Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal
Abstract
1. Introduction
1.1. Lignocellulosic Biomass
1.2. Nanomaterials Derived from Lignocellulosic Biomass
- CNCs possess high adsorption capacities for heavy metals like Pb(II) and Cr(VI) due to their surface charge tunability [29].
- GO effectively removes dyes and organic pollutants via electrostatic interactions [36].
- MnO2-modified lignin nanoparticles demonstrate adsorption capacities of up to 806 mg/g for methylene blue dye removal [37].
1.3. Nanomaterials in Wastewater Treatment
2. Lignocellulosic Biomass: A Renewable Resource
2.1. Sources and Availability
2.2. Structural Composition
2.3. Current Utilization
3. Nanomaterials from Lignocellulosic Waste
3.1. Types of Nanomaterials
3.2. Extraction Techniques
3.3. Properties of Nanomaterials
4. Applications in Wastewater Treatment
4.1. Nanocellulose-Based Composites
4.2. Catalytic Applications
4.3. Lignin Valorization
4.4. Agricultural Waste-Based Membranes for Wastewater Treatment
4.5. Case Studies: Real-World Applications
5. Related Challenges
5.1. Technical Barriers
5.2. Economic Viability
5.3. Environmental Considerations
5.4. Integrated Challenges
6. Innovations and Future Prospects
6.1. Emerging Technologies
6.2. Circular Bioeconomy
6.3. Policy and Industry Support
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brethauer, S.; Studer, M.H. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals—A Review. CHIMIA 2015, 69, 572. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Saravanabhupathy, S.; Anusha; Rajak, R.C.; Banerjee, R.; Dikshit, P.K.; Padigala, C.T.; Das, A.K.; Kim, B.S. Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts 2023, 13, 1439. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valoriz. 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Vieira, S.; Barros, M.V.; Sydney, A.C.N.; Piekarski, C.M.; De Francisco, A.C.; Vandenberghe, L.P.D.S.; Sydney, E.B. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour. Technol. 2020, 299, 122635. [Google Scholar] [CrossRef] [PubMed]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefin. 2024, 14, 2959–2981. [Google Scholar] [CrossRef]
- Marriott, P.E.; Gómez, L.D.; McQueen-Mason, S.J. Unlocking the potential of lignocellulosic biomass through plant science. New Phytol. 2016, 209, 1366–1381. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Yousuf, A.; Pirozzi, D.; Sannino, F. Chapter 1—Fundamentals of lignocellulosic biomass. In Lignocellulosic Biomass to Liquid Biofuels; Yousuf, A., Pirozzi, D., Sannino, F., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–15. ISBN 978-0-12-815936-1. [Google Scholar] [CrossRef]
- Bajpai, P. Structure of Lignocellulosic Biomass. In Pretreatment of Lignocellulosic Biomass for Biofuel Production; Bajpai, P., Ed.; Springer: Singapore, 2016; pp. 7–12. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Wang, H.; Wu, Z.; Fu, L.; Peng, X.; Chen, X.; Zeng, G. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Process. Technol. 2015, 129, 8–14. [Google Scholar] [CrossRef]
- Shukla, B.K.; Sharma, P.K.; Yadav, H.; Singh, S.; Tyagi, K.; Yadav, Y.; Rajpoot, N.K.; Rawat, S.; Verma, S. Advanced membrane technologies for water treatment: Utilization of nanomaterials and nanoparticles in membranes fabrication. J. Nanopart. Res. 2024, 26, 222. [Google Scholar] [CrossRef]
- Choe, B.; Lee, S.; Won, W. Process integration and optimization for economical production of commodity chemicals from lignocellulosic biomass. Renew. Energy 2020, 162, 242–248. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Spec. Issue Biosorpt. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Balasubramanian, P. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Ind. Crops Prod. 2019, 128, 405–423. [Google Scholar] [CrossRef]
- Saud, A.; Gupta, S.; Allal, A.; Preud’homme, H.; Shomar, B.; Zaidi, S.J. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS Omega 2024, 9, 29088–29113. [Google Scholar] [CrossRef]
- Renju; Singh, R. Re-routing lignocellulosic biomass for the generation of bioenergy and other commodity fractionation in a (Bio)electrochemical system to treat sewage wastewater. Ind. Crops Prod. 2024, 222, 119664. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.; Elshobary, M.; Qi, W.; Wang, W.; Feng, P.; Wang, Z.; Qin, L. Enhancing detoxification of inhibitors in lignocellulosic pretreatment wastewater by bacterial Action: A pathway to improved biomass utilization. Bioresour. Technol. 2024, 410, 131270. [Google Scholar] [CrossRef] [PubMed]
- Guleria, A.; Kumari, G.; Lima, E.C.; Ashish, D.K.; Thakur, V.; Singh, K. Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. Sci. Total Environ. 2022, 823, 153689. [Google Scholar] [CrossRef]
- Rashid, A.B.; Hoque, M.E.; Kabir, N.; Rifat, F.F.; Ishrak, H.; Alqahtani, A.; Chowdhury, M.E.H. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers 2023, 15, 4070. [Google Scholar] [CrossRef]
- Hoque, M.E.; Shafoyat, M.U. Biopolymers and Their Composites for Biotechnological Applications. In Applications of Biopolymers in Science, Biotechnology, and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 189–217. [Google Scholar] [CrossRef]
- Arif, M.D.; Hoque, M.E.; Rahman, M.Z.; Shafoyat, M.U. Emerging directions in green nanomaterials: Synthesis, physicochemical properties and applications. Mater. Today Commun. 2024, 40, 109335. [Google Scholar] [CrossRef]
- Rahman, S.; Sadaf, S.; Hoque, M.E.; Mishra, A.; Mubarak, N.M.; Malafaia, G.; Singh, J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv. 2024, 14, 13862–13899. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Bansal, M.; Garima; Wilson, K.; Gupta, S.; Dhanawat, M. Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup. Int. J. Biol. Macromol. 2025, 294, 139497. [Google Scholar] [CrossRef]
- Shoudho, K.N.; Khan, T.H.; Ara, U.R.; Khan, M.R.; Shawon, Z.B.Z.; Hoque, M.E. Biochar in global carbon cycle: Towards sustainable development goals. Curr. Res. Green Sustain. Chem. 2024, 8, 100409. [Google Scholar] [CrossRef]
- Amalina, F.; Syukor Abd Razak, A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. Clean. Mater. 2022, 6, 100137. [Google Scholar] [CrossRef]
- Wang, J.; Xi, J.; Wang, Y. Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chem. 2015, 17, 737–751. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Norfarhana, A.S.; Khoo, P.S.; Ilyas, R.A.; Ab Hamid, N.H.; Aisyah, H.A.; Norrrahim, M.N.F.; Knight, V.F.; Rani, M.S.A.; Septevani, A.A.; Syafri, E.; et al. Exploring of Cellulose Nanocrystals from Lignocellulosic Sources as a Powerful Adsorbent for Wastewater Remediation. J. Polym. Environ. 2024, 32, 4071–4101. [Google Scholar] [CrossRef]
- Li, Y.; Bhagwat, S.S.; Cortés-Peña, Y.R.; Ki, D.; Rao, C.V.; Jin, Y.-S.; Guest, J.S. Sustainable Lactic Acid Production from Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2021, 9, 1341–1351. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef]
- Dollhofer, V.; Dandikas, V.; Dorn-In, S.; Bauer, C.; Lebuhn, M.; Bauer, J. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. Bioresour. Technol. 2018, 264, 219–227. [Google Scholar] [CrossRef]
- Singhvi, M.; Kim, B.S. Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. Energies 2020, 13, 5300. [Google Scholar] [CrossRef]
- Motagamwala, A.H.; Won, W.; Maravelias, C.T.; Dumesic, J.A. An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone. Green Chem. 2016, 18, 5756–5763. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Kamel, S.; Tohamy, H.-A.S. A Greener Future: Carbon Nanomaterials from Lignocellulose. J. Renew. Mater. 2025, 13, 21–47. [Google Scholar] [CrossRef]
- Zhai, R.; Hu, J.; Chen, X.; Xu, Z.; Wen, Z.; Jin, M. Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresour. Technol. 2020, 315, 123846. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Sahoo, S.K.; Gohil, J.M. Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 2020, 27, 6719–6746. [Google Scholar] [CrossRef]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef]
- Liu, A.; Wu, H.; Naeem, A.; Du, Q.; Ni, B.; Liu, H.; Li, Z.; Ming, L. Cellulose nanocrystalline from biomass wastes: An overview of extraction, functionalization and applications in drug delivery. Int. J. Biol. Macromol. 2023, 241, 124557. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V. A Comprehensive Review on Application of Lignocellulose Derived Nanomaterial in Heavy Metals Removal from Wastewater. Chem. Afr. 2023, 6, 39–78. [Google Scholar] [CrossRef]
- EL-Bestawy, E.; Hassan, S.W.M.; Mohamed, A.A. Enhanced biodegradation of lignin and lignocellulose constituents in the pulp and paper industry black liquor using integrated magnetite nanoparticles/bacterial assemblage. Appl. Water Sci. 2024, 14, 211. [Google Scholar] [CrossRef]
- El-Gendy, N.S.; Nassar, H.N. Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment. Sci. Total Environ. 2021, 774, 145610. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Abdelkader, A.; Johnston, C.R.; Morgan, K.; Rooney, D.W. Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications. Ind. Eng. Chem. Res. 2017, 56, 12119–12130. [Google Scholar] [CrossRef]
- Mäkelä, M.; Benavente, V.; Fullana, A. Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Appl. Energy 2015, 155, 576–584. [Google Scholar] [CrossRef]
- Akobi, C.; Yeo, H.; Hafez, H.; Nakhla, G. Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass. Appl. Energy 2016, 184, 548–559. [Google Scholar] [CrossRef]
- Ge, X.; Xu, F.; Li, Y. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresour. Technol. 2016, 205, 239–249. [Google Scholar] [CrossRef]
- Li, D.-C.; Jiang, H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation. Bioresour. Technol. 2017, 246, 57–68. [Google Scholar] [CrossRef]
- Liu, F.; Chen, G.; Yan, B.; Ma, W.; Cheng, Z.; Hou, L. Exergy analysis of a new lignocellulosic biomass-based polygeneration system. Energy 2017, 140, 1087–1095. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Hu, Z.; Zhu, A.-L.; Shen, X.; Cao, X.; Wen, J.-L.; Yuan, T.-Q. Harnessing Renewable Lignocellulosic Potential for Sustainable Wastewater Purification. Research 2024, 7, 0347. [Google Scholar] [CrossRef]
- He, J.; Huang, K.; Barnett, K.J.; Krishna, S.H.; Alonso, D.M.; Brentzel, Z.J.; Burt, S.P.; Walker, T.; Banholzer, W.F.; Maravelias, C.T.; et al. New catalytic strategies for α,ω-diols production from lignocellulosic biomass. Faraday Discuss. 2017, 202, 247–267. [Google Scholar] [CrossRef]
- Sharma, A.; Anjana; Rana, H.; Goswami, S. A Comprehensive Review on the Heavy Metal Removal for Water Remediation by the Application of Lignocellulosic Biomass-Derived Nanocellulose. J. Polym. Environ. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Ahn, Y.; Lee, J.; Won, W. Sustainable Production of Bioplastics from Lignocellulosic Biomass: Technoeconomic Analysis and Life-Cycle Assessment. ACS Sustain. Chem. Eng. 2020, 8, 12419–12429. [Google Scholar] [CrossRef]
- Hartoyo, A.P.P.; Solikhin, A. Valorization of Oil Palm Trunk Biomass for Lignocellulose/Carbon Nanoparticles and Its Nanomaterials Characterization Potential for Water Purification. J. Nat. Fibers 2023, 20, 2131688. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, E. Biogas production from different lignocellulosic biomass sources: Advances and perspectives. 3 Biotech 2018, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Biswas, J.K.; Da Silva, S.S. Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production. Catal. Rev. 2019, 61, 1–26. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, J.; Martínez-Hernández, J.L.; Segura-Ceniceros, P.; López, G.; Saade, H.; Medina-Morales, M.A.; Ramos-González, R.; Aguilar, C.N.; Ilyina, A. Cellulases immobilization on chitosan-coated magnetic nanoparticles: Application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst. Eng. 2017, 40, 9–22. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Yuan, B.; Li, L.; Murugadoss, V.; Vupputuri, S.; Wang, J.; Alikhani, N.; Guo, Z. Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food Agrofor. 2020, 1, 41–52. [Google Scholar] [CrossRef]
- Sayyed, A.J.; Pinjari, D.V.; Sonawane, S.H.; Bhanvase, B.A.; Sheikh, J.; Sillanpää, M. Cellulose-based nanomaterials for water and wastewater treatments: A review. J. Environ. Chem. Eng. 2021, 9, 106626. [Google Scholar] [CrossRef]
- Salama, A.; Abouzeid, R.; Leong, W.S.; Jeevanandam, J.; Samyn, P.; Dufresne, A.; Bechelany, M.; Barhoum, A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials 2021, 11, 3008. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef] [PubMed]
- Pérez, H.; Quintero García, O.J.; Amezcua-Allieri, M.A.; Rodríguez Vázquez, R. Nanotechnology as an efficient and effective alternative for wastewater treatment: An overview. Water Sci. Technol. 2023, 87, 2971–3001. [Google Scholar] [CrossRef] [PubMed]
- Barhoum, A.; Jeevanandam, J.; Rastogi, A.; Samyn, P.; Boluk, Y.; Dufresne, A.; Danquah, M.K.; Bechelany, M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale 2020, 12, 22845–22890. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.; Baqar, Z.; Hussain, N.; Afifa; Bilal, M.; Azam, H.M.H.; Baqir, Q.; Iqbal, H.M.N. Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation. Fuel 2022, 315, 122840. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymańska-Chargot, M.; Gökalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Yang, Z.; Qian, K.; Zhang, X.; Lei, H.; Xin, C.; Zhang, Y.; Qian, M.; Villota, E. Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes. Energy 2018, 154, 289–297. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Priya, A.K.; Dutta, K.; Rajendran, S.; Sekar, K.; Jalil, A.A.; Soto-Moscoso, M. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to value-added products. Fuel 2022, 322, 124236. [Google Scholar] [CrossRef]
- Park, S.-H.; Shin, S.S.; Park, C.H.; Jeon, S.; Gwon, J.; Lee, S.-Y.; Kim, S.-J.; Kim, H.-J.; Lee, J.-H. Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity. J. Hazard. Mater. 2020, 394, 122512. [Google Scholar] [CrossRef]
- Mei, M.; Du, P.; Li, W.; Xu, L.; Wang, T.; Liu, J.; Chen, S.; Li, J. Amino-functionalization of lignocellulosic biopolymer to be used as a green and sustainable adsorbent for anionic contaminant removal. Int. J. Biol. Macromol. 2023, 227, 1271–1281. [Google Scholar] [CrossRef]
- Singha, A.S.; Guleria, A. Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int. J. Biol. Macromol. 2014, 67, 409–417. [Google Scholar] [CrossRef]
- Godvin Sharmila, V.; Kumar Tyagi, V.; Varjani, S.; Rajesh Banu, J. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. Bioresour. Technol. 2023, 387, 129587. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.; Mo Kim, Y.; Bae, S. Advances in Fe-modified lignocellulosic biochar: Impact of iron species and characteristics on wastewater treatment. Bioresour. Technol. 2024, 395, 130332. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Teymourinia, H.; Ebrahimi, F.; Irannejad, N.; Karimi-Maleh, H.; Karaman, C.; Karimi, F.; Dragoi, E.N.; Lichtfouse, E.; Singh, J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int. J. Biol. Macromol. 2023, 242, 124585. [Google Scholar] [CrossRef] [PubMed]
- Worku, L.A.; Bachheti, A.; Bachheti, R.K.; Rodrigues Reis, C.E.; Chandel, A.K. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes 2023, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Yahya, E.B.; Abdul Khalil, H.P.S.; Marwan, M.; Albadn, Y.M. Recent Advances in Carbon and Activated Carbon Nanostructured Aerogels Prepared from Agricultural Wastes for Wastewater Treatment Applications. Agriculture 2023, 13, 208. [Google Scholar] [CrossRef]
- Dagar, S.; Singh, S.; Gupta, M. Integration of Pre-Treatment with UF/RO Membrane Process for Waste Water Recovery and Reuse in Agro-Based Pulp and Paper Industry. Membranes 2023, 13, 199. [Google Scholar] [CrossRef]
- Azzam, N.M.; Ali, S.S.; Mohamed, G.G.; Omar, M.M.; Amin, S.K. Fabrication of composite ceramic polymeric membranes for agricultural wastewater treatment. Sci. Rep. 2025, 15, 2330. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials 2018, 11, 295. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef]
- Alonso, D.M.; Hakim, S.H.; Zhou, S.; Won, W.; Hosseinaei, O.; Tao, J.; Garcia-Negron, V.; Motagamwala, A.H.; Mellmer, M.A.; Huang, K.; et al. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Sci. Adv. 2017, 3, e1603301. [Google Scholar] [CrossRef] [PubMed]
- Tobin, T.; Gustafson, R.; Bura, R.; Gough, H.L. Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability. Biotechnol. Biofuels 2020, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.E.; Jeong, J.-S.; Kim, Y.; Min, J.; Moon, S.-K. Development and economic analysis of bioethanol production facilities using lignocellulosic biomass. J. Biosci. Bioeng. 2019, 128, 475–479. [Google Scholar] [CrossRef]
- Sakthivel, S.; Muthusamy, K.; Thangarajan, A.P.; Thiruvengadam, M.; Venkidasamy, B. Nano-based biofuel production from low-cost lignocellulose biomass: Environmental sustainability and economic approach. Bioprocess Biosyst. Eng. 2024, 47, 971–990. [Google Scholar] [CrossRef]
- Sani, A.; Savla, N.; Pandit, S.; Singh Mathuriya, A.; Gupta, P.K.; Khanna, N.; Pramod Babu, R.; Kumar, S. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustain. Energy Technol. Assess. 2021, 48, 101572. [Google Scholar] [CrossRef]
- Nanda, S.; Azargohar, R.; Dalai, A.K.; Kozinski, J.A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 2015, 50, 925–941. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A. A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Convers. Biorefinery 2023, 13, 8465–8483. [Google Scholar] [CrossRef]
Nanomaterial Type | Source Biomass | Key Properties | Applications | References |
---|---|---|---|---|
Cellulose Nanocrystals | Sugarcane bagasse | Surface area: 500 m2/g; tensile strength: 220 GPa | Heavy metal adsorption, membranes | [29] |
Lignin Nanoparticles | Rice straw | Thermal stability: >300 °C; functional groups: -OH, -COOH | Dye removal, catalytic supports | [37] |
Biochar | Forestry residues | Porosity: 0.8 cm3/g; adsorption capacity: 806 mg/g | Organic pollutant degradation | [11] |
Graphene Oxide | Wheat straw | Electrical conductivity: 103 S/m; surface charge: −25 mV | Photocatalysis, sensors | [36] |
Magnetic Fe3O4 NPs | Corn stover | Superparamagnetic; adsorption capacity: 95% Pb(II) | Magnetic recovery systems | [43] |
Method | Energy Use | Yield (%) | Environmental Impact | Scalability | References |
---|---|---|---|---|---|
Acid Hydrolysis | High | 45–60 | Toxic effluent generation | Moderate | [1] |
Enzymatic Hydrolysis | Low | 30–40 | Biodegradable by-products | High | [28] |
Pyrolysis | Very High | 50–70 | CO2 emissions | Low | [45] |
Microwave-Assisted | Moderate | 55–65 | Reduced solvent use | High | [52] |
Gamma-Valerolactone | Low | 60–75 | Solvent recyclability | High | [35] |
Features | CNC | Lignin NPs | Biochar |
---|---|---|---|
Feedstock sources | Sugarcane bagasse | Hardwood | Rice husk |
Key properties | High crystallinity (220 GPa) | Antioxidant and UV-resistant | Mesoporous (500 m2/g) |
Pollutant removal efficiency | Pb(II) (96% removal) | Methylene blue (806 mg/g) | Zn(II) (85% ion exchange) |
Pollutant | Source/Industry | Nanomaterial | Removal Efficiency | Mechanism | References |
---|---|---|---|---|---|
Pb(II) | Battery manufacturing, metal plating | Carboxylated CNCs | 1237 mg/g | Electrostatic interaction | [29] |
Methylene Blue | Textile dyeing | MnO2–lignin nanocomposites | 806 mg/g | Chemical adsorption | [37] |
Cr(VI) | Electroplating, leather tanning | TEMPO-oxidized cellulose | 96% | Redox reaction | [29,71] |
Tetracycline | Pharmaceutical manufacturing, hospitals | CNC–chitosan membranes | 97% | Size exclusion | [16] |
Cu(II) | Mining, metal plating | Biochar–ZnO hybrid | 92% | Ion exchange | [15] |
Source of Waste | Parameter Improved | Type of LB Nanomaterial | Efficiency/Performance | Reference(s) |
---|---|---|---|---|
Dye wastewater (methylene blue) | Dye concentration | Biochar from rice straw | Adsorption capacity: 160.5 mg/g | [11] |
Oil–water mixture | Oil content | Nanocellulose-based membranes | Effective separation | [61] |
Heavy metal wastewater | Heavy metal concentrations | Sugarcane bagasse-derived nanomaterials | Significant removal efficiencies | [51] |
Pharmaceutical wastewater (tetracycline) | Tetracycline concentration | CNC-based membranes | Effective removal via electrostatic interactions | [12] |
Industrial wastewater | Overall water quality | Lignin-derived materials | Achieved drinkable water quality | [52] |
Wastewater with microbial contamination | Microbial contamination and fouling | CNF-based membranes | Retained bacteria and viruses, antifouling | [38,54] |
Lead–zinc mineral processing wastewater | Overall water quality | Lignocellulosic nanomaterials | Achieved drinkable water quality | [52] |
Oil spill water (Klang Valley) | Oil content | CNC/graphene aerogels | Restored water quality | [29] |
Wastewater with microbial contamination | Microbial contamination | Biogenic silver nanoparticles in membranes | Potent antibacterial activity against E. coli | [16] |
Heavy metal wastewater (lead) | Lead concentration | SiO2 nanoparticles from rice husk ash | Effective lead removal | [16] |
Arsenic-contaminated groundwater | Arsenic concentration | Carbon–silicon nanostructures from rice husk | 90% removal efficiency | [36,81,82] |
Heavy metal wastewater (Pb(II), Zn(II), and Cu(II)) | Heavy metal concentrations | Functionalized biochar | Efficient adsorption, high recycling capacity | [52] |
Parameter | Conventional Materials | Lignocellulosic Nanomaterials | Improvement Factor | References |
---|---|---|---|---|
Production Cost (USD/kg) | 1–5 | 20–50 | 4–10× | [62] |
Carbon Footprint (kg CO2/kg) | 8–12 | 2–4 | 3–4× reduction | [26] |
Adsorption Capacity (mg/g) | 100–300 | 500–1200 | 2–5× | [41] |
Reusability Cycles | 3–5 | 8–12 | 2–3× | [52] |
Region | Dominant LB Types | Processing Costs | Feasibility of Advanced Methods | Examples/Notes | Reference(s) |
---|---|---|---|---|---|
North America | Forestry residues, corn stover | Moderate | High | Well-established infrastructure; pilot projects in U.S. and Canada | [29,51] |
Europe | Wheat straw, forestry residues | High | Moderate | Advanced technology but high labor/energy costs; research in Germany | [35] |
Asia | Rice straw, sugarcane bagasse | Low to moderate | Varies | Cost-effective in India and China; limited in less-developed areas | [11,51] |
Africa | Agricultural residues (e.g., maize and cassava) | Low | Low | Limited access to technology; potential for simpler methods | [11] |
Latin America | Sugarcane bagasse, coffee husks | Moderate | Moderate | Abundant LB but variable infrastructure; applications in Brazil | [51] |
Functionalization Method | Nanomaterial | Outcome | Applications | Cost Considerations | References |
---|---|---|---|---|---|
TEMPO Oxidation | Cellulose nanocrystals | Increased carboxyl groups (-COOH) | Selective Cr(VI) adsorption | Moderate to high; requires TEMPO catalyst and controlled conditions | [29] |
MnO2 Deposition | Lignin NPs | Hierarchical pore structure | Dye degradation | Moderate; involves manganese precursors and deposition methods | [37] |
Fe3O4 Coating | Biochar | Magnetic separation capability | Heavy metal recovery | Low to moderate; uses inexpensive iron salts and simple processes | [43] |
Chitosan Grafting | CNC membranes | Antifouling properties | Oil–water separation | Moderate; requires chitosan and grafting reagents | [16] |
DES (deep eutectic solvents) Modification | Lignin–carbon | Enhanced dispersibility | Flocculation | Low; utilizes cheap DES components and simple processing | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, F.; Hoque, M.E.; Khan, A.A.; Arifuzzaman, M. Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal. Water 2025, 17, 2426. https://doi.org/10.3390/w17162426
Hossain F, Hoque ME, Khan AA, Arifuzzaman M. Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal. Water. 2025; 17(16):2426. https://doi.org/10.3390/w17162426
Chicago/Turabian StyleHossain, Farabi, Md Enamul Hoque, Aftab Ahmad Khan, and Md Arifuzzaman. 2025. "Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal" Water 17, no. 16: 2426. https://doi.org/10.3390/w17162426
APA StyleHossain, F., Hoque, M. E., Khan, A. A., & Arifuzzaman, M. (2025). Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal. Water, 17(16), 2426. https://doi.org/10.3390/w17162426