Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (758)

Search Parameters:
Keywords = industrial lignins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11360 KB  
Article
Dynamic Behaviors of the Loess Modified by Fly Ash and Lignin Under the Coupled Effect of Dry-Wet and Frozen-Thaw Cycles
by Qian Wang, Chen Li, Xiumei Zhong, Shan Yan, Haiping Ma, Xuefeng Hu and Songhan Wu
Water 2025, 17(17), 2512; https://doi.org/10.3390/w17172512 - 22 Aug 2025
Viewed by 102
Abstract
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under [...] Read more.
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under complex environmental conditions, including dry and wet cycles, as well as freeze-thaw cycles, remains unclear. In this study, the dynamic and structural characteristics of modified loess mixing fly ash and lignin under the coupling effect of dry-wet/freeze-thaw cycles were investigated through laboratory tests, including dry-wet–freeze/thaw cycle tests, dynamic triaxial tests, and scanning electron microscope tests. The cumulative plastic deformation characteristics of the improved loess under different dry-wet cycles and freeze-thaw cycles were analyzed. Combined with the scanning electron microscope test results, the attenuation mechanism of the strength of the improved loess under dry-wet/freeze-thaw coupling was analyzed. The results show that the dry-wet/freeze-thaw cycles have a significant effect on the dynamic deformation of the improved loess. With the increase in dry-wet/freeze-thaw cycles, the cumulative plastic deformation of the improved loess increases logarithmically with the rise in vibration times. With the increase in the number of dry-wet/freeze-thaw cycles, the improved loess becomes loose. The micro-cracks formed in the modified loess due to the connection and directional arrangement of the pores, and become wider and wider with the increase in dry-wet/freeze-thaw cycles. The apparent porosity, average porous diameter, and pore fractal dimension of the improved loess increase, while the probability entropy decreases. Compared with freeze-thaw cycles, dry-wet cycles had a greater effect on the microstructure of the improved loess, which made the deterioration of the dynamic stability of the improved loess more obvious. Full article
Show Figures

Figure 1

23 pages, 11076 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 145
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 1269 KB  
Article
High-Yield Vanillin Production Through RSM-Optimized Solid-State Fermentation Process from Brewer’s Spent Grains in a Single-Use Bag Bioreactor
by Ewa Szczepańska, Witold Pietrzak and Filip Boratyński
Molecules 2025, 30(17), 3452; https://doi.org/10.3390/molecules30173452 - 22 Aug 2025
Viewed by 166
Abstract
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically [...] Read more.
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically synthesized or lignin-derived vanillin. The application of biocatalysis for sustainable manufacturing of food ingredients, pharmaceutical intermediates, and fine chemicals is the key concept of modern industrial biotechnology. The main goal of this research was to conduct optimization procedures aimed at intensifying the microbial hydrolysis process of the lignin-rich plant raw materials and further bioconversion of the released ferulic acid to vanillin. The tests were performed in the solid-state fermentation system with strains selected during the screening stage on agri-food by-products such as brewer’s spent grain. A specially designed single-use bag bioreactor was used to carry out the process on a preparative scale with the most effective strain. The experiment was designed using the RSM, which allowed for an increase in biosynthesis efficiency from 363 mg/kg to 1413 mg/kg (an increase of 389%). The progress of the process was controlled by the use of chromatographic techniques (HPLC) by quantitative determination of vanillin content in the obtained extracts. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

36 pages, 2136 KB  
Review
Valorization of Agro-Industrial Lignin as a Functional Polymer for Sustainable Wastewater Treatment
by Elena Ungureanu, Bogdan-Marian Tofanica, Eugen Ulea, Ovidiu C. Ungureanu, Maria E. Fortună, Răzvan Rotaru, Irina Volf and Valentin I. Popa
Polymers 2025, 17(16), 2263; https://doi.org/10.3390/polym17162263 - 21 Aug 2025
Viewed by 380
Abstract
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the [...] Read more.
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the remediation of aqueous media contaminated with heavy metals. The study evaluates lignin’s behavior toward nine metal(loid) ions: arsenic, cadmium, chromium, cobalt, copper, iron, nickel, lead, and zinc. Adsorption performance was systematically investigated under static batch conditions, optimizing key parameters, with equilibrium and kinetic data modeled using established isotherms and rate equations. Surface characterization and seed germination bioassays provided supporting evidence. Unmodified Sarkanda grass lignin demonstrated effective adsorption, exhibiting a clear preference for Cu(II) followed by other divalent cations, with lower capacities for As(III) and Cr(VI). Adsorption kinetics consistently followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Thermodynamic studies revealed spontaneous and endothermic processes. Bioassays confirmed significant reduction in aqueous toxicity and strong metal sequestration. This work positions unmodified Sarkanda grass lignin as a bio-based, low-cost polymer platform for emerging water treatment technologies, contributing to circular bioeconomy goals and highlighting the potential of natural polymers in sustainable materials design. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

11 pages, 852 KB  
Article
Furthering the Application of a Low-Moisture Anhydrous Ammonia Pretreatment of Corn Stover
by Ming-Hsun Cheng and Kurt A. Rosentrater
Processes 2025, 13(8), 2643; https://doi.org/10.3390/pr13082643 - 20 Aug 2025
Viewed by 152
Abstract
The use of an ammonia fiber expansion pretreatment using low-moisture anhydrous ammonia (LMAA) is a promising strategy for biomass deconstruction, with significant effects on depolymerizing lignin and hemicellulose. An LMAA pretreatment provides several advantages, including compatibility with the high-biomass loading of solids, efficient [...] Read more.
The use of an ammonia fiber expansion pretreatment using low-moisture anhydrous ammonia (LMAA) is a promising strategy for biomass deconstruction, with significant effects on depolymerizing lignin and hemicellulose. An LMAA pretreatment provides several advantages, including compatibility with the high-biomass loading of solids, efficient ammonia recovery, and scalability for industrial operations. In this study, the reactor was revisited and optimized to improve glucan digestibility from corn stover through enzymatic hydrolysis, building on our previous findings that identified limitations in ammonia distribution. The effects of the biomass particle size, the reaction time, and their interaction on glucose yields were investigated to determine their influence on the subsequent enzymatic hydrolysis kinetics. The best glucose yield of 83% was achieved using an LMAA pretreatment of biomass with a 0.5 mm particle size, representing an improvement of approximately 5% compared to biomass with a 1 mm particle size. Additionally, reactor optimization led to a 22% improvement in the glucose yield compared to the previous reactor configuration. According to the results of the reaction kinetics fitting, the enzymatic hydrolysis data indicated that the reaction followed a pseudo-first-order model. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

19 pages, 1125 KB  
Review
Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal
by Farabi Hossain, Md Enamul Hoque, Aftab Ahmad Khan and Md Arifuzzaman
Water 2025, 17(16), 2426; https://doi.org/10.3390/w17162426 - 17 Aug 2025
Viewed by 511
Abstract
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the [...] Read more.
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the application of nanomaterials derived from lignocellulosic resources in wastewater management, highlighting their distinctive physical and chemical properties, including a large surface area, adjustable porosity structure, and multifunctional group capability. The collection of nanomaterials incorporating cellulose nanocrystals (CNCs) with lignin nanoparticles, as well as biochar and carbon-based nanostructures, demonstrates high effectiveness in extracting heavy metals, dyes, and organic pollutants through adsorption, membrane filtration, and catalysis mechanisms. Nanomaterials have benefited from recent analytical breakthroughs that improve both their manufacturing potential and eco-friendly character through hybrid catalysis methods and functionalization procedures. This review demonstrates the ability of nanomaterials to simultaneously turn waste into valuable product while cleaning up the environment through their connection to circular bioeconomic principles and the United Nations Sustainable Development Goals (SDGs). This review addresses hurdles related to feedstock variability, production costs, and lifecycle impacts, demonstrating the capability of lignocellulosic nanomaterials to transform wastewater treatment operations while sustaining global sustainability. Full article
Show Figures

Figure 1

18 pages, 3030 KB  
Article
Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2)
by Hao-Yu Ivory Chu, Xinyu Zhang, Yuxin Wang, Taghi Miri and Helen Onyeaka
Sustainability 2025, 17(16), 7373; https://doi.org/10.3390/su17167373 - 14 Aug 2025
Viewed by 321
Abstract
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were [...] Read more.
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were selected as representative models for soft and rigid cell wall structures, respectively. The optimized extraction process demonstrated significantly enhanced efficiency compared to traditional methods, achieving recovery rates in BSG of 89% for antioxidants, 91% for phenolic acids, and 90% for polyphenolic compounds. Notably, high yields of p-coumaric acid (95%), gallic acid (94%), ferulic acid (82%), quercetin (87%), and resveratrol (82%) were obtained with minimal cellular structural damage. For cocoa shells, despite their lignin-rich, rigid cell walls, recovery rates reached 73% for antioxidants, 79% for phenolic acids, and 74% for polyphenolic compounds, including chlorogenic acid (94%), catechin (83%), vanillin (81%), and gallic acid (94%). Overall, this hybrid technique significantly improved extraction efficiency by approximately 60% for BSG and 50% for cocoa shell relative to conventional approaches, highlighting its novelty, scalability, and potential for broad application in the sustainable valorization of diverse plant-based waste streams. This research presents a green and efficient platform suitable for valorizing agri-food by-products, supporting circular economy goals. Further studies may explore scale-up strategies and economic feasibility for industrial adoption. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 2432 KB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 - 2 Aug 2025
Viewed by 448
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

21 pages, 5449 KB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 499
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Graphical abstract

30 pages, 703 KB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 529
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

37 pages, 3768 KB  
Review
Mechanochemical Preparation of Biomass-Derived Porous Carbons
by Jerzy Choma, Barbara Szczęśniak and Mietek Jaroniec
Molecules 2025, 30(15), 3125; https://doi.org/10.3390/molecules30153125 - 25 Jul 2025
Viewed by 605
Abstract
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production [...] Read more.
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production of advanced carbon-based materials in coming years. This review covers mechanochemical syntheses of highly porous carbons, with a particular focus on new adsorbents and catalysts that can be obtained from biomass. Mechanochemically assisted methods are well suited for producing highly porous carbons (e.g., ordered mesoporous carbons, hierarchical porous carbons, porous carbon fibers, and carbon–metal composites) from tannins, lignin, cellulose, coconut shells, nutshells, bamboo waste, dried flowers, and many other low-cost biomass wastes. Most mechanochemically prepared porous carbons are proposed for applications related to adsorption, catalysis, and energy storage. This review aims to offer researchers insights into the potential utilization of biowastes, facilitating the development of cost-effective strategies for the production of porous carbons that meet industrial demands. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

20 pages, 1924 KB  
Article
Olive Tree (Olea europaea) Pruning: Chemical Composition and Valorization of Wastes Through Liquefaction
by Idalina Domingos, Miguel Ferreira, José Ferreira and Bruno Esteves
Sustainability 2025, 17(15), 6739; https://doi.org/10.3390/su17156739 - 24 Jul 2025
Viewed by 448
Abstract
Olive tree branches (OB) and leaves (OL) from the Viseu region (Portugal) were studied for their chemical composition and liquefaction behavior using polyalcohols. Chemical analysis revealed that OL contained higher ash content (4.08%) and extractives, indicating more bioactive compounds, while OB had greater [...] Read more.
Olive tree branches (OB) and leaves (OL) from the Viseu region (Portugal) were studied for their chemical composition and liquefaction behavior using polyalcohols. Chemical analysis revealed that OL contained higher ash content (4.08%) and extractives, indicating more bioactive compounds, while OB had greater α-cellulose (30.47%) and hemicellulose (27.88%). Lignin content was higher in OL (21.64%) than OB (16.40%). Liquefaction experiments showed that increasing the temperature from 140 °C to 180 °C improved conversion, with OB showing a larger increase (52.5% to 80.9%) compared to OL (66% to 72%). OB reached peak conversion faster, and the optimal particle size for OB was 40–60 mesh, while OL performed better at finer sizes. OL benefited more from higher solvent ratios, whereas OB achieved high conversion with less solvent. FTIR analysis confirmed that acid-catalyzed liquefaction breaks down lignocellulosic structures, depolymerizes cellulose and hemicellulose, and modifies lignin, forming hydroxyl, aliphatic, and carbonyl groups. These changes reflect progressive biomass degradation and the incorporation of polyalcohol components, converting solid biomass into a reactive, polyol-rich liquid. The study highlights the distinct chemical and processing characteristics of olive branches and leaves, informing their potential industrial applications. Full article
Show Figures

Figure 1

31 pages, 2773 KB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 682
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

23 pages, 2663 KB  
Review
An Updated Perspective on the Aromatic Metabolic Pathways of Plant-Derived Homocyclic Aromatic Compounds in Aspergillus niger
by Ronnie J. M. Lubbers
Microorganisms 2025, 13(8), 1718; https://doi.org/10.3390/microorganisms13081718 - 22 Jul 2025
Viewed by 473
Abstract
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest [...] Read more.
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest renewable source of aromatic compounds, though its degradation remains challenging. Lignin can be chemically degraded through oxidation, acid hydrolysis or solvolysis. As an alternative, microorganisms, including fungi, could offer a sustainable alternative for breaking down lignin. The aromatic compounds released from lignin, by either microbial, chemical or enzymatic degradation, can be used by microorganisms to produce valuable compounds. Fungi possess unique enzymes capable of converting aromatic compounds derived from lignin or other sources into chemical building blocks that can be used in several industries. However, their aromatic metabolic pathways are poorly studied compared to bacterial systems. In the past, only a handful of genes and enzymes involved in the aromatic metabolic pathways had been identified. Recent advances in genomics, proteomics, and metabolic engineering are helping to reveal these metabolic pathways and identify the involved genes. This review highlights recent progress in understanding fungal aromatic metabolism, focusing on how Aspergillus niger converts plant-derived aromatic compounds into potentially useful products and the versatility of aromatic metabolism within the Aspergillus genus. Addressing the current knowledge gaps in terms of fungal pathways could unlock their potential for use in sustainable technologies, promoting eco-friendly production of chemical building blocks from renewable resources or bioremediation. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

21 pages, 1816 KB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 674
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

Back to TopTop