You are currently viewing a new version of our website. To view the old version click .
Buildings
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

18 December 2025

Energy Performance and Optimization of Window Insulation System for Single-Story Heated Industrial Building Retrofits in the Severe Cold Regions of Northeast China

and
School of Architecture, Tianjin University, Tianjin 300072, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section Building Energy, Physics, Environment, and Systems

Abstract

Optimizing window insulation is crucial for reducing heat loss and energy use in industrial buildings in Northeast China’s severe cold regions. Based on six typical building prototypes identified via cluster analysis of field survey data, this study used DesignBuilder (Version 6.1.0.006) to simulate the influence of key parameters for insulation materials (type, thickness, emissivity) and installation methods (position, air cavity, operation). Simulations reveal that the energy-saving potential is inversely proportional to a building’s existing thermal performance, reaching a maximum of 10.3%. Regarding material selection, results indicate that reducing surface emissivity from 0.92 to 0.05 effectively substitutes for approximately 20 mm of physical insulation thickness. Transparent films prioritize daytime comfort, raising nighttime temperatures by 1.5 °C, whereas opaque panels excel at nighttime insulation with a 2.28 °C increase. Techno-economic analysis identifies low-emissivity foil combined with EPS or XPS as the most cost-effective strategy, achieving rapid payback periods of 0.6–3.2 years. Regarding installation, an external configuration with a 20 mm air cavity and vertical operation was identified as optimal, yielding 1.5–2.0% greater energy savings than an internal setup. This study provides tailored retrofitting strategies for industrial building windows in these regions.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.