2023, 175, 114417. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, L.; Yao, Y.; Zhong, K.; Yan, X.; Tang, L. A novel naphthol-malononitrile-based fluorescent dye capable of imaging amines in living cells and its polyvinyl alcohol film for real-time visual monitoring of fish freshness. J. Food Compos. Anal. 2025, 142, 107477. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Yin, H.; Jia, Z.; Shi, C.; Yue, Y. An ammonia-sensitive fluorescence sensor based on polyvinyl alcohol-graphene quantum dots/halloysite nanotubes hybrid film for monitoring fish freshness. Food Chem. 2024, 454, 139734. [Google Scholar] [CrossRef] [PubMed]
- GB 2707-2016; National Food Safety Standard—Fresh and Frozen Livestock and Poultry Products. Standards Press of China: Beijing, China, 2016.
No. | Probe | Visible Light/Fluorescence | Analytes | LOD | Linear Range | Liquids or Solid Sensors for Use | Food Type | Ref. |
---|---|---|---|---|---|---|---|---|
1 | βGlu-FITC | Fluorescence | Ammonia | —— | —— | PVA film | Pork | [14] |
2 | HPTS/TPB | Fluorescence | Ammonia | —— | —— | PVA film | Fish | [65] |
3 | BTCP-Ac@Eu-MOF | Fluorescence | Ammonia | 0.68 ppm | —— | Bacterial cellulose membrane | Chicken meat | [66] |
4 | FITC- Eu(Phen)2 | Fluorescence | Ammonia | 1.83 ppm | —— | LCNF film | Shrimp | [67] |
5 | Tb3+ and Eu3+ co-doped silica | Fluorescence | Amine | —— | —— | Filter paper | Fish | [68] |
6 | ANs@MIL-2 | Visible light | Ammonia | —— | —— | Pectin film | Chicken breasts | [69] |
7 | Cu-MOF | Visible light | Ammonia | 7.31 μM | —— | Agar film | Fish | [70] |
8 | FITC/PpIX | Fluorescence | Ammonia | 5.0–2.5 × 104 ppm | —— | CA film | Shrimp | [16] |
9 | CeNPs | Visible light | HX | 35 μM | 6.2–200 μM | Gelatin film | Shrimp | [71] |
10 | HYM | Fluorescence | Putrescine | 4.23 μM | 1.259–5.428 μM | PVA film | Fish | [72] |
11 | N-GQD | Fluorescence | Ammonia | 0.63 ppm | 20–500 ppm | PVA film | Fish | [73] |
12 | 5(6)-FAM/RHB | Fluorescence | Trimethylamine | 0.54 μM | —— | Electrospun films | Beef and pork | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, X.; Ma, X.; Sun, Y.; Xue, Y.; Ban, W.; Song, W.; Shen, T.; Li, Z.; Huang, X.; Sun, Q.; et al. A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness. Foods 2025, 14, 2200. https://doi.org/10.3390/foods14132200
Zhai X, Ma X, Sun Y, Xue Y, Ban W, Song W, Shen T, Li Z, Huang X, Sun Q, et al. A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness. Foods. 2025; 14(13):2200. https://doi.org/10.3390/foods14132200
Chicago/Turabian StyleZhai, Xiaodong, Xingdan Ma, Yue Sun, Yuhong Xue, Wanwan Ban, Wenjun Song, Tingting Shen, Zhihua Li, Xiaowei Huang, Qing Sun, and et al. 2025. "A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness" Foods 14, no. 13: 2200. https://doi.org/10.3390/foods14132200
APA StyleZhai, X., Ma, X., Sun, Y., Xue, Y., Ban, W., Song, W., Shen, T., Li, Z., Huang, X., Sun, Q., Wu, K., Chen, Z., Zou, W., Liu, B., Zhang, L., & Zhu, J. (2025). A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness. Foods, 14(13), 2200. https://doi.org/10.3390/foods14132200