polymers-logo

Journal Browser

Journal Browser

Designing Polymers for Emerging Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 5941

Special Issue Editors


E-Mail Website
Guest Editor
Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción 4030000, Chile
Interests: computer simulation; flocculation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1240000, Chile
Interests: population balance modeling of flocculation processes; thickening, leaching, and flotation operations; rheological studies, particularly those related to the impact of organic reagents, nanoparticles, and liquor ionic composition on interfacial processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue explores the design and optimization of polymers for emerging applications, combining computational, experimental, and theoretical approaches. By integrating methods such as molecular dynamics (MD), quantum simulations like density functional theory (DFT), and experimental insights, this issue aims to showcase innovations in polymer design. Topics include the development of polymers for advanced applications in electronics, biomaterials, sustainability, and beyond. Contributions focusing on the prediction and validation of polymer properties, from mechanical and thermal to electronic and chemical behavior, are welcome. This issue seeks to highlight the collaborative role of simulation, theory, and experiment in advancing new materials for cutting-edge technologies.

Topics to be covered:

  • Polymer design for emerging applications;
  • Integration of computational, experimental, and theoretical methods;
  • Structure–property relationships in polymers;
  • Functional and sustainable polymer development;
  • Mechanical, thermal, and electronic properties of polymers.

Dr. Gonzalo R. Quezada
Dr. Ricardo Jeldres
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer design
  • molecular simulation
  • emerging applications
  • experimental validation
  • structure–property relationships

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1232 KB  
Article
Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release
by Ana Paula Valente Pinho Mafetano, Fernanda Alves Feitosa, Gabriela da Silva Chagas, Nathália Moreira Gomes, Marcella Batista Rocha, Mariane Cintra Mailart, Karen Cristina Kazue Yui and Cesar Rogério Pucci
Polymers 2025, 17(17), 2282; https://doi.org/10.3390/polym17172282 - 23 Aug 2025
Viewed by 288
Abstract
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond [...] Read more.
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond XT Adhesive (3M ESPE), resulting in five groups: TXT (0% wt of bioactive glass-incorporated—negative control); TXT20 (20% wt of bioactive glass-incorporated); TXT30 (30% wt of bioactive glass-incorporated), TXT50 (50% wt of bioactive glass-incorporated), and FLB (positive control—FL BOND II adhesive system with S-PRG particles, SHOFU Inc.). Data were analyzed with one-way ANOVA followed by Tukey’s test (α = 0.05). Quantitative SEM analysis confirmed submicron particle agglomerates (median equivalent circular diameter 0.020–0.108 µm). The TXT20 exhibited the highest values of degree of conversion (p < 0.05) (73.02 ± 3.33A). For SBS (in MPa): Control Group TXT—19.50 ± 1.40A, Group TXT20 18.22 ± 1.04AB, Group FLB 17.62 ± 1.45B, Group TXT30 14.48 ± 1.46C and Group TXT50 14.13 ± 1.02C (p < 0.05). For calcium release the group TXT50 2.23 ± 0.11D showed higher values (p < 0.05). The incorporation of distinct bioactive glass particle concentrations influenced the shear bond strength, degree of conversion, and calcium release. While the 50 wt% bioactive glass group exhibited the highest calcium release, both 20 wt% of bioactive glass group and the positive control group exhibited the highest degree of conversion without compromising the bonding strength. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

25 pages, 3744 KB  
Article
Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study
by Dimitris G. Mintis, Marco Dompé, Panagiotis D. Kolokathis, Jasper van der Gucht, Antreas Afantitis and Vlasis G. Mavrantzas
Polymers 2025, 17(16), 2189; https://doi.org/10.3390/polym17162189 - 10 Aug 2025
Viewed by 398
Abstract
We study the microstructural properties and state of hydration of aqueous low-molecular-weight poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solutions and their dependence on polymer concentration and pH by means of detailed atomistic Molecular Dynamics (MD) simulations and experiments. For infinitely dilute solutions [...] Read more.
We study the microstructural properties and state of hydration of aqueous low-molecular-weight poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solutions and their dependence on polymer concentration and pH by means of detailed atomistic Molecular Dynamics (MD) simulations and experiments. For infinitely dilute solutions with a degree of polymerization of N = 30 at basic pH conditions, no temperature dependence is observed on the overall shape and state of hydration of the polyelectrolyte. This is supported by the experimental component of our work according to which the hydrodynamic radius, Rh, does not change dramatically with temperature. Small, but not drastic, changes are observed for solutions with longer PDMAEMA chains (N = 50, 70, and 110). Although the MD simulations demonstrate that temperature and salt do affect the strength of hydrophobic interactions between PDMAEMA and water, apparently these effects are not strong enough to cause drastic changes to the overall shape of the polymer. MD simulations also reveal that Na+ salt ions strongly interact with the oxygen atoms located at the side chain of the polyelectrolyte. While no significant changes in the global shape or state of hydration of the PDMAEMA chain are found, a strong dependence is revealed for the aggregation behavior of the polymer on temperature and salt in slightly more concentrated solutions. A structural transition from a collapsed coil to a stretched conformation is also observed as we move from basic to acidic pH conditions, which is strongly correlated with the degree of chain rigidity as a function of pH. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Graphical abstract

23 pages, 7874 KB  
Article
Enhancing 3D Printing of Gelatin/Siloxane-Based Cellular Scaffolds Using a Computational Model
by Marcos B. Valenzuela-Reyes, Esmeralda S. Zuñiga-Aguilar, Christian Chapa-González, Javier S. Castro-Carmona, Luis C. Méndez-González, R. Álvarez-López, Humberto Monreal-Romero and Carlos A. Martínez-Pérez
Polymers 2025, 17(13), 1838; https://doi.org/10.3390/polym17131838 - 30 Jun 2025
Viewed by 457
Abstract
In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applications. A systematic approach integrating rheological [...] Read more.
In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applications. A systematic approach integrating rheological characterization, computational fluid dynamics simulation (CFD), and machine-learning-based image analysis, was employed. Rheological tests revealed a shear stress of 50 Pa, a maximum viscosity of 3 × 105 Pa·s, a minimum viscosity of 0.089 Pa·s, and a shear rate of 15 rad/s (27G nozzle, 180 kPa pressure, 32 °C temperature, 30 mm/s velocity) for a BIO X bioprinter. While these parameters yielded constructs with 54.5% similarity to the CAD design, a multi-faceted optimization strategy was implemented to enhance fidelity, computational fluid dynamics simulations in SolidWorks, coupled with a custom-develop a binary classifier convolutional neuronal network for post-printing image analysis, facilitated targeted parameter refinement. Subsequent printing optimized parameters (25G nozzle, 170 kPa, 32 °C, 20 mm/s) achieved a significantly improved similarity of 92.35% CAD, demonstrating efficacy. The synergistic combination of simulation and machine learning ultimately enabled the fabrication of complex 3D constructs with a high fidelity of 94.13% CAD similarity, demonstrating the efficacy and potential of this integrated approach for advanced biofabrication. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

18 pages, 6782 KB  
Article
Preparation, Reaction Kinetics, and Properties of Polyester Foams Using Water Produced by the Reaction as a Foaming Agent
by Fabian Weitenhagen and Oliver Weichold
Polymers 2025, 17(9), 1266; https://doi.org/10.3390/polym17091266 - 6 May 2025
Viewed by 676
Abstract
This study explores sustainable foamed polyester materials derived from natural or bio-based building blocks, including succinic, glutaric, and adipic acids, combined with trimethylolpropane and pentaerythritol. By precisely tuning the ratio of functional groups, the resulting polymers contain minimal free functionalities, leading to lower [...] Read more.
This study explores sustainable foamed polyester materials derived from natural or bio-based building blocks, including succinic, glutaric, and adipic acids, combined with trimethylolpropane and pentaerythritol. By precisely tuning the ratio of functional groups, the resulting polymers contain minimal free functionalities, leading to lower hygroscopicity and enhanced stability. The reaction is monitored by tracking the mass loss associated with water formation, the primary condensation by-product, which reveals a first-order kinetic behaviour. Infrared spectroscopy indicates that foaming occurs in a narrow time window, while esterification begins earlier and continues afterwards. Thermogravimetric analysis confirms thermal stability up to ~400 °C, with complete decomposition at 500 °C and no residue. Scanning electron microscopy images of test specimens with varying densities reveal dense, microporosity-free cell walls in both materials, indicating a homogeneous polymer matrix that contributes to the overall stabilisation of the foam structure. In flammability tests, the foams resist ignition during two 10 s methane flame exposures and, under prolonged flame, burn 40 times more slowly than conventional foams. These results demonstrate a modular system for creating bio-based foams with tunable properties—from soft and elastic to rigid—suitable for diverse applications. The materials offer a sustainable alternative to petrochemical foams while retaining excellent mechanical and thermal properties. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

14 pages, 6649 KB  
Article
Molecular Dynamics Study of Polyacrylamide and Polysaccharide-Derived Flocculants Adsorption on Mg(OH)2 Surfaces at pH 11
by Gonzalo R. Quezada, Antonia A. Vargas, Steven Nieto, Karien I. García, Pedro Robles and Ricardo I. Jeldres
Polymers 2025, 17(2), 227; https://doi.org/10.3390/polym17020227 - 17 Jan 2025
Viewed by 1369
Abstract
Brucite (Mg(OH)2) is a typical precipitate in the mining industry that adversely affects processes such as flotation and thickening. Gaining insights into the physicochemical properties of this mineral is critical for developing strategies to mitigate these challenges and improve operational efficiency. [...] Read more.
Brucite (Mg(OH)2) is a typical precipitate in the mining industry that adversely affects processes such as flotation and thickening. Gaining insights into the physicochemical properties of this mineral is critical for developing strategies to mitigate these challenges and improve operational efficiency. Additionally, incorporating natural-origin polymers aligns with the shift toward more sustainable mining practices. In this study, molecular dynamics simulations were employed to investigate the interaction of brucite with polysaccharides such as cellulose, guar gum, and alginate and to compare these with conventional polymers, including polyacrylamide, hydrolyzed polyacrylamide, and polyacrylic acid, under conditions of pH 11 in low-salinity water. The methodology enhanced adsorption sampling by incorporating additional temporary interactions between the polymer and the brucite surface. The results reveal that neutral polymers exhibit stronger and more stable interactions with brucite compared to charged polymers, which is consistent with the neutral nature of brucite under the studied conditions. Van der Waals forces predominantly govern the adsorption of polysaccharides, while Coulombic forces primarily drive interactions involving polyacrylamides. These findings provide valuable insights into the molecular mechanisms of polymer-brucite interactions, facilitating the development of more effective and sustainable mining additives. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

19 pages, 7103 KB  
Article
Representing Structural Isomer Effects in a Coarse-Grain Model of Poly(Ether Ketone Ketone)
by Chris D. Jones, Jenny W. Fothergill, Rainier Barrett, Lina N. Ghanbari, Nicholas R. Enos, Olivia McNair, Jeffrey Wiggins and Eric Jankowski
Polymers 2025, 17(1), 117; https://doi.org/10.3390/polym17010117 - 5 Jan 2025
Viewed by 1286
Abstract
Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models [...] Read more.
Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models of polymers can enable access to these long-time dynamics, but can have limited applicability outside the systems and state points that they are validated against. Here we develop and validate a minimal coarse-grained model of the aerospace thermoplastic poly(etherketoneketone) (PEKK). We use multistate iterative Boltzmann inversion to learn potentials with transferability across thermodynamic states relevant to PEKK processing. We introduce tabulated EKK angle potentials to represent the ratio of terephthalic (T) and isophthalic (I) acid precursor amounts, and validate against rheological experiments: The glass transition temperature is independent to T/I, but chain relaxation and melting temperature is. In sum we demonstrate a simple, validated model of PEKK that offers 15× performance speedups over united atom representations that enables studying thermoplastic processing-structure-property-performance relationships. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 2136 KB  
Review
Valorization of Agro-Industrial Lignin as a Functional Polymer for Sustainable Wastewater Treatment
by Elena Ungureanu, Bogdan-Marian Tofanica, Eugen Ulea, Ovidiu C. Ungureanu, Maria E. Fortună, Răzvan Rotaru, Irina Volf and Valentin I. Popa
Polymers 2025, 17(16), 2263; https://doi.org/10.3390/polym17162263 - 21 Aug 2025
Viewed by 728
Abstract
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the [...] Read more.
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the remediation of aqueous media contaminated with heavy metals. The study evaluates lignin’s behavior toward nine metal(loid) ions: arsenic, cadmium, chromium, cobalt, copper, iron, nickel, lead, and zinc. Adsorption performance was systematically investigated under static batch conditions, optimizing key parameters, with equilibrium and kinetic data modeled using established isotherms and rate equations. Surface characterization and seed germination bioassays provided supporting evidence. Unmodified Sarkanda grass lignin demonstrated effective adsorption, exhibiting a clear preference for Cu(II) followed by other divalent cations, with lower capacities for As(III) and Cr(VI). Adsorption kinetics consistently followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Thermodynamic studies revealed spontaneous and endothermic processes. Bioassays confirmed significant reduction in aqueous toxicity and strong metal sequestration. This work positions unmodified Sarkanda grass lignin as a bio-based, low-cost polymer platform for emerging water treatment technologies, contributing to circular bioeconomy goals and highlighting the potential of natural polymers in sustainable materials design. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

Back to TopTop