Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = internal and external air

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5885 KB  
Article
Performance Analysis of Phase Change Material Walls and Different Window-to-Wall Ratios in Elderly Care Home Buildings Under Hot-Summer and Cold-Winter Climate
by Wuying Chen, Bao Xie and Lu Nie
Buildings 2026, 16(2), 367; https://doi.org/10.3390/buildings16020367 - 15 Jan 2026
Viewed by 225
Abstract
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls [...] Read more.
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls with the window-to-wall ratio (WWR). PCM wall performance was tested experimentally, and EnergyPlus simulations were conducted to assess building energy use for WWR values ranging from 0.25 to 0.50, with and without PCM. The phase change material (PCM) used in this study is paraffin (an organic phase change material), which has a melting point of 26 °C and can store and release heat during temperature fluctuations. The experimental results show that PCM walls effectively reduce heat transfer, lowering the surface temperatures of external, central, and internal walls by 3.9 °C, 3.8 °C, and 3.7 °C, respectively, compared to walls without PCM. The simulation results predict that the PCM wall can reduce air conditioning energy consumption by 8.2% in summer and total annual energy consumption by 14.2%. The impact of WWR is orientation-dependent: east and west façades experience significant cooling penalties as WWR increases and should be maintained at or below 0.30; the south façade achieves optimal performance at a WWR of 0.40, with the lowest total energy load (111.2 kW·h·m-2); and the north façade performs best at the lower bound (WWR = 0.25). Under the combined strategy (south wall with PCM and WWR = 0.40), annual total energy consumption is reduced by 9.8% compared to the baseline (no PCM), with indoor temperatures maintained between 18 and 26 °C. This range is selected based on international thermal comfort standards (e.g., ASHRAE) and comfort research specifically targeting the elderly population, ensuring comfort for elderly occupants. These findings offer valuable guidance for energy-efficient design in similar climates and demonstrate that the synergy between PCM and WWR can reduce energy consumption while maintaining thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 3885 KB  
Article
Design and Evaluation of an Additively Manufactured UAV Fixed-Wing Using Gradient Thickness TPMS Structure and Various Shells and Infill Micro-Porosities
by Georgios Moysiadis, Savvas Koltsakidis, Odysseas Ziogas, Pericles Panagiotou and Dimitrios Tzetzis
Aerospace 2026, 13(1), 50; https://doi.org/10.3390/aerospace13010050 - 2 Jan 2026
Viewed by 427
Abstract
Unmanned Aerial Vehicles (UAVs) have become indispensable tools, playing a pivotal role in diverse applications such as rescue missions, agricultural surveying, and air defense. They significantly reduce operational costs while enhancing operator safety, enabling new strategies across multiple domains. The growing demand for [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become indispensable tools, playing a pivotal role in diverse applications such as rescue missions, agricultural surveying, and air defense. They significantly reduce operational costs while enhancing operator safety, enabling new strategies across multiple domains. The growing demand for UAVs calls for structural components that are not only robust and lightweight, but also cost-efficient. This research introduces a novel approach that employs a pressure distribution map on the external surface of a UAV wing to optimize its internal structure through a variable-thickness TPMS (Triply Periodic Minimal Surface) design. Beyond structural optimization, the study explores a second novel approach with the use of filaments containing chemical blowing agents printed at different temperatures for both the infill and shell, producing varying porosities. As a result, the tailoring of density and weight is achieved through two different methods, and case studies were developed by combining them. Compared to the conventionally manufactured wing, a weight reduction of up to 7% was achieved while the wing could handle the aerodynamic loads under extreme conditions. Beyond enabling lightweight structures, the process has the potential to be substantially faster and more cost-effective, eliminating the need for molds and advanced composite materials such as carbon fiber sheets. Full article
Show Figures

Figure 1

22 pages, 8230 KB  
Article
Thermal Dynamics of Xylem and Soil–Root Temperatures in Olive and Almond Trees and Their Relationship with Air Temperature
by Miguel Román-Écija, Blanca B. Landa, Luca Testi and Juan A. Navas-Cortés
Agronomy 2026, 16(1), 102; https://doi.org/10.3390/agronomy16010102 - 30 Dec 2025
Viewed by 556
Abstract
Air temperature is commonly used to represent plant thermal conditions, although temperatures within woody tissues and the soil–root zone can differ substantially under field conditions. This study characterized the thermal dynamics of xylem tissue and the soil–root interface in almond and olive orchards [...] Read more.
Air temperature is commonly used to represent plant thermal conditions, although temperatures within woody tissues and the soil–root zone can differ substantially under field conditions. This study characterized the thermal dynamics of xylem tissue and the soil–root interface in almond and olive orchards under Mediterranean field conditions in Southern Spain. Using long-term in-field measurements, temperatures were monitored in branch and trunk xylem tissues and at the soil–root interface, and regression models were developed to provide empirical correction relationships between air and internal temperatures across seasons and sensor position. Branch xylem temperatures closely matched air temperature for both minima and maxima. In contrast, trunk xylem and the soil–root interface showed pronounced thermal buffering. Trunk xylem maximum temperature was significantly (3.4 to 5.4 °C) lower than air temperature during summer. Shaded soil–root interface temperatures were 5.2 to 9.0 °C lower than air temperature in spring and summer but 5.9 to 11.7 °C higher than air temperature in autumn and winter. These patterns indicate a strong capacity of woody tissues and the soil–root system to moderate external thermal conditions. By quantifying air-to-tissue and air-to-soil relationships under field conditions, this study provides microclimatic data that can improve agronomic models and temperature-driven disease risk frameworks for vascular pathogens infecting woody crops. Full article
Show Figures

Figure 1

21 pages, 2619 KB  
Article
Energy Consumption Analysis and Energy-Saving Renovation Research on the Building Envelope Structure of Existing Thermal Power Plants in China’s Hot Summer and Cold Winter Regions
by Li Qin, Ji Qi, Yunpeng Qi and Wei Shi
Buildings 2026, 16(1), 169; https://doi.org/10.3390/buildings16010169 - 30 Dec 2025
Viewed by 334
Abstract
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. [...] Read more.
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. Consequently, the energy consumption characteristics and energy-saving logic of their building envelopes remain understudied. This paper innovatively employs a combined experimental approach of field monitoring and energy consumption simulation to quantify the actual thermal performance of building envelopes (particularly exterior walls, doors, and windows) under current operating conditions, identifying key components for energy-saving retrofits of the main plant building envelope. Due to the fact that most thermal power plants were designed relatively early, their envelope structures generally have problems such as poor insulation performance and insufficient air tightness, resulting in severe energy loss under extreme weather conditions. An energy consumption simulation model was established using GBSEARE software. By focusing on heat transfer coefficients of exterior walls and windows as key parameters, a design scheme for energy-saving retrofits of building envelopes in thermal power plants located in hot-summer, cold-winter regions was proposed. The results show that there is a temperature gradient along the height direction inside the main plant, and the personnel activity area in the middle activity level of the steam engine room is the most unfavorable area of the thermal environment of the steam engine room. The heat transfer coefficient of the envelope structure does not meet the current code requirements. The over-standard rate of the exterior walls is 414.55%, and that of the exterior windows is 177.06%. An energy-saving renovation plan is proposed by adopting a composite color compression panel for the external wall, selecting 50 mm flame-retardant polystyrene EPS foam board for the heat preservation layer, adopting 6 high-transmittance Low-E + 12 air + 6 plastic double-cavity for the external windows, and adding movable shutter sunshade. The energy-saving rate of the building reached 55.32% after the renovation. This study provides guidance for energy-efficient retrofitting of existing thermal power plants and for establishing energy-efficient design standards and specifications for future new power plant construction. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

23 pages, 4848 KB  
Article
Development Virtual Sensors for Vehicle In-Cabin Temperature Prediction Using Deep Learning
by Hanyong Lee, Woonki Na and Seongkeun Park
Appl. Sci. 2026, 16(1), 300; https://doi.org/10.3390/app16010300 - 27 Dec 2025
Viewed by 258
Abstract
The internal temperature of a vehicle is influenced by various factors such as the external environment (temperature, solar radiation, and humidity) and the air conditioning habits of the driver. Even when the air conditioning system is set to a specific temperature, the internal [...] Read more.
The internal temperature of a vehicle is influenced by various factors such as the external environment (temperature, solar radiation, and humidity) and the air conditioning habits of the driver. Even when the air conditioning system is set to a specific temperature, the internal temperature can vary depending on the time, weather, and driver’s manipulation of the system. In this study, we developed and evaluated a deep learning-based vehicle cabin temperature prediction system using CAN (Controller Area Network) data collected from the vehicle and temperature data from thermometers installed on the roof and seats of an electric vehicle (EV). The models used in the temperature prediction system were evaluated by applying various deep learning architectures that consider the characteristics of time series data, and their accuracy was measured using the mean absolute percentage error (MAPE) metric. Additionally, a low-pass filter was applied to the prediction results, which reduced the MAPE from 4.2798% to 4.1433%, indicating an improvement in prediction accuracy. Among the deep learning models, the model with the highest performance achieved an MAPE of 3.5287%, corresponding to an approximate error of 0.88 °C at an actual temperature of 25 °C. The results of this study contribute significantly to enhancing the accuracy and reliability of EV interior temperature predictions, enabling more precise simulations, and improving the thermal comfort and energy efficiency of EVs. The proposed temperature-prediction system is expected to contribute to the comfort of EV users and overall performance of vehicles, thereby strengthening the role of EVs as a sustainable means of transportation. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 257 KB  
Article
The Polish (Un)Sustainability Paradox: A Critical Analysis of High SDG Rankings and Low Administrative Effectiveness
by Marta du Vall and Marta Majorek
Sustainability 2026, 18(1), 165; https://doi.org/10.3390/su18010165 - 23 Dec 2025
Viewed by 392
Abstract
This article analyzes the effectiveness of Poland’s central government administration in implementing the 2030 Agenda for Sustainable Development, addressing the context of high-level strategic declarations versus actual policy outcomes. The study employs a qualitative critical document analysis, conducted as comprehensive desk research. This [...] Read more.
This article analyzes the effectiveness of Poland’s central government administration in implementing the 2030 Agenda for Sustainable Development, addressing the context of high-level strategic declarations versus actual policy outcomes. The study employs a qualitative critical document analysis, conducted as comprehensive desk research. This method involves a comparative analysis of official strategic and policy documents (e.g., “Strategy for Responsible Development”) against the empirical findings of external audits from the Supreme Audit Office (NIK), supplemented by national (GUS) and international statistical data. The analysis reveals a fundamental “implementation gap.” While Poland has successfully created a robust strategic and institutional framework, reflected in high international SDG rankings, this success masks deep deficits and stagnation in key areas, particularly in the environmental dimension. Audits consistently confirm systemic problems with inter-ministerial coordination, ensuring adequate financing, and the lack of reliable evaluation for key programs, such as “Clean Air” or the circular economy roadmap. Considering these findings, the study concludes that operational effectiveness does not match strategic declarations. The analysis identifies systemic weaknesses and recommends urgent, targeted strategic actions to bridge the gap between policy and practice, particularly by strengthening coordination and evaluation mechanisms. Full article
38 pages, 20552 KB  
Article
Energy Performance and Optimization of Window Insulation System for Single-Story Heated Industrial Building Retrofits in the Severe Cold Regions of Northeast China
by Meng Chen and Lin Feng
Buildings 2025, 15(24), 4572; https://doi.org/10.3390/buildings15244572 - 18 Dec 2025
Viewed by 258
Abstract
Optimizing window insulation is crucial for reducing heat loss and energy use in industrial buildings in Northeast China’s severe cold regions. Based on six typical building prototypes identified via cluster analysis of field survey data, this study used DesignBuilder (Version 6.1.0.006) to simulate [...] Read more.
Optimizing window insulation is crucial for reducing heat loss and energy use in industrial buildings in Northeast China’s severe cold regions. Based on six typical building prototypes identified via cluster analysis of field survey data, this study used DesignBuilder (Version 6.1.0.006) to simulate the influence of key parameters for insulation materials (type, thickness, emissivity) and installation methods (position, air cavity, operation). Simulations reveal that the energy-saving potential is inversely proportional to a building’s existing thermal performance, reaching a maximum of 10.3%. Regarding material selection, results indicate that reducing surface emissivity from 0.92 to 0.05 effectively substitutes for approximately 20 mm of physical insulation thickness. Transparent films prioritize daytime comfort, raising nighttime temperatures by 1.5 °C, whereas opaque panels excel at nighttime insulation with a 2.28 °C increase. Techno-economic analysis identifies low-emissivity foil combined with EPS or XPS as the most cost-effective strategy, achieving rapid payback periods of 0.6–3.2 years. Regarding installation, an external configuration with a 20 mm air cavity and vertical operation was identified as optimal, yielding 1.5–2.0% greater energy savings than an internal setup. This study provides tailored retrofitting strategies for industrial building windows in these regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 5783 KB  
Article
A Conjugate Heat Transfer Approach to Analyze the Thermal Performance of a 1 MW Synchronous Motor–Generator
by ByungKon Kim and Jun Su Park
Electronics 2025, 14(24), 4867; https://doi.org/10.3390/electronics14244867 - 10 Dec 2025
Viewed by 263
Abstract
This study used a 3D numerical model to investigate the heat-flow behavior of a 1 MW synchronous motor–generator by creating a conjugate heat transfer model that included the rotating parts. The computational model involved complex solid/fluid interfaces, a rotor–stator gap, and a fan-driven [...] Read more.
This study used a 3D numerical model to investigate the heat-flow behavior of a 1 MW synchronous motor–generator by creating a conjugate heat transfer model that included the rotating parts. The computational model involved complex solid/fluid interfaces, a rotor–stator gap, and a fan-driven cooling path that passes through a stator’s external flow path in order to identify local temperature fields and flow distributions. Under design conditions, localized high-temperature regions were observed in the rotor coil because the cooling air was heated, and the airflow then diverged through the stator’s internal channels. On the contrary, periodic low-temperature areas were formed around the stator’s circumference as a result of conductive heat diffusion into the outer casing. A correlation was derived describing a relationship where the peak temperature decreased in a clear logarithmic manner as the cooling air mass flow rate increased. We confirmed that a cooling flow rate of at least 2.0 kg/s is needed to keep the rotor coil temperature below 120 °C within its operational limit under design points. Furthermore, the functional form of the temperature–flow rate relationship remained logarithmic, and the correlation coefficients in this relationship changed linearly with heat generation, even under off-design conditions, where the total heat generation was reduced to 88% of the design value and the ambient temperature was lowered. The study results will provide a practical basis for swiftly estimating peak temperature for various operating scenarios and for determining cooling paths and fan geometry to avoid repeating expensive simulations. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

17 pages, 3949 KB  
Article
Contribution of Leading Natural Climate Variability Modes to Winter SAT Changes in the Arctic in the Early 20th Century
by Daria D. Bokuchava, Vladimir A. Semenov, Tatiana A. Aldonina, Mirseid Akperov and Ekaterina Y. Shtol
Atmosphere 2025, 16(12), 1391; https://doi.org/10.3390/atmos16121391 - 9 Dec 2025
Viewed by 433
Abstract
The causes of Arctic surface air temperature rise and the corresponding sea ice decline in the early 20th century are still a matter of debate. One hypothesis, considering the major contribution of the internal variability to the early warming event, is the leading [...] Read more.
The causes of Arctic surface air temperature rise and the corresponding sea ice decline in the early 20th century are still a matter of debate. One hypothesis, considering the major contribution of the internal variability to the early warming event, is the leading one. This study aims to assess the contributions of the Northern Hemisphere’s leading natural variability modes to winter temperature changes in the Arctic during 20th century. Two methodologies were compared to remove externally forced signals from Arctic SAT observations—linear detrending and subtracting the multi-model ensemble mean, thereby isolating internal variability. The study introduces a novel perspective on regional evaluation across four equal-area Arctic sectors (European, Asian, Pacific, and North Atlantic), uncovering a heterogeneous spatial pattern of the Arctic SAT modulation by climate indices. Statistical analysis reveals northern extratropical modes explain 66% (median) of total variance, with dominance of AMO index in HadCRUT5 detrended observations and only 30% with PDO index prominent in observations-CMIP6 residuals. It is revealed that forced-signal removal data outperforms the detrending procedure in isolating unforced internal dynamics. AMO’s susceptibility to external forcings like greenhouse gases/aerosols is also underscored by the results of the study. Future directions advocate dynamic approaches like large initial-condition ensembles prescribing sea surface temperature/sea ice or isolating modes for causal attribution beyond statistical links. Full article
(This article belongs to the Section Climatology)
Show Figures

Graphical abstract

32 pages, 19883 KB  
Article
Enabling Sustainable After-Market Aircraft Electrification: Aerodynamic Impact of High-Performance Battery Cooling Ports
by Mark Hargreaves, Dean Koumakis, Keith Joiner and Dylan D. Dooner
Aerospace 2025, 12(12), 1053; https://doi.org/10.3390/aerospace12121053 - 26 Nov 2025
Viewed by 475
Abstract
The transition to electric aircraft for zero-emission transport requires integrating thermal management systems for high-performance batteries without incurring significant weight, balance, or aerodynamic penalties. This study focuses on the aerodynamic penalties associated with air-cooling systems that can compound the presently unavoidable reduction in [...] Read more.
The transition to electric aircraft for zero-emission transport requires integrating thermal management systems for high-performance batteries without incurring significant weight, balance, or aerodynamic penalties. This study focuses on the aerodynamic penalties associated with air-cooling systems that can compound the presently unavoidable reduction in endurance imposed by current battery energy density limitations. Building on previous research into battery installation layouts and internal cooling flows, this study is the first to investigate the lift-to-drag (L/D) optimisation for the multiple wing-mounted inlets and outlets necessary for air-cooling batteries in the wing of an electrified aircraft. Wing leading-edge inlets and NACA (National Advisory Committee for Aeronautics) ducts were analysed by systematically varying their layout, number, and dimensions. The analysis evaluated their effects on the wing’s lift, drag, and moment to maximise the L/D. Multiple highly efficient simulation test designs were developed to screen for the main factors to identify the best inlet and outlet configuration, resulting in 66 different Computational Fluid Dynamics (CFD) simulations in Ansys Fluent. Following this, three CFD verification cases of the best configuration were conducted to verify the cooling effect by combining both internal and external flow simulations with heat generation. Compared to the baseline wing of the carbon combustion aircraft, the best configuration caused a 1.75% reduction in L/D, range, and endurance. While the aerodynamic penalty is now minimised, the internal battery pack layout requires further optimisation to re-establish uniform cooling across the battery pack. Designers may still be able to separate the CFD analysis of the internal and external flow regimes with idealised inlets and outlets; however, more whole-field CFD iterations are needed to guide such subdivision to a viable and safe design for wing-mounted batteries. Further, the margins are such that wing-mounted electrification warrants careful instrumented validation in an aircraft. These findings provide crucial design guidance for sustainable aviation, particularly to enable after-market electrification projects. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

18 pages, 8171 KB  
Article
Experimental Study of the Discharging Process of Sorption Heat Storage Units Filled with 13X Zeolite
by Beata Pytlik, Daniel Smykowski, Piotr Szulc, Tomasz Tietze, Beata Anwajler and Artur Chorążyczewski
Materials 2025, 18(23), 5327; https://doi.org/10.3390/ma18235327 - 26 Nov 2025
Viewed by 535
Abstract
The paper presents the experimental study of the zeolite heat storage unit discharging process in a laboratory scale. The Authors focused on the discharging process, which utilizes adsorption of water, in the form of steam, on zeolite, because the adsorption process is considered [...] Read more.
The paper presents the experimental study of the zeolite heat storage unit discharging process in a laboratory scale. The Authors focused on the discharging process, which utilizes adsorption of water, in the form of steam, on zeolite, because the adsorption process is considered as more challenging in terms of reaction kinetics and heat transfer. The Authors designed and built a laboratory stand with a sorption heat storage unit filled with 13X zeolite and with a separated heat transfer fluid system, where air was used for discharging. Dynamic parameters including the temperature of inlet and outlet air and the temperature distribution inside the zeolite bed during the discharging process were investigated. The gathered measurement data were used to determine the heat fluxes and to compute dynamic heat balance of the thermal storage unit including internal and external heat losses. It was demonstrated that the applied design and scale of the thermal storage unit allows to reach the thermal power over 300 W and heat the discharging air from 40 °C to over 110 °C. The innovative aspect of the study is the improvement of operational stability of the sorption heat storage unit through the implementation of a heat exchanger design that separates the heat transfer fluid from the zeolite bed, as well as a control system with a neural network layer for predicting the mass flow rate of steam. Full article
Show Figures

Figure 1

24 pages, 8438 KB  
Article
Cooling Performance of Night Ventilation and Climate Adaptation of Vernacular Buildings in the Turpan Basin with an Extremely Hot–Arid Climate
by Qingqing Han, Lei Zhang, Wuxing Zheng, Guochen Sang and Yiyun Zhu
Energies 2025, 18(23), 6135; https://doi.org/10.3390/en18236135 - 23 Nov 2025
Viewed by 576
Abstract
This study investigates the cooling potential of night ventilation and the climate adaptability of local vernacular buildings in the Turpan basin, aiming to identify passive energy-saving design strategies. A rural building with an air-drying shelter was selected for summer indoor environment measurements (two [...] Read more.
This study investigates the cooling potential of night ventilation and the climate adaptability of local vernacular buildings in the Turpan basin, aiming to identify passive energy-saving design strategies. A rural building with an air-drying shelter was selected for summer indoor environment measurements (two stages: all-day window closure vs. night ventilation), and a numerical model was established to simulate the impacts of window-to-wall ratio and window shading projection factor on the indoor environment. Results indicate that night ventilation introduces cool outdoor air to replace indoor hot air, cools building components, improves thermal comfort, and reduces cooling energy demand. Without additional cooling technology, increasing the window-to-wall ratio lowers nighttime temperatures but increases Degree Discomfort Hours, while appropriately sized shading devices mitigate daytime overheating from larger windows. Benefiting from the high thermal storage capacity of earth-appressed walls, semi-underground rooms offer better comfort with lower temperatures and higher humidity; for aboveground rooms, orientation is critical due to intense solar radiation. The air-drying shelter reduces solar radiant heat absorption and inhibits convective/radiative heat transfer on the roof’s external surface, significantly lowering its temperature from noon to midnight. This leads to notable reductions in the roof’s internal surface temperature (1.02 °C in the sealed stage, 2.09 °C during night ventilation) and the average indoor temperature (1.70 °C). Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

15 pages, 5148 KB  
Article
Assessing the Effect of Insulation Materials Used for Energy Conservation in Buildings on Indoor Radon—The Scale Model Room Approach
by Ilaria Rocchetti, Manuela Portaro, Paola Tuccimei, Gianfranco Galli, Michele Soligo, Cristina Longoni and Dino Vasquez
Appl. Sci. 2025, 15(22), 12106; https://doi.org/10.3390/app152212106 - 14 Nov 2025
Viewed by 378
Abstract
This study investigates how external insulation materials used for energy efficiency affect indoor radon accumulation, using a scale model room built with ignimbrite, a highly radon-emitting volcanic rock. Two insulation materials—mineral wool (open-cell, 98% porosity) and extruded polystyrene (XPS, closed-cell, >95%)—were applied to [...] Read more.
This study investigates how external insulation materials used for energy efficiency affect indoor radon accumulation, using a scale model room built with ignimbrite, a highly radon-emitting volcanic rock. Two insulation materials—mineral wool (open-cell, 98% porosity) and extruded polystyrene (XPS, closed-cell, >95%)—were applied to the outer walls of the model room. Their effects were tested in combination with three internal radon barriers (silane-terminated membrane, silicone sealant, bitumen membrane) and under varying ventilation rates (0.11 h−1 and 0.44 h−1). Radon concentrations were measured using calibrated detectors over five experimental phases. Without ventilation, XPS increased indoor radon by up to +351%, while mineral wool showed a milder effect (+26%). The silicone sealant reduced radon by up to 90%, outperforming other barriers. Ventilation significantly lowered radon levels, simulating the “flushing” effect of wind. The combination of impermeable insulation and lack of air exchange led to the highest radon accumulation. High-performance insulation can compromise indoor air quality by trapping radon, especially in buildings with high geogenic radon potential. Effective mitigation requires pairing insulation with high-performing radon barriers and adequate ventilation. These findings highlight the need to balance energy efficiency with indoor environmental safety. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

18 pages, 3088 KB  
Article
Numerical Study on Wall-Thickness Deformation of Flexible Risers Under Combined Internal–External Flows
by Zihan Sun, Jianguo Lin, Dong Wang and Yanni Hao
Fluids 2025, 10(11), 290; https://doi.org/10.3390/fluids10110290 - 7 Nov 2025
Viewed by 415
Abstract
Wall-thickness deformation is a critical indicator of fatigue risk in flexible risers exposed to vortex-induced vibration (VIV), especially under combined internal and external flow conditions. This study examines the spanwise evolution and distribution of wall-thickness deformation in a riser traversing air and water. [...] Read more.
Wall-thickness deformation is a critical indicator of fatigue risk in flexible risers exposed to vortex-induced vibration (VIV), especially under combined internal and external flow conditions. This study examines the spanwise evolution and distribution of wall-thickness deformation in a riser traversing air and water. The effects of external flow velocity, internal flow velocity, and internal fluid density on in-line (IL) and cross-flow (CF) wall deformation are systematically analyzed at characteristic positions. The results show that wall deformation exhibits strong spatial variability and media property dependence: IL deformation in the air-exposed segment is amplified under lock-in conditions due to lower damping, while the submerged segment experiences consistently larger deformation driven by added-mass effects. Internal flow influences wall-thickness response in a non-monotonic manner, and increased internal fluid density suppresses deformation while shifting the dominant frequency. These findings demonstrate that wall-thickness deformation is a sensitive and integrative response to fluid–structure interaction, offering a direct basis for identifying high-risk zones and improving fatigue-resistant design in deep-sea riser systems. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 1223 KB  
Article
Heat Pipe Heating and Cooling Building Modules: Thermal Properties and Possibilities of Their Use in Polish Climatic Conditions
by Karolina Durczak and Bernard Zawada
Energies 2025, 18(19), 5274; https://doi.org/10.3390/en18195274 - 4 Oct 2025
Viewed by 783
Abstract
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of [...] Read more.
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of heat pipes embedded in a several-centimeter layer of concrete. Water-based central heating and chilled water systems were used as the heat and cooling source. The heat pipes are filled with a thermodynamic medium that changes state in repeated gas–liquid cycles. The advantage of this solution is the use of heat pipes as a heating and cooling element built into the wall, instead of a traditional water system. This solution offers many operational benefits, such as reduced costs for pumping the heat medium. This paper presents an analysis of the potential of using heat pipe modules for heating and cooling in real-world buildings in Poland. Taking into account the structural characteristics of the rooms under consideration (i.e., internal wall area, window area), an analysis was conducted to determine the potential use of the modules for space heating and cooling. The analysis was based on rooms where, according to the authors, the largest possible use of internal and external wall surfaces is possible, such as hotels and schools. Based on the simulations and calculations, it can be concluded that the modules can be effectively used in Poland as a real heating and cooling element: standalone, covering the entire heating and cooling demand of a room, e.g., a hotel room, or as a component working with an additional system, e.g., air cooling and heating in school buildings. The changes in outdoor air temperature, during the year analyzed in the article, were in the range of −24/+32 °C. Full article
Show Figures

Figure 1

Back to TopTop