Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Samples
2.2. Instrument and Apparatus
2.3. Cell Viability Assay
2.4. Cell Exposure for Bioaccumulation and Biotransformation Evaluation
2.5. Experimental Determination of Ccell and Cmedium
2.6. Data Analysis for Ccell and Cfree Prediction with MBM
2.7. Experimental Determination of Cfree
2.8. Data Analysis for BCF Determination
2.8.1. BCF Determination by In Vitro Experiment
2.8.2. BCF Determination by IVIVE Model
3. Results and Discussion
3.1. Cell Viability
3.2. Measured Concentrations of BDE-47 in the Culture Medium (Total and Free) and Inside Cells (Experimentally and by MBM)
3.3. BCF Prediction Using ZFL Cells
3.3.1. BCF Estimation Through In Vitro Assays Using ZFL Cells
3.3.2. Evaluation of ZFL Cells for BCF Prediction Using the IVIVE Model
3.4. Biotransformation of BDE-47 in ZFL Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertato, L.; Chirico, N.; Papa, E. Predicting the Bioconcentration Factor in Fish from Molecular Structures. Toxics 2022, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T. Lessons Learned from Alternative Methods and Their Validation for a New Toxicology in the 21st Century. J. Toxicol. Environ. Health-Part B Crit. Rev. 2010, 13, 277–290. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Guidel. Test. Chem. 2013, 2. Available online: https://www.oecd.org/en/publications/test-no-236-fish-embryo-acute-toxicity-fet-test_9789264203709-en.html (accessed on 19 October 2024).
- OECD. Test No. 249: Fish Cell Line Acute Toxicity: The RTgill-W1 Cell Line Assay. Guidel. Test. Chem. 2021. Available online: https://www.oecd.org/en/publications/test-no-249-fish-cell-line-acute-toxicity-the-rtgill-w1-cell-line-assay_c66d5190-en.html (accessed on 19 October 2024).
- Pree, K.L.; Bruce, E.D. Using in Vitro to in Vivo Extrapolation (IVIVE) to Develop Toxicity Metrics for Human Health Risk Assessment of Polybrominated Diphenyl Ethers (PBDE). Int. J. Environ. Stud. 2017, 74, 42–65. [Google Scholar] [CrossRef]
- Sanz-Landaluze, J.; Pena-Abaurrea, M.; Muñoz-Olivas, R.; Cámara, C.; Ramos, L. Zebrafish (Danio rerio) Eleutheroembryo-Based Procedure for Assessing Bioaccumulation. Environ. Sci. Technol. 2015, 49, 1860–1869. [Google Scholar] [CrossRef]
- OECD. Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure; OECD Publishing: Paris, France, 2012; Volume 3. [Google Scholar] [CrossRef]
- OECD. Test No. 280: Guidance Document on the Determination of in Vitro Intrinsic Clearance Using Cryopreserved Hepatocytes (RT-HEP) or Liver S9 Sub-Cellular Fractions (RT-S9) from Rainbow Trout and Extrapolation to in Vivo Intrinsic Clearance Series on Testing and Assessment. Guidel. Test. Chem. 2018. Available online: https://one.oecd.org/document/ENV/JM/MONO(2018)12/en/pdf (accessed on 19 October 2024).
- Nichols, J.W.; Huggett, D.B.; Arnot, J.A.; Fitzsimmons, P.N.; Cowan-Ellsberry, C.E. Toward Improved Models for Predicting Bioconcentration of Well-Metabolized Compounds by Rainbow Trout Using Measured Rates of in Vitro Intrinsic Clearance. Environ. Toxicol. Chem. 2013, 32, 1611–1622. [Google Scholar] [CrossRef]
- OECD. Test No. 319A: Determination of in Vitro Intrinsic Clearance Using Cryopreserved Rainbow Trout Hepatocytes (RT-HEP). Guidel. Test. Chem. 2018, 3. [Google Scholar] [CrossRef]
- OECD. Test No. 319B: Determination of in Vitro Intrinsic Clearance Using Rainbow Trout Liver S9 Sub-Cellular Fraction (RT-S9). Guidel. Test. Chem. 2018, 3. [Google Scholar] [CrossRef]
- De Oro-Carretero, P.; Sanz-Landaluze, J. In Vitro Approach to Refine Bioconcentration and Biotransformation Predictions of Organic Persistent Pollutants Using Cell Lines. Chemosphere 2024, 364, 143020. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.C.; Escher, B.I.; Mühlenbrink, M.; Henneberger, L.; Huchthausen, J.; König, M.; Schlichting, R.; Wiseman, S.; Berggren, E.; Daston, G.; et al. Modeling Exposure in the Tox21 in Vitro Bioassays. Chem. Res. Toxicol. 2017, 30, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Huchthausen, J.; Mühlenbrink, M.; König, M.; Escher, B.I.; Henneberger, L. Experimental Exposure Assessment of Ionizable Organic Chemicals in in Vitro Cell-Based Bioassays. Chem. Res. Toxicol. 2020, 33, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Butryn, D.M.; Chi, L.H.; Gross, M.S.; McGarrigle, B.; Schecter, A.; Olson, J.R.; Aga, D.S. Retention of Polybrominated Diphenyl Ethers and Hydroxylated Metabolites in Paired Human Serum and Milk in Relation to CYP2B6 Genotype. J. Hazard. Mater. 2020, 386, 121904. [Google Scholar] [CrossRef]
- United Nations Environmental Program. Stockholm Convention on Persistent Organic Pollutants (POPs), Text and Annexes; UNEP: Nairobi, Kenya, 2019. [Google Scholar]
- Li, M.; Gong, X.; Tan, Q.; Xie, Y.; Tong, Y.; Ma, J.; Wang, D.; Ai, L.; Gong, Z. A Review of Occurrence, Bioaccumulation, and Fate of Novel Brominated Flame Retardants in Aquatic Environments: A Comparison with Legacy Brominated Flame Retardants. Sci. Total Environ. 2024, 939, 173224. [Google Scholar] [CrossRef]
- Pereira, L.C.; de Souza, A.O.; Meireles, G.; Furio Franco-Bernardes, M.; Tasso, M.J.; Bruno, V.; Dorta, D.J.; Palma de Oliveira, D. Comparative Study of Genotoxicity Induced by Six Different PBDEs. Basic Clin. Pharmacol. Toxicol. 2016, 119, 396–404. [Google Scholar] [CrossRef]
- De Oro-Carretero, P.; Sanz-Landaluze, J. Miniaturized Method for the Quantification of Persistent Organic Pollutants and Their Metabolites in HepG2 Cells: Assessment of Their Biotransformation. Anal. Bioanal. Chem. 2023, 415, 4813–4825. [Google Scholar] [CrossRef]
- Grasse, N.; Massei, R.; Seiwert, B.; Scholz, S.; Escher, B.I.; Reemtsma, T.; Fu, Q. Impact of Biotransformation on Internal Concentrations and Specificity Classification of Organic Chemicals in the Zebrafish Embryo (Danio rerio). Environ. Sci. Technol. 2024, 58, 17898–17907. [Google Scholar] [CrossRef]
- Henneberger, L.; Mühlenbrink, M.; König, M.; Schlichting, R.; Fischer, F.C.; Escher, B.I. Quantification of Freely Dissolved Effect Concentrations in in Vitro Cell-Based Bioassays. Arch. Toxicol. 2019, 93, 2295–2305. [Google Scholar] [CrossRef]
- Brandts, I.; Garcia-Ordoñez, M.; Tort, L.; Teles, M.; Roher, N. Polystyrene Nanoplastics Accumulate in ZFL Cell Lysosomes and in Zebrafish Larvae after Acute Exposure, Inducing a Synergistic Immune Response: In Vitro without Affecting Larval Survival in Vivo. Environ. Sci. Nano 2020, 7, 2410–2422. [Google Scholar] [CrossRef]
- Agilent Technologies. Two-Way Splitter Kit with Makeup Gas Installation and Operation Guide; Agilent G3180B: Santa Clara, CA, USA, 2011. [Google Scholar]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.U. UFZ-LSER Database v3.2.1 [Internet]. Helmholtz Centre for Environmental Research-UFZ. 2017. Available online: https://www.ufz.de/index.php?de=31698&contentonly=1&m=0&lserd_data[mvc]=Public/start (accessed on 19 October 2024).
- Endo, S.; Mewburn, B.; Escher, B.I. Liposome and Protein-Water Partitioning of Polybrominated Diphenyl Ethers (PBDEs). Chemosphere 2013, 90, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Goss, K.U. Serum Albumin Binding of Structurally Diverse Neutral Organic Compounds: Data and Models. Chem. Res. Toxicol. 2011, 24, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Droge, S.T.J.; Goss, K.U. Polyparameter Linear Free Energy Models for Polyacrylate Fiber-Water Partition Coefficients to Evaluate the Efficiency of Solid-Phase Microextraction. Anal. Chem. 2011, 83, 1394–1400. [Google Scholar] [CrossRef]
- Gobas, F.A.P.C.; Zhang, X. Measuring Bioconcentration Factors and Rate Constants of Chemicals in Aquatic Organisms Under Conditions of Variable Water Concentrations and Short Exposure Time. Chemosphere 1961, 25, 1961–1971. [Google Scholar] [CrossRef]
- Mackay, D.; Fraser, A. Bioaccumulation of Persistent Organic Chemicals: Mechanisms and Models. n.d. [Online]. Available online: www.elsevier.com/locate/envpol (accessed on 19 October 2024).
- Black, S.R.; Nichols, J.W.; Fay, K.A.; Matten, S.R.; Lynn, S.G. Evaluation and Comparison of in Vitro Intrinsic Clearance Rates Measured Using Cryopreserved Hepatocytes from Humans, Rats, and Rainbow Trout. Toxicology 2021, 457, 152819. [Google Scholar] [CrossRef]
- Arnot Jon, A.; Gobas, F.A.P.C. A Generic QSAR for Assessing the Bioaccumulation Potential of Organic Chemicals in Aquatic Food Webs. QSAR Comb. Sci. 2003, 22, 337–345. [Google Scholar] [CrossRef]
- Yang, J.; Chan, K.M. Evaluation of the Toxic Effects of Brominated Compounds (BDE-47, 99, 209, TBBPA) and Bisphenol A (BPA) Using a Zebrafish Liver Cell Line, ZFL. Aquat. Toxicol. 2015, 159, 138–147. [Google Scholar] [CrossRef]
- Cetin, B.; Odabasi, M. Measurement of Henry’s Law Constants of Seven Polybrominated Diphenyl Ether (PBDE) Congeners as a Function of Temperature. Atmos. Environ. 2005, 39, 5273–5280. [Google Scholar] [CrossRef]
- Dimitrijevic, D.; Fabian, E.; Nicol, B.; Funk-Weyer, D.; Landsiedel, R. Toward Realistic Dosimetry in Vitro: Determining Effective Concentrations of Test Substances in Cell Culture and Their Prediction by an in Silico Mass Balance Model. Chem. Res. Toxicol. 2022, 35, 1962–1973. [Google Scholar] [CrossRef]
- Rostamnezhad, F.; Hossein Fatemi, M. Comprehensive Investigation of Binding of Some Polycyclic Aromatic Hydrocarbons with Bovine Serum Albumin: Spectroscopic and Molecular Docking Studies. Bioorg. Chem. 2022, 120, 105656. [Google Scholar] [CrossRef]
- Ma, Q.; Bai, H.; Wang, C.; Xi, G.C.; Zhang, Q.; Meng, X.S.; Chen, Y.X.; Li, J.R.; Ma, H.J.; Guo, L.H. Investigation of Noncovalent Interactions between Hydroxylated Polybrominated Diphenyl Ethers and Bovine Serum Albumin Using Electrospray Ionization-Ion Mobility-Mass Spectrometry. Int. J. Mass Spectrom. 2014, 357, 34–44. [Google Scholar] [CrossRef]
- Klinčić, D.; Dvoršćak, M.; Jagić, K.; Mendaš, G.; Herceg Romanić, S. Levels and Distribution of Polybrominated Diphenyl Ethers in Humans and Environmental Compartments: A Comprehensive Review of the Last Five Years of Research. Environ. Sci. Pollut. Res. 2020, 27, 5744–5758. [Google Scholar] [CrossRef]
- De Oro-Carretero, P.; Sanz-Landaluze, J. Bioaccumulation and Biotransformation of BDE-47 Using Zebrafish Eleutheroembryos (Danio rerio). Environ. Toxicol. Chem. 2023, 42, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, K.; Björk, M.; Burreau, S.; Gilek, M. Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels (mytilus edulis). Environ. Toxicol. Chem. 1999, 18, 1218–1224. [Google Scholar] [CrossRef]
- Vidal-Liñán, L.; Bellas, J.; Fumega, J.; Beiras, R. Bioaccumulation of BDE-47 and Effects on Molecular Biomarkers Acetylcholinesterase, Glutathione-S-Transferase and Glutathione Peroxidase in Mytilus galloprovincialis Mussels. Ecotoxicol. 2015, 24, 292–300. [Google Scholar] [CrossRef]
- Mhadhbi, L.; Fumega, J.; Beiras, R. Uptake Kinetics, Bioconcentration and Debromination of BDE-47 in Juvenile Marine Fish Psetta maxima. Water Air Soil Pollut. 2014, 225, 2072. [Google Scholar] [CrossRef]
- Lebrun, J.D.; Leroy, D.; Giusti, A.; Gourlay-Francé, C.; Thomé, J.P. Bioaccumulation of Polybrominated Diphenyl Ethers (PBDEs) in Gammarus pulex: Relative Importance of Different Exposure Routes and Multipathway Modeling. Aquat. Toxicol. 2014, 154, 107–113. [Google Scholar] [CrossRef]
- European Chemicals Agency. Technical Guidance Document on Risk Assessment. Part II. Protection Institute for Health and Consumer. Eur. Chem. Bur. 2003, 337. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/196375 (accessed on 9 June 2025).
- Arnot Jon, A.; Gobas, F.A.P.C. A Review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) Assessments for Organic Chemicals in Aquatic Organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Petersen, G.I.; Kristensen, P. Bioaccumulation of Lipophilic Substances in Fish Early Life Stages. Environ. Toxicol. Chem. 1998, 17, 1385–1395. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.1. 2012. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2347246 (accessed on 19 October 2024).
- ARC Arnot Research and Consulting Inc. EAS-E Suite (Ver.0.972-BETA). 2024. Available online: https://www.plastiverse.org/tools/eas-e-suite (accessed on 19 October 2024).
- Molina-Fernández, N.; Rainieri, S.; Muñoz-Olivas, R.; De Oro-Carretero, P.; Sanz-Landaluze, J. Development of a Method for Assessing the Accumulation and Metabolization of Antidepressant Drugs in Zebrafish (Danio rerio) Eleutheroembryos. Anal. Bioanal. Chem. 2021, 413, 5169–5179. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Fedrizzi, D.; Kosfeld, V.; Schlechtriem, C.; Ganz, V.; Derrer, S.; Rentsch, D.; Hollender, J. Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environ. Sci. Technol. 2020, 54, 4400–4408. [Google Scholar] [CrossRef]
- Klüver, N.; Vogs, C.; Altenburger, R.; Escher, B.I.; Scholz, S. Development of a General Baseline Toxicity QSAR Model for the Fish Embryo Acute Toxicity Test. Chemosphere 2016, 164, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Lungu-Mitea, S.; Vogs, C.; Carlsson, G.; Montag, M.; Frieberg, K.; Oskarsson, A.; Lundqvist, J. Modeling Bioavailable Concentrations in Zebrafish Cell Lines and Embryos Increases the Correlation of Toxicity Potencies across Test Systems. Environ. Sci. Technol. 2021, 55, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhu, Y.; Liu, C.; Liu, H.; Giesy, J.P.; Hecker, M.; Lam, M.H.W.; Yu, H. Accumulation and Biotransformation of BDE-47 by Zebrafish Larvae and Teratogenicity and Expression of Genes along the Hypothalamus-Pituitary-Thyroid Axis. Environ. Sci. Technol. 2012, 46, 12943–12951. [Google Scholar] [CrossRef]
- Kang, Y.; Cheung, K.C.; Wong, M.H. Polycyclic Aromatic Hydrocarbons (PAHs) in Different Indoor Dusts and Their Potential Cytotoxicity Based on Two Human Cell Lines. Environ. Int. 2010, 36, 542–547. [Google Scholar] [CrossRef]
- Sun, J.; Liu, J.; Yu, M.; Wang, C.; Sun, Y.; Zhang, A.; Wang, T.; Lei, Z.; Jiang, G. In Vivo Metabolism of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Young Whole Pumpkin Plant. Environ. Sci. Technol. 2013, 47, 3701–3707. [Google Scholar] [CrossRef]
- Wiseman, S.B.; Wan, Y.; Chang, H.; Zhang, X.; Hecker, M.; Jones, P.D.; Giesy, J.P. Polybrominated Diphenyl Ethers and Their Hydroxylated/Methoxylated Analogs: Environmental Sources, Metabolic Relationships, and Relative Toxicities. Mar. Pollut. Bull. 2011, 63, 179–188. [Google Scholar] [CrossRef]
- Castranova, D.; Lawton, A.; Lawrence, C.; Baumann, D.P.; Best, J.; Coscolla, J.; Doherty, A.; Ramos, J.; Hakkesteeg, J.; Wang, C.; et al. The Effect of Stocking Densities on Reproductive Performance in Laboratory Zebrafish (Danio rerio). Zebrafish 2011, 8, 141–146. [Google Scholar] [CrossRef]
- Cheng, D.; Shami, G.J.; Morsch, M.; Chung, R.S.; Braet, F. Ultrastructural Mapping of the Zebrafish Gastrointestinal System as a Basis for Experimental Drug Studies. Biomed. Res. Int. 2016, 2016, 8758460. [Google Scholar] [CrossRef]
- Henneberger, L.; Klüver, N.; Mühlenbrink, M.; Escher, B. Trout and Human Plasma Protein Binding of Selected Pharmaceuticals Informs the Fish Plasma Model. Environ. Toxicol. Chem. 2020, 41, 559–568. [Google Scholar] [CrossRef] [PubMed]
Cnom (mg·L−1) | Cfree, exp | % Cfree, exp | |
---|---|---|---|
BDE-47 | 1.8 | (0.4 ± 0.2) µg·L−1 | 0.06 ± 0.03 |
2.6 | (1.14 ± 0.04) µg·L−1 | 0.079 ± 0.003 | |
PHE | 10 | (0.22 ± 0.02) mg·L−1 | 2.4 ± 0.2 |
20 | (0.52 ± 0.04) mg·L−1 | 2.9 ± 0.2 |
Cnominal BDE-47 | 1.8 mg·L−1 | 2.6 mg·L−1 |
---|---|---|
BCFexp, 24 h | 50 | 51 |
BCFexp, 48 h | 83 | 55 |
BCFexp, 72 h | 100 | 80 |
BCFCfree,exp, 24 h | 2.2 105 | 1.2 105 |
BCFCfree,exp, 48 h | 2.5 105 | 2.1 105 |
BCFCfree,exp, 72 h | 3.0 105 | 2.81 105 |
BCFMBM; 24 h, 48 h, 72 h | 1.4 105 | 1.4 105 |
BCFk Ccell exp/Cw | 30 | 42 |
BCFk Ccell MBM/Cw | 10 | 23 |
BCFk Ccell exp/Cfree,exp | 74,300 | 63,435 |
BCFk Ccell MBM/Cfree,exp | 8588 | 38,558 |
BCFIVIVE, ZF | 13,885 | 14,926 |
BCFIVIVE, RT | 7221 | 14,184 |
BCFIVIVE, ZF, exp | 22,614 | 38,948 |
BCFIVIVE, RT, exp | 26,306 | 48,635 |
Reference | In Vivo Exposure/QSAR Equation | Life Stage | BCF (L·kg−1) |
---|---|---|---|
[38] | BCF48 h (1 µg·L−1) | Zebrafish larvae | 16,392 |
BCF48 h (10 µg·L−1) | 4106 | ||
BCFk (1 µg·L−1) | 36,363 | ||
BCFk (10 µg·L−1) | 7295 | ||
[39] | BCFk (0.31 ng·L−1) | Mytilus galloprovincialis (mussel) | 26,000 |
[40] | BCFk (8 µg·L−1) | 10,900 | |
[41] | BCFk (1 µg·L−1) | young Psetta maxima | 24,125 |
BCFk (0.1 µg·L−1) | 15,531 | ||
BCFk (0.001 µg·L−1) | 33,103 | ||
[42] | BCFk (1 µg·L−1) | Gammarus pulex | 5000 |
[43] | Aquatic organism | 46,200 | |
[44] | Fish | 7180 | |
[45] | Zebrafish larvae | 247,000 | |
[46] | Fish | 13,600 | |
[47] | Total water | Generic lab fish | 11,100 |
Dissolved water | Generic lab fish | 30,800 |
Model | 5-MeO (Cells/Larvae Samples) | 3-OH (Medium Samples) | 5-OH (Medium Samples) | |||
---|---|---|---|---|---|---|
Cnominal BDE-47 | 1.6 mg·L−1 | 2.8 mg·L−1 | 1.6 mg·L−1 | 2.8 mg·L−1 | 1.6 mg·L−1 | 2.8 mg·L−1 |
ZFL cells (24 h) | 0.11 | 0.17 | 0.07 | 0.08 | 0.07 | 0.13 |
ZFL cells (48 h) | 0.12 | 0.18 | 0.08 | 0.08 | 0.10 | 0.15 |
ZFL cells (72 h) | 0.15 | 0.20 | 0.09 | 0.15 | 0.11 | 0.18 |
HepG2 cells (48 h) | 0.10 | 0.13 | 0.2 | |||
Zebrafish embryos (48 h) | 0.06–0.13 | - | - |
Time Exposure | Experiment 1.8 mg·L−1 | Experiment 2.6 mg·L−1 |
---|---|---|
24 h | 77 | 79 |
48 h | 70 | 82 |
72 h | 74 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Oro-Carretero, P.; Sanz-Landaluze, J. Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations. J. Xenobiot. 2025, 15, 93. https://doi.org/10.3390/jox15030093
De Oro-Carretero P, Sanz-Landaluze J. Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations. Journal of Xenobiotics. 2025; 15(3):93. https://doi.org/10.3390/jox15030093
Chicago/Turabian StyleDe Oro-Carretero, Paloma, and Jon Sanz-Landaluze. 2025. "Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations" Journal of Xenobiotics 15, no. 3: 93. https://doi.org/10.3390/jox15030093
APA StyleDe Oro-Carretero, P., & Sanz-Landaluze, J. (2025). Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations. Journal of Xenobiotics, 15(3), 93. https://doi.org/10.3390/jox15030093