Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = in vitro fermentation gut microbiota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 298
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

16 pages, 2895 KiB  
Article
Comparing a Whole Grain Blend with Polished White Rice for Starch Digestibility and Gut Microbiota Fermentation in Diabetic Patients: An In Vitro Study
by Qian Du, Ruisheng Fu, Ming Zhao and Meihong Xu
Foods 2025, 14(15), 2557; https://doi.org/10.3390/foods14152557 - 22 Jul 2025
Viewed by 347
Abstract
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the [...] Read more.
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the gut microbiota in elderly diabetic individuals. WGB exhibited lower starch digestibility (69.76 ± 5.71% vs. 73.02 ± 6.16%) and a reduced estimated glycemic index (eGI, 73.43 ± 4.49 vs. 77.55 ± 2.64) than WR, likely due to its higher amylose content. WGB fermentation increased Bifidobacterium and Lactobacillaceae, reduced pro-inflammatory Bacteroides fragilis and Enterocloster bolteae, and released more arabinose and xylose. Additionally, WGB yielded higher isobutyrate, while WR contained more glucose and fructose in its structure, leading to increased acetate production and a more acidic environment. Functional analysis revealed that WGB upregulated pathways related to fatty acid elongation and fiber fermentation. These findings suggest WGB as a viable staple food alternative for diabetic patients, offering dual benefits in glycemic control and gut microbiota. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 506 KiB  
Article
Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion
by Katarzyna Szajnar, Małgorzata Pawlos, Magdalena Kowalczyk, Julita Drobniak and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(13), 2249; https://doi.org/10.3390/nu17132249 - 7 Jul 2025
Viewed by 603
Abstract
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate [...] Read more.
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate the effects of milk supplementation with inulin and sodium butyrate on physicochemical properties, sensory characteristics, and the survival of selected probiotic strains during in vitro simulated gastrointestinal digestion. Methods: Fermented milk samples were analyzed for color, pH, titratable acidity, and syneresis. A trained sensory panel evaluated aroma, texture, and acceptability. Samples underwent a standardized in vitro digestion simulating oral, gastric, and intestinal phases. Viable probiotic cells were counted before digestion and at each stage, and survival rates were calculated. Results: Physicochemical and sensory attributes varied depending on probiotic strain and supplementation. Inulin and the inulin–sodium butyrate combination influenced syneresis and acidity. Lacticaseibacillus casei 431 and Lactobacillus johnsonii LJ samples showed the highest viable counts before digestion. Two-way ANOVA confirmed that probiotic strain, supplementation type, and their interactions significantly affected bacterial survival during digestion (p < 0.05). Conclusions: The addition of inulin and sodium butyrate did not impair probiotic viability under simulated gastrointestinal conditions. The effects on product characteristics were strain-dependent (Bifidobacterium animalis subsp. lactis BB-12, L. casei 431, L. paracasei L26, L. acidophilus LA-5, L. johnsonii LJ). These findings support the use of inulin–butyrate fortification in dairy matrices to enhance the functional potential of probiotic foods targeting gut health. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

18 pages, 4744 KiB  
Article
Millet Quinic Acid Relieves Colitis by Regulating Gut Microbiota and Inhibiting MyD88/NF-κB Signaling Pathway
by Sen Li, Ze Zhang, Lei Luo, Yu Zhang, Kai Huang and Xiao Guan
Foods 2025, 14(13), 2267; https://doi.org/10.3390/foods14132267 - 26 Jun 2025
Viewed by 378
Abstract
Polyphenols are compounds derived from plant-based food possessing numerous biological activities, including inhibiting oxidative stress, suppressing inflammation, and regulating gut microbiota. In this study, we investigated the effects of quinic acid, a phenolic acid from millet, on the regulation of gut microbiota and [...] Read more.
Polyphenols are compounds derived from plant-based food possessing numerous biological activities, including inhibiting oxidative stress, suppressing inflammation, and regulating gut microbiota. In this study, we investigated the effects of quinic acid, a phenolic acid from millet, on the regulation of gut microbiota and intestinal inflammation and further discussed the possible mechanism. The results showed that quinic acid could improve the microbiota composition of the feces of patients with inflammatory bowel disease (IBD) by in vitro anaerobic fermentation by increasing the abundance of beneficial genera including Bifidobacterium, Weissella, etc., and decreasing that of harmful genera like Escherichia-Shigella. Quinic acid treatment could alleviate the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, maintain the intestinal barrier, down-regulate the expression of inflammatory factors such as IL-1β and TNF-α, and inhibit the activation of the MyD88/NF-κB signaling pathway. In addition, quinic acid also improved the diversity of gut microbiota in mice with colitis. Furthermore, pseudo-germ-free colitis mice proved that the effect of quinic acid on intestinal inflammation was diminished after removing most gut microbiota by antibiotic treatment, suggesting that gut microbiota play important roles during the regulation of colitis by quinic acid. In a word, our study verified the regulatory effects of quinic acid on intestinal inflammation, depending on gut microbiota regulation and NF-κB signaling suppression. Full article
Show Figures

Figure 1

15 pages, 4179 KiB  
Article
Novel Potential Probiotics from Chinese Baijiu Fermentation Grains: Dual Action of Lactiplantibacillus plantarum LTJ1/LTJ48 in Uric Acid Reduction and Gut Microbiota Restoration for Hyperuricemia Therapy in Mice
by Feiliang Zhong, Xiaomin Feng, Jun Cao, Miao Li, Jianxia Tian, Jiali Wang, Xuefang Wang and Xuegang Luo
Nutrients 2025, 17(13), 2097; https://doi.org/10.3390/nu17132097 - 24 Jun 2025
Viewed by 524
Abstract
Objectives: Hyperuricemia (HUA) is a metabolic disorder linked to serious complications, yet current treatments face safety limitations. This study aimed to identify novel probiotic strains from Chinese Baijiu fermentation grains with dual-action mechanisms for HUA management—direct uric acid (UA) reduction and gut microbiota [...] Read more.
Objectives: Hyperuricemia (HUA) is a metabolic disorder linked to serious complications, yet current treatments face safety limitations. This study aimed to identify novel probiotic strains from Chinese Baijiu fermentation grains with dual-action mechanisms for HUA management—direct uric acid (UA) reduction and gut microbiota restoration. Methods: Two Lactiplantibacillus plantarum strains (LTJ1/LTJ48) were screened for purine/nucleoside degradation using HPLC. Their efficacy was evaluated in HepG2 cells and HUA mice. Key assessments included UA levels, renal/hepatic markers (AST, CRE, BUN), ADA/XOD activity, UA transporter expression (URAT1, GLUT9, ABCG2), and 16S rRNA-based microbiota analysis. Results: LTJ1/LTJ48 degraded >97% of purines/nucleosides in vitro. In HUA mice, they reduced serum UA by 31.0% (LTJ1) and 51.5% (LTJ48), improved renal/hepatic function, and suppressed ADA activity. They modulated UA transporters and restored gut microbiota. Conclusions: LTJ1/LTJ48 exhibit multi-target HUA alleviation via purine degradation, ADA inhibition, UA transporter regulation, and microbiota remodeling, offering a safer probiotic-based alternative to conventional therapies. Their translational potential warrants further clinical exploration. Full article
Show Figures

Figure 1

18 pages, 3457 KiB  
Article
Prebiotic Effect of Oxidized Hydroxypropyl Starch via In Vitro and In Vivo
by Huiwen Zheng, Zhipu Xu, Yiwen Fan, Jiazhi Han, Liyang Zhou, Han Li, Xiaohua Pan, Rongrong Ma, Chang Liu and Yaoqi Tian
Foods 2025, 14(13), 2217; https://doi.org/10.3390/foods14132217 - 24 Jun 2025
Viewed by 428
Abstract
Most studies on resistant starch are limited to its effect on blood glucose; there are few studies on the prebiotic effects of resistant starch on the gut. In this experiment, through in vivo metabolism verification and in vitro simulated fermentation experiments, it was [...] Read more.
Most studies on resistant starch are limited to its effect on blood glucose; there are few studies on the prebiotic effects of resistant starch on the gut. In this experiment, through in vivo metabolism verification and in vitro simulated fermentation experiments, it was found that hydroxypropyl oxide (OHS) had a prebiotic effect on the intestine. The results of bioinformatics showed that the structure of the microbiota changed significantly, and the in vitro and in vivo fermentation results of Bacteroides uniformis and Parabacteroides distasonis showed an upward trend. The results of a KEGG prediction of the metabolic pathway showed that Phenylalanine metabolism and Cysteine and methionine metabolism showed an enhanced trend. At the same time, the results of in vitro and in vivo metabolite assays further confirmed this point, and the content of L-Homocystine and Phenylalanine in metabolites decreased significantly, with the decrease in L-Homocystine posing a reduction in cardiovascular disease risk and the decrease in Phenylalanine having a positive significance for phenylketonuria patients. This study proved that hydroxypropyl oxide can regulate the intestinal microbiota and has intestinal prebiotic effects, which can be used to guide the development of functional foods. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

13 pages, 501 KiB  
Systematic Review
Bioactive Properties of Hazelnut-Derived Products in Colorectal Cancer Prevention: A Systematic Review of Preclinical and Epidemiological Studies
by Giuseppe Mazzola, Mariangela Rondanelli, Federico Buga, Patrizia Riso and Simone Perna
Foods 2025, 14(13), 2154; https://doi.org/10.3390/foods14132154 - 20 Jun 2025
Viewed by 541
Abstract
Background: Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide, with increasing attention being paid to modifiable dietary factors in its prevention. Hazelnut (Corylus avellana L.) represent a nutrient-dense food rich in unsaturated fats, polyphenols, fiber, and phytosterols, [...] Read more.
Background: Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide, with increasing attention being paid to modifiable dietary factors in its prevention. Hazelnut (Corylus avellana L.) represent a nutrient-dense food rich in unsaturated fats, polyphenols, fiber, and phytosterols, with potential anticarcinogenic properties. This systematic review aimed to evaluate the role of hazelnut consumption in the prevention and modulation of CRC risk, with specific focus on experimental, mechanistic, and preclinical evidence. Methods: Following PRISMA guidelines, a systematic search was conducted in PubMed, Google Scholar, and the Cochrane Library for articles published from 2015 onward. Eligible studies included original in vitro and in vivo models, as well as observational studies, evaluating hazelnut or hazelnut-derived products in relation to CRC-related biological, metabolic, or clinical outcomes. Data extraction focused on bioactive composition, experimental models, molecular pathways, and fecal/metabolic markers of carcinogenesis. Results: A total of 11 studies were included after screening 24 records: 8 in vitro investigations, 2 in vivo animal experiments, and 1 epidemiological study. In vitro studies showed that hazelnut derivatives—including fermented hazelnuts and oil-based extracts—exert antiproliferative effects via BAX/BCL-2 modulation, increased caspase-3 activity, and oxidative stress reduction. In vivo studies confirmed improved lipid metabolism, modulation of bile acid composition (notably reduced lithocholic/deoxycholic acid ratio), and enhanced antioxidant defenses. FIBEROX®, a hazelnut skin extract enriched in dietary fiber, demonstrated promising effects on gut microbiota and bile acid detoxification. Conclusions: Hazelnut and their bioactive compounds may aid CRC prevention through multiple molecular and metabolic pathways. Further human studies are needed to confirm these effects and support dietary recommendations. Full article
Show Figures

Figure 1

23 pages, 7855 KiB  
Article
Novel Acylated Naringin Enhances Propionate Release and Stimulates the Growth of Flavanone-Metabolizing Bacteria in an In Vitro Batch Fermentation Model
by Blanca Elizabeth Ruiz-Álvarez, José Daniel Padilla-de la Rosa, Marisela González Avila, Georgina Sandoval and Yves Desjardins
Life 2025, 15(6), 967; https://doi.org/10.3390/life15060967 - 17 Jun 2025
Viewed by 791
Abstract
The increasing prevalence of non-communicable diseases (NCDs) is strongly associated with gut microbiota (GM) imbalances and reduced short-chain fatty acid (SCFA) production, primarily driven by poor diet and microbial dysbiosis. Since SCFAs are crucial for gut health, immune regulation, and inflammation control, restoring [...] Read more.
The increasing prevalence of non-communicable diseases (NCDs) is strongly associated with gut microbiota (GM) imbalances and reduced short-chain fatty acid (SCFA) production, primarily driven by poor diet and microbial dysbiosis. Since SCFAs are crucial for gut health, immune regulation, and inflammation control, restoring their levels is a key therapeutic target. SCFA-acylated naringin derivatives offer a novel approach by enhancing SCFA delivery and modulating GM composition. In this study, we investigated the effects of naringin acetate and naringin propionate on SCFA production using a 24 h short-term in vitro batch fecal fermentation model with microbiota from two donors. Naringin propionate and naringin plus free propionate significantly increased propionate levels by 0.74 mM and 0.75 mM, respectively (p < 0.0001), while naringin acetate induced a smaller increase of 0.26 mM. Donor-specific reflected differences in microbial communities, yet SCFA enhancement was observed across samples. Additionally, naringin treatments stimulated the growth of beneficial polyphenol-metabolizing bacteria, including Bacteroides, Streptococcus, and Eubacterium siraeum. The strong effect of naringin propionate suggests a sustained SCFA release mediated by microbial enzymes. These preliminary results highlight the potential of SCFA-acylated flavonoids as functional dietary components to increase SCFA bioavailability and support gut health, particularly from citrus-derived co-products. Full article
Show Figures

Figure 1

17 pages, 2015 KiB  
Article
Modulatory Effects of Tetraselmis chuii Gastrointestinal Digests on Human Colonic Microbiota
by Marta Majchrzak, Samuel Paterson, Javier Gutiérrez-Corral, Dulcenombre Gómez-Garre, Adriana Ortega-Hernández, Miguel Ángel de la Fuente, Blanca Hernández-Ledesma and Pilar Gómez-Cortés
Foods 2025, 14(12), 2106; https://doi.org/10.3390/foods14122106 - 16 Jun 2025
Viewed by 498
Abstract
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This [...] Read more.
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This article describes the passage of T. chuii through the gastrointestinal tract, combining the INFOGEST procedure and in vitro colonic fermentation to examine potential effects on the human colonic microflora composition and its metabolic activity. Microbial plate counting was conducted to determine the different groups of microorganisms. Amplification of the 16S ribosomal RNA gene was performed via polymerase chain reaction to examine in detail the main genera of bacteria, and its metabolic activity was evaluated by measuring of short-chain fatty acids (SCFAs) by gas chromatography. The presence of T. chuii modified the fecal microbiota. Although the evolution of lactic acid bacteria and Enterococcus spp. content during 72 h showed that the use of T. chuii, compared to fructopolysaccharides such as inulin, would not provide nutritional advantages, the microalgae extract contributed to a significant decrease in Clostridium, Staphylococcus, and Enterobacteriaceae. Furthermore, T. chuii increased the relative abundance of Akkermansia and Butyricimonas, genera considered highly beneficial. In correlation with the presence of these microorganisms, the results show that the presence of T. chuii favored the release of SCFA, such as acetic (20 mM), propionic (>5 mM), isovaleric (0.3 mM), isobutyric (0.15 mM), and, mainly, butyric (>2 mM), after 72 h colonic fermentation, being indicators of gut health. These findings suggest that T. chuii has potential as a functional ingredient for promoting health through its modulatory effects on the intestinal microbiota. Full article
Show Figures

Figure 1

21 pages, 2879 KiB  
Article
Undaria pinnatifida Fucoidan Enhances Gut Microbiome, Butyrate Production, and Exerts Anti-Inflammatory Effects in an In Vitro Short-Term SHIME® Coupled to a Caco-2/THP-1 Co-Culture Model
by Barbara C. Wimmer, Corinna Dwan, Jelle De Medts, Cindy Duysburgh, Chloë Rotsaert and Massimo Marzorati
Mar. Drugs 2025, 23(6), 242; https://doi.org/10.3390/md23060242 - 4 Jun 2025
Cited by 1 | Viewed by 1124
Abstract
Fucoidans have demonstrated a wide range of bioactivities including immune modulation and benefits in gut health. To gain a deeper understanding on the effects of fucoidan from Undaria pinnatifida (UPF) on the colonic microbiome, the short-term Simulator of the Human Intestinal Microbial Ecosystem [...] Read more.
Fucoidans have demonstrated a wide range of bioactivities including immune modulation and benefits in gut health. To gain a deeper understanding on the effects of fucoidan from Undaria pinnatifida (UPF) on the colonic microbiome, the short-term Simulator of the Human Intestinal Microbial Ecosystem®, a validated in vitro gut model, was applied. Following a three-week intervention period on adult faecal samples from three healthy donors, microbial community activity of the colonic microbiota was assessed by quantifying short-chain fatty acids while composition was analysed utilising 16S-targeted Illumina sequencing. Metagenomic data were used to describe changes in community structure. To assess the secretion of cytokines, co-culture experiments using Caco-2 and THP1-Blue™ cells were performed. UPF supplementation over a three-week period had a profound butyrogenic effect while also enriching colonic microbial diversity, consistently stimulating saccharolytic genera, and reducing genera linked with potentially negative health effects in both regions of the colon. Mild immune modulatory effects of UPF were also observed. Colonic fermentation of UPF showed anti-inflammatory properties by inducing the secretion of the anti-inflammatory cytokines IL-6 and IL-10 in two out of three donors in the proximal and distal colon. In conclusion, UPF supplementation may provide significant gut health benefits. Full article
(This article belongs to the Special Issue Research on Marine Compounds and Inflammation)
Show Figures

Graphical abstract

17 pages, 5458 KiB  
Article
Integrated Metabolome and Microbiome Analysis Reveals the Regulatory Effects of Fermented Soybean Meal on the Gut Microbiota of Late Gestation
by Yantao Li, Lele Fu, Yushi Chen, Hua Yang, Yingping Xiao, Ying Ren and Cheng Wang
Fermentation 2025, 11(6), 315; https://doi.org/10.3390/fermentation11060315 - 31 May 2025
Viewed by 774
Abstract
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets [...] Read more.
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets modulate the gut microbiota in late-gestation remains poorly understood. In this study, an in vitro fermentation model combined with chemical composition analysis, untargeted metabolomics, and high-throughput sequencing was employed to investigate the metabolic alterations during soybean meal (SBM) fermentation and the regulatory effects of fermented soybean meal (FSBM) on gut microbiota of late-gestation sows. The findings revealed that fermentation significantly increased the levels of crude protein, lactic acid, acid-soluble protein, lysine, histidine, and total amino acids of SBM. Conversely, the levels of crude fiber, NDF, ADF, starch, and non-starch polysaccharides were markedly reduced, compared to the unfermented group. A total of 941 differentially expressed metabolites were identified between SBM and FSBM. Specifically, FSBM elevated the levels of lactic acid, L-pyroglutamic acid, 2-aminoisobutyric acid, and tyrosine, while substantially decreasing the levels of raffinose, sucrose, and stachyose. Metabolic pathway analysis identified glutathione metabolism, tyrosine metabolism, and pantothenate and coenzyme A (CoA) biosynthesis as the key pathways involved in SBM fermentation. In vitro fermentation experiments demonstrated that FSBM substantially increased the production of short-chain fatty acids (SCFAs) and notably increased the relative abundance of sows gut commensal Lactobacillus and Limosilactobacillus in late gestation. In summary, this study demonstrated that co-fermentation with bacteria and enzymes pretreatment of soybean meal reduced fiber components and enriched bioactive metabolites, optimizing intestinal microbial composition and increasing SCFA production in late-pregnant period. The present study provides novel insights into the regulatory effects of fermented diets on gut microbiota in late-gestation period from the perspectives of nutritional composition and metabolites. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

26 pages, 12843 KiB  
Article
Prebiotic-like Effects of Proanthocyanidin-Rich Aronia Extract Supplementation on Gut Microbiota Composition and Function in the Twin-M-SHIME® Model
by Blanca Elizabeth Ruiz-Álvarez, Valentina Cattero and Yves Desjardins
Pharmaceuticals 2025, 18(6), 793; https://doi.org/10.3390/ph18060793 - 25 May 2025
Cited by 1 | Viewed by 1604
Abstract
Background: Phenolic compounds, particularly anthocyanins and proanthocyanidins (PACs), are poorly absorbed in the upper digestive tract and reach the colon largely intact, where they may influence gut microbiota (GM) composition and, in turn, impact host health. We hypothesized that a PAC-rich aronia [...] Read more.
Background: Phenolic compounds, particularly anthocyanins and proanthocyanidins (PACs), are poorly absorbed in the upper digestive tract and reach the colon largely intact, where they may influence gut microbiota (GM) composition and, in turn, impact host health. We hypothesized that a PAC-rich aronia extract would beneficially modulate the GM, promote the growth of health-associated bacteria, and enhance short-chain fatty acid (SCFA) production across different colon sections, with partial reversion effects after supplementation ends. Methods: The Twin-M-SHIME® system was used to simulate the digestion and colonic fermentation in two donors with contrasting microbiota profiles. The experimental design included four phases: stabilization (14 days), control (7 days), treatment with 500 mg/day PAC-rich aronia extract (21 days), and wash-out (10 days). SCFA production was monitored, and changes in microbiome composition were assessed using 16S rRNA gene sequencing. Results: PAC-rich aronia extract significantly modulated SCFA levels, increasing butyrate and reducing acetate, with some inter-donor variability. SCFA concentrations tended to return to baseline after the wash-out (WO) period. Metagenomic analysis revealed a decrease in Collinsella, Sutterella, Selenomonas, and Parabacteroides—genera linked to low-fiber diets and gut inflammation—while promoting Proteobacteria (e.g., Escherichia-Shigella, Klebsiella) and butyrate-associated Firmicutes such as Lactiplantibacillus. Although some microbial shifts partially reverted during the wash-out (e.g., Akkermansia, Bacteroides, and Bifidobacterium), other changes persisted. Conclusions: These findings suggest that PAC-rich aronia extract beneficially modulates GM and SCFA production, but continuous intake may be necessary to maintain these effects over time. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

19 pages, 2193 KiB  
Article
Effects of Pomelo Peel-Derived Dietary Fibers on Simulated Intestinal Digestion and Fermentation of Fish Balls In Vitro
by Mingjing Zheng, Yiman Wei, Jinling Hong, Zhipeng Li, Yanbing Zhu, Tao Hong, Zedong Jiang and Hui Ni
Foods 2025, 14(10), 1818; https://doi.org/10.3390/foods14101818 - 20 May 2025
Viewed by 550
Abstract
The effects of pomelo peel-derived dietary fibers (total dietary fiber, cellulose, and microcrystalline cellulose) on in vitro simulated gastrointestinal digestion and fermentation characteristics of silver carp fish balls were systematically investigated. Our findings revealed that pomelo peel dietary fibers significantly enhanced protein digestibility [...] Read more.
The effects of pomelo peel-derived dietary fibers (total dietary fiber, cellulose, and microcrystalline cellulose) on in vitro simulated gastrointestinal digestion and fermentation characteristics of silver carp fish balls were systematically investigated. Our findings revealed that pomelo peel dietary fibers significantly enhanced protein digestibility (highest increased by 18.58%), free amino acid content (most elevated by 13.27%), and slow digestion starch content (highest increased by 64.97%) in fish balls, suggesting an improved nutritional quality of fish balls. Moreover, pomelo peel-derived dietary fibers increased the content of short-chain fatty acids in the digestive fish balls at the late stage of fermentation (48 h) and caused changes in gut microbiota with reducing the ratio of Firmicutes to Bacteroidetes (F/B), the abundance of Escherichia-Shigella and Streptococcus, and increasing the levels of probiotics Bacteroides and Phascolarctobacterium. These suggested that pomelo peel-derived dietary fibers could promote the digestive characteristics of fish balls, effectively exerting prebiotic effects by regulating gut microbiota. The results could provide a scientific basis for the enhanced modification of intestinal digestion and fermentation of fish balls with dietary fibers. Full article
Show Figures

Figure 1

15 pages, 1352 KiB  
Article
Effect of Raspberry (Rubus indeaus L.) Juice Fermented by Limosilactobacillus fermentum FUA033 on the Human Gut Microbiota Cultured In Vitro: A Multi-Omics Approach
by Ziyan Hua, Yunfan Lv, Han Zhang, Tianyi Mao, Ruyu Xv, Mingxuan Pan, Yadong Hu, Shu Liu and Yaowei Fang
Foods 2025, 14(10), 1796; https://doi.org/10.3390/foods14101796 - 18 May 2025
Viewed by 577
Abstract
The gut microbiota plays important functions in human health and influences immune responses, metabolic processes, and several physiological activities. The modulation of the gut microbiota through dietary interventions has emerged as a promising approach, leading to significant interest in the development of functional [...] Read more.
The gut microbiota plays important functions in human health and influences immune responses, metabolic processes, and several physiological activities. The modulation of the gut microbiota through dietary interventions has emerged as a promising approach, leading to significant interest in the development of functional foods that provide health benefits. In this context, our study investigated the effects of raspberry juice fermented by Limosilactobacillus fermentum FUA033 on the structure and metabolism of the gut microbiota. We performed 16S rRNA gene sequencing and nontargeted metabolomics analyses to evaluate changes in the microbial composition and metabolite profiles resulting from fermentation. Our findings revealed that fermented raspberry juice considerably increased the gut microbial diversity and promoted the abundance of beneficial genera. Fermentation substantially increased the production of short-chain fatty acids, such as acetate and butyrate, which increased from 30.09 ± 5.23 mmol/L to 43.07 ± 3.31 mmol/L, and from 7.72 ± 1.72 mmol/L to 15.01 ± 1.26 mmol/L, respectively. Metabolomic analyses also showed significant enhancements in amino acid metabolism pathways, particularly those involving tyrosine, arginine, and proline. These results highlight the potential of fermented raspberry juice as a functional food to improve gut health and metabolic functions. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

26 pages, 4640 KiB  
Article
Simulated Gastrointestinal Digestion and In Vitro Fecal Fermentation of Purified Pyracantha fortuneana (Maxim.) Li Fruit Pectin
by Qingrui Xu, Yiyi Lv, Xiaohui Yuan, Guichun Huang, Zhongxia Guo, Jiana Tan, Shuyi Qiu, Xiaodan Wang and Chaoyang Wei
Foods 2025, 14(9), 1529; https://doi.org/10.3390/foods14091529 - 27 Apr 2025
Viewed by 635
Abstract
Pyracantha fortuneana, an underutilized wild plant, has been found to have a high nutritional value. This study used simulated digestion and fecal fermentation models to investigate the digestive properties of the purified acidic pectin polysaccharide of Pyracantha fortuneana and its impact on [...] Read more.
Pyracantha fortuneana, an underutilized wild plant, has been found to have a high nutritional value. This study used simulated digestion and fecal fermentation models to investigate the digestive properties of the purified acidic pectin polysaccharide of Pyracantha fortuneana and its impact on the gut microbiota and metabolites. Pyracantha fortuneana polysaccharide (PFP) is mainly composed of rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara), with a molecular weight (Mw) of 851.25 kDa. Following simulated digestion, the Mw of PFP remained consistent. The reduced sugar content showed minimal change, suggesting that PFP exhibits resistance to gastrointestinal digestion and can effectively reach the colon. Following fecal fermentation, the molecular weight, monosaccharide, and carbohydrate contents of PFP decreased, while the short-chain fatty acid content increased. This suggests that PFP is susceptible to degradation by microorganisms and can be metabolized into acetic acid and n-butyric acid, contributing to the regulation of intestinal health. Meanwhile, PFP promotes the reproduction of beneficial bacteria such as Bacteroides, Dialister, and Dysgonomonas, inhibits the growth of harmful bacteria like Proteus, and generates metabolites such as thiamine, leonuriside A, oxoadipic acid, S-hydroxymethylglutathione, and isonicotinic acid, which exert beneficial effects on human health. These results indicate that PFP has great potential in regulating the gut microbiota and generating beneficial metabolites to promote intestinal functional health and can be used as a prebiotic to prevent diseases by improving intestinal health. Full article
Show Figures

Graphical abstract

Back to TopTop