Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (63,285)

Search Parameters:
Keywords = impact performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 390 KB  
Systematic Review
Effects of Training Interventions on Physical Fitness and Performance in Kabaddi Players: A Systematic Review
by Daniel González-Devesa, Lidia Iglesias Vieites and Nerea Blanco-Martínez
Sports 2026, 14(1), 37; https://doi.org/10.3390/sports14010037 (registering DOI) - 13 Jan 2026
Abstract
Kabaddi is a contact sport that demands high physical fitness and specific technical skills. Although multiple training programs have been designed to improve performance, no systematic review had previously synthesized their effects on physical, physiological, and performance-related outcomes. This systematic review of randomized [...] Read more.
Kabaddi is a contact sport that demands high physical fitness and specific technical skills. Although multiple training programs have been designed to improve performance, no systematic review had previously synthesized their effects on physical, physiological, and performance-related outcomes. This systematic review of randomized controlled trials aimed to evaluate the impact of different training interventions on physical fitness, physiological parameters, and sport performance in kabaddi players. A systematic review was performed in the Web of Science, PubMed, and Scopus databases up to May 2025. Randomized controlled trials analyzing training interventions in kabaddi players were included. Ten studies with a total of 458 participants were included. Interventions lasted between 6 and 12 weeks and comprised modalities such as strength training, plyometrics, combined training, circuit training, SAQ (speed, agility, and quickness), and Tabata. Nine studies reported significant within-group improvements in variables such as strength, speed, agility, and flexibility. In studies with between-group comparisons, training interventions could be more effective than control conditions. One study also reported improvements in physiological and hematological parameters. Overall, training interventions in kabaddi players may improve physical fitness, sport-specific performance, and certain physiological and hematological parameters. However, the evidence should be interpreted with caution given the predominantly fair methodological quality of the included trials. PROSPERO (CRD420251272758). Full article
21 pages, 1452 KB  
Article
Rheological, Thermal and Mechanical Properties of Blown Film Based on Starch and Clay Nanocomposites
by Heidy Tatiana Criollo Guevara, Lis Vanesa Ocoró Caicedo, Jhon Jairo Rios Acevedo, Marcelo Alexander Guancha Chalapud and Carolina Caicedo
Processes 2026, 14(2), 276; https://doi.org/10.3390/pr14020276 (registering DOI) - 13 Jan 2026
Abstract
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties [...] Read more.
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties of biodegradable materials. In this study, commercial cassava starch powder plasticized with water and 35% glycerol, along with commercial nanoclay at concentrations of 0%, 2%, and 4%, was used as film reinforcement. The manufacturing process employed extrusion to evaluate the effectiveness of the nanomaterial in improving the mechanical and functional characteristics of the films. Films with varying concentrations of glycerol and nanoclay were produced to determine the optimal formulation by assessing their rheological, thermal, and mechanical properties. These films were subjected to comprehensive analysis using internationally standardised techniques, including Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and morphological characterisation via Scanning Electron Microscopy (SEM). Among the properties evaluated, water vapour permeability (WVTR) was of particular interest. Results showed that higher nanoclay content improved moisture retention, thus enhancing the films’ water barrier properties. Mechanical testing indicated that the film with the highest nanoclay concentration, F-g35-NC4, displayed tensile strength values of 0.23 ± 0.02 MPa and elongation of 66.90% ± 4.85, whereas F-g35-NC0 and F-g35-NC2 exhibited lower values. Conversely, the highest tear resistance was also recorded for F-g35-NC4, reaching 0.740 ± 0.009 kg. Contact angle measurements revealed a hydrophilic tendency, with values of 89.93° ± 8.78°. Finally, WVTR analysis confirmed that increased nanoclay content enhanced moisture retention and improved the water barrier performance, with a value of 0.030 ± 0.011 g/m2·day, supporting potential applications in the packaging sector. Full article
13 pages, 2152 KB  
Article
Cone Calorimeter Reveals Flammability Dynamics of Tree Litter and Mixed Fuels in Central Yunnan
by Xilong Zhu, Shiying Xu, Weike Li, Sazal Ahmed, Junwen Liu, Mingxing Liu, Xiangxiang Yan, Weili Kou, Qiuyang Du, Shaobin Yang and Qiuhua Wang
Fire 2026, 9(1), 36; https://doi.org/10.3390/fire9010036 (registering DOI) - 13 Jan 2026
Abstract
The characteristics of litter combustion have a significant impact on the spread of surface fires in the central Yunnan Province, a high-risk forest fire zone. The burning behavior of individual and mixed-species litter samples from five dominant tree species (Pinus yunnanensis Franch., [...] Read more.
The characteristics of litter combustion have a significant impact on the spread of surface fires in the central Yunnan Province, a high-risk forest fire zone. The burning behavior of individual and mixed-species litter samples from five dominant tree species (Pinus yunnanensis Franch., Keteleeria evelyniana Mast., Quercus variabilis Blume., Quercus aliena var. acutiserrata, and Alnus nepalensis D. Don.) was assessed in this study using cone calorimeter tests. Fern fronds and fine branches were included in additional tests to evaluate their effects on specific combustion parameters, such as Fire Performance Index (FPI), Flame Duration (FD), Time to Ignition (TTI), Mass Loss Rate (MLR), Residual Mass Fraction (RMF), Peak Heat Release Rate (PHRR), and Total Heat Release (THR). There were remarkable differences in the burning properties of the three types of litter (broadleaf, pine needles, and short pine needles). The THR and PHRR values of P. yunnanensis were the highest, whereas the PHRR of the other species varied very little. Short pine needle litter showed incomplete combustion and a long flame duration. When measured against pure pine needle litter, mixtures of P. yunnanensis and broadleaf litter showed lower PHRR. When set side by side to pure pine needle litter, P. yunnanensis and broadleaf litter showed lower PHRR. THR rose when fine branches were included, underlining the significance of fine woody fuels in fire behavior. The insertion of ferns increases the percentage of unburned biomass, prolongs TTI, and dramatically reduces PHRR. Full article
Show Figures

Figure 1

21 pages, 5506 KB  
Article
Impact of Aggressive Environments and Processing Orientation on the Mechanical Performance of L-PBF 316L Stainless Steel
by Najib Abu-warda, Javier Bedmar, Sonia García-Rodríguez, Belén Torres and Joaquin Rams
Metals 2026, 16(1), 86; https://doi.org/10.3390/met16010086 (registering DOI) - 13 Jan 2026
Abstract
This study addresses the limited understanding of how build orientation and aggressive environments jointly affect the mechanical reliability of L-PBF 316L stainless steel. Specimens were fabricated in vertical, edge, and flat orientations and exposed for 360 h to 1 M H2SO [...] Read more.
This study addresses the limited understanding of how build orientation and aggressive environments jointly affect the mechanical reliability of L-PBF 316L stainless steel. Specimens were fabricated in vertical, edge, and flat orientations and exposed for 360 h to 1 M H2SO4, 3.5 wt.% NaCl, and dry air oxidation at 800 °C. Tensile tests and microstructural analyses revealed strong anisotropy: edge and flat builds showed higher tensile and yield strength, while vertical builds exhibited greater ductility. Aqueous environments caused surface degradation and moderate strength loss, most severe in vertical samples. High-temperature oxidation induced σ-phase precipitation, increasing tensile strength (~20%) but reducing ductility and yield strength. These findings highlight the critical role of building orientation and service conditions in ensuring long-term performance of L-PBF 316L stainless steel. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
18 pages, 4204 KB  
Article
Effect of Silicon Crystal Size on Electrochemical Properties of Magnesium-Doped SiOx Anode Materials for Lithium-Ion Batteries
by Junli Li, Chaoke Bulin, Jinling Song, Bangwen Zhang and Xiaolan Li
Physchem 2026, 6(1), 4; https://doi.org/10.3390/physchem6010004 (registering DOI) - 13 Jan 2026
Abstract
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to [...] Read more.
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to explore the impact of variations in the size of microscopic silicon crystals on the properties of the material. Under the effect of magnesium doping, the influence mechanism of different microscopic grain sizes on the reaction kinetics behavior and structural stability of the material was systematically studied. Based on the research findings, a reasonable control range for the size of silicon crystals will be proposed. The research findings indicate that both relatively small and large silicon crystals are disadvantageous for cycling performance. When the silicon crystal grain size is 5.79 nm, the composite material demonstrates a relatively high overall capacity of 1442 mAh/g and excellent cycling stability. After 100 cycles, the capacity retention rate reaches 83.82%. EIS analysis reveals that larger silicon crystals exhibit a higher lithium ion diffusion coefficient. As a result, the silicon electrodes show more remarkable rate performance. Even under a high current density of 1C, the capacity of the material can still be maintained at 1044 mAh/g. Full article
(This article belongs to the Collection Batteries Beyond Mainstream)
Show Figures

Figure 1

16 pages, 6582 KB  
Article
Architectural Design Follows Energy Analysis: A Case of Residential Buildings in Bahrain
by Wael Abdelhameed
Buildings 2026, 16(2), 333; https://doi.org/10.3390/buildings16020333 (registering DOI) - 13 Jan 2026
Abstract
This research paper explores the key role of energy analysis in the initial phases of architectural design. The main research question is as follows: How can energy analysis shape and optimize architectural design variables? To address this question, the research paper identifies key [...] Read more.
This research paper explores the key role of energy analysis in the initial phases of architectural design. The main research question is as follows: How can energy analysis shape and optimize architectural design variables? To address this question, the research paper identifies key architectural design variables, including structural system, roof, window-to-wall ratio (WWR), and building envelope, all of which are influenced by energy efficiency strategies. Through case studies of residential buildings in Bahrain, the research investigates the optimization of these design variables. Energy models are employed to explore the impact of energy analysis on the design and performance of the selected residential buildings. The findings reveal a significant potential for energy reduction in annual consumption through the collective optimization of passive strategies. Furthermore, specific energy reduction for each sole variable is observed, as follows for structural system material (3.63% to 11.29%), roof thermal insulation (0.75% to 3.37%), WWR optimization (0.61% to 1.27%), and building envelope (7.39% to 13.5%). These findings establish energy analysis as a fundamental design approach for initial design phases or selection between design alternatives, and can be generalized to similar arid, humid climates and residential building designs. Full article
Show Figures

Figure 1

70 pages, 9142 KB  
Review
A Review of Natural Hazards’ Impacts on Wind Turbine Performance, Part 2: Earthquakes, Waves, Tropical Cyclones, and Thunderstorm Downbursts
by Xiao-Hang Wang, Chong-Shen Khor, Jing-Hong Ng, Shern-Khai Ung, Ahmad Fazlizan and Kok-Hoe Wong
Energies 2026, 19(2), 385; https://doi.org/10.3390/en19020385 (registering DOI) - 13 Jan 2026
Abstract
The rapid expansion of wind power as a key component of global renewable energy systems has led to the widespread deployment of wind turbines in environments exposed to diverse natural hazards. While hazard effects are often investigated individually, real wind turbine systems frequently [...] Read more.
The rapid expansion of wind power as a key component of global renewable energy systems has led to the widespread deployment of wind turbines in environments exposed to diverse natural hazards. While hazard effects are often investigated individually, real wind turbine systems frequently experience concurrent or sequential hazards over their operational lifetime, giving rise to interaction effects that are not adequately captured by conventional design approaches. This paper presents Part 2 of a comprehensive review on natural hazards affecting wind turbine performance, combining bibliometric keyword co-occurrence analysis with a critical synthesis of recent technical studies. The review focuses on earthquakes, sea waves, and extreme wind events, while also highlighting other hazard types that have received comparatively limited attention in the literature, examining their effects on wind turbine systems and the mitigation strategies reported to address associated risks. Rather than treating hazards in isolation, their impacts are synthesised through cross-hazard interaction pathways and component-level failure modes. The findings indicate that wind turbine vulnerability under multi-hazard conditions is governed not only by load magnitude but also by hazard-induced changes in system properties and operational state. Key research gaps are identified, emphasising the need for state-aware, mechanism-consistent multi-hazard assessment frameworks to support the resilient design and operation of future wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

48 pages, 651 KB  
Article
Does ESG Rating Divergence Undermine the Insurance-like Effect of ESG? Evidence from Financial Restatements in China
by Qiming Pan and Huiying Jia
Sustainability 2026, 18(2), 795; https://doi.org/10.3390/su18020795 (registering DOI) - 13 Jan 2026
Abstract
This study investigates the “insurance-like effect” of corporate Environmental, Social, and Governance (ESG) performance amid financial restatement events among Chinese listed firms and examines the moderating role of ESG rating divergence. Employing an event study methodology on a sample of 1552 financial restatement [...] Read more.
This study investigates the “insurance-like effect” of corporate Environmental, Social, and Governance (ESG) performance amid financial restatement events among Chinese listed firms and examines the moderating role of ESG rating divergence. Employing an event study methodology on a sample of 1552 financial restatement events in China’s A-share market from 2013 to 2023, we measure market reactions using the cumulative abnormal return (CAR) over a [−1, +1] day window. Our findings reveal that strong ESG performance significantly mitigates the negative market reactions triggered by financial restatements. However, this protective effect of ESG is significantly weakened by the inconsistency in ESG assessments among rating agencies, known as ESG rating divergence, particularly when such divergence is persistent. We argue that the underlying mechanism is that rating divergence creates signal conflicts, exacerbates information asymmetry, and erodes the credibility of ESG signals. This, in turn, undermines the stakeholder trust and moral capital that underpin the insurance-like effect. This research sheds light on the complex impact of ESG rating divergence on the value-protective mechanism of ESG and contributes new empirical evidence to the literature on ESG and its insurance-like effect, especially within the context of an emerging market. Full article
Show Figures

Figure 1

35 pages, 8323 KB  
Article
Evaluating Digital Marketing, Innovation, and Entrepreneurial Impact in AI-Built vs. Professionally Developed DeFi Websites
by Nikolaos T. Giannakopoulos, Damianos P. Sakas and Nikos Kanellos
Future Internet 2026, 18(1), 48; https://doi.org/10.3390/fi18010048 - 13 Jan 2026
Abstract
This study evaluates whether an AI-built DeFi website case can match professionally developed DeFi platforms in digital marketing performance, innovation-related strategic behavior, and entrepreneurial impact. Using a multi-method design, we compare five established DeFi websites (Aave, Lido, Curve, MakerDAO, Uniswap) against one AI-built [...] Read more.
This study evaluates whether an AI-built DeFi website case can match professionally developed DeFi platforms in digital marketing performance, innovation-related strategic behavior, and entrepreneurial impact. Using a multi-method design, we compare five established DeFi websites (Aave, Lido, Curve, MakerDAO, Uniswap) against one AI-built interface (Nexus Protocol). The analysis is designed as a five-platform benchmarking study of established professional DeFi websites, complemented by one AI-built case (Nexus Protocol) used as an illustrative comparison rather than a representative class of AI-built interface. The objectives are to (i) test differences in traffic composition and acquisition strategies, (ii) quantify how engagement signals predict authority and branded traffic, (iii) examine cognitive processing and trust-cue attention via eye tracking, and (iv) model emergent engagement and authority dynamics using agent-based simulation (ABM). Web analytics (March–October 2025) show significant variation in traffic composition across professional platforms (ANOVA F = 3.41, p = 0.0205), while regression models indicate that time on site and pages per visit positively predict Authority Score (R2 = 0.61) and Branded Traffic (R2 = 0.55), with bounce rate exerting an adverse effect. PCA and k-means clustering identify three strategic archetypes (innovation-driven, balanced-growth, efficiency-focused). Eye-tracking results show that professional interfaces generate tighter fixation clusters and shorter scan paths, indicating higher cognitive efficiency. In contrast, fixation on key UI elements and trust cues is comparable across interface types. ABM outputs further suggest that reduced engagement depth in the AI-built interface yields weaker long-run branded-traffic and authority trajectories. Overall, the study provides an integrated evaluation framework and evidence-based implications for AI-driven interface design in high-trust fintech environments. Full article
Show Figures

Figure 1

28 pages, 8096 KB  
Article
Numerical Investigation of Perforation in Microcrack Propagation and Damage Analysis at the Cement Sheath
by Yu Yao, Yan Xi, Jian He, Jianhua Zhao, Xianming Sun and Ming Liu
Appl. Sci. 2026, 16(2), 805; https://doi.org/10.3390/app16020805 - 13 Jan 2026
Abstract
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and [...] Read more.
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and compromises wellbore structural integrity. This process may induce failure in both the cement sheath body and its interfacial zones, potentially creating fluid migration pathways along the cement-casing interface through perforation tunnels. Current research remains insufficient in quantitatively evaluating cement sheath damage resulting from perforation operations. Addressing this gap, this study incorporates dynamic jet effects during perforation and establishes a numerical model simulating high-velocity jet penetration through casing–cement target–formation composites using a rock dynamics-based constitutive model. The investigation analyzes failure mechanisms within the cement sheath matrix and its boundaries during perforation penetration, while examining the influence of mechanical parameters (compressive strength and shear modulus) of both cement sheath and formation on damage characteristics. Results demonstrate that post-perforation cement sheath aperture exhibits convergent–divergent profiles along the tunnel axis, containing exclusively radial fractures. Primary fractures predominantly initiate at the inner cement wall, whereas microcracks mainly develop at the outer boundary. Enhanced cement compressive strength significantly suppresses fracture initiation at both boundaries: when increasing from 55 MPa to 75 MPa, the undamaged area ratio rises by 16.6% at the inner wall versus 11.2% at the outer interface. Meanwhile, increasing the formation shear modulus from 10 GPa to 15 GPa reduces cement target failure radius by 0.4 cm. Cement systems featuring high compressive strength and low shear modulus demonstrate superior performance in mitigating perforation-induced debonding. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 671 KB  
Article
The Impact of Digitization Transport Documents on the Competitiveness of Road Freight Transport Companies
by Miloš Poliak and Dominika Rovňaníková
Logistics 2026, 10(1), 20; https://doi.org/10.3390/logistics10010020 - 13 Jan 2026
Abstract
Background: The rapid digital transformation in logistics requires the adaptation of transport companies to electronic information management, particularly through the implementation of electronic consignment notes (e-CMR). This study examines how the digitization of transport documentation affects the competitiveness, operational efficiency, and environmental [...] Read more.
Background: The rapid digital transformation in logistics requires the adaptation of transport companies to electronic information management, particularly through the implementation of electronic consignment notes (e-CMR). This study examines how the digitization of transport documentation affects the competitiveness, operational efficiency, and environmental performance of road freight transport companies. Methods: A questionnaire survey was conducted among Slovak and Czech carriers to analyze their experience and readiness for adopting e-CMR. The collected data were evaluated using descriptive and comparative methods to quantify economic and ecological impacts, focusing mainly on invoicing efficiency and paper consumption. Results: The results show that only a small share of carriers currently use e-CMR, primarily due to high software costs and the lack of partner participation. Nevertheless, digitization can significantly shorten the average invoicing delay by approximately 11.5 days, releasing around 7% of tied-up working capital and improving cash flow. From an environmental perspective, the replacement of paper CMR forms could save millions of sheets annually, leading to a substantial reduction in CO2 emissions and paper waste within the V4 region. Conclusions: The findings confirm that the adoption of e-CMR improves economic performance, increases transparency, and contributes to sustainability, representing a crucial step toward a more competitive and environmentally responsible road freight transport sector in Europe. Full article
Show Figures

Figure 1

23 pages, 6278 KB  
Article
Scenario-Based Land-Use Trajectories and Habitat Quality in the Yarkant River Basin: A Coupled PLUS–InVEST Assessment
by Min Tian, Yingjie Ma, Qiang Ni, Amannisa Kuerban and Pengrui Ai
Sustainability 2026, 18(2), 796; https://doi.org/10.3390/su18020796 - 13 Jan 2026
Abstract
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four [...] Read more.
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four policy scenarios—Natural Development (ND), Arable Protection (AP), Ecological Protection (EP), and Economic Development (ED)—and to quantify their impact on habitat quality. Model validation against the 2020 map indicated strong agreement (Kappa = 0.792; FOM = 0.342), supporting scenario inference. From 1990 to 2023, arable land expanded by 58.17% and construction land by 121.64%, while forest land declined by 37.45%; these shifts corresponded to a basin-wide decline and increasing spatial heterogeneity of habitat quality. Scenario comparisons showed the EP pathway performed best, with 32.11% of the basin classified as very high-quality habitat and only 8.36% as very low-quality. In contrast, under ED, the combined share of very low + low quality reached 11.17%, alongside greater fragmentation. Spatially, high-quality habitat concentrates in forest and grassland zones of the middle–upper basin, whereas low-quality areas cluster along the oasis–desert transition and urban peripheries. Expansion of arable and construction land emerges as the primary driver of degradation. These results underscore the need to prioritize ecological-protection strategies especially improving habitat quality in oasis regions and strengthening landscape connectivity to support spatial planning and ecological security in dryland inland river basins. Full article
Show Figures

Figure 1

20 pages, 9228 KB  
Article
Autotrophic and Mixotrophic Batch Processes with Clostridium autoethanogenum LAbrini in Stirred Tank Bioreactors with Continuous Gassing
by Anne Oppelt, Tran Yen Nhi Nguyen, Yaodan Zhang and Dirk Weuster-Botz
Microorganisms 2026, 14(1), 175; https://doi.org/10.3390/microorganisms14010175 - 13 Jan 2026
Abstract
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth [...] Read more.
Simultaneous conversion of syngas and sugars is a promising approach to overcome limitations of syngas fermentation. Clostridium autoethanogenum LAbrini, obtained by adaptive laboratory evolution, is known to show improved autotrophic process performance. Under purely autotrophic conditions, C. autoethanogenum LAbrini exhibits substantially faster growth and biomass formation compared to the wild-type in fully controlled, stirred-tank bioreactors with a continuous gas supply. In mixotrophic processes, the pre-culture strategy has a significant impact on the growth and metabolic activity of C. autoethanogenum LAbrini. C. autoethanogenum LAbrini can metabolize sugars (D-fructose, D-xylose, or L-arabinose) and CO simultaneously. All mixotrophic batch processes showed increased growth and product formation compared to the autotrophic process. The mixotrophic batch process with D-fructose enabled superior production of alcohols (10.7 g L−1 ethanol and 3.2 g L−1 D-2,3-butanediol) with a heterotrophic pre-culture. Using an autotrophic pre-culture and L-arabinose resulted in a total alcohol formation of more than 13 g L−1. The formation of meso-2,3-butanediol (>0.50 g L−1) occurred exclusively under mixotrophic conditions. Thus, C. autoethanogenum LAbrini, clearly representing notable improvements over the wild-type strain in mixotrophic batch processes, offers a good basis for further strain improvements to shift the product range even further towards more reduced products. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

24 pages, 6868 KB  
Article
Study on Multi-Parameter Collaborative Optimization of Motor-Pump Stator Slotting for Cogging Torque and Noise Suppression Mechanism
by Geqiang Li, Xiaojie Guo, Xiaowen Yu, Min Zhao and Shuai Wang
World Electr. Veh. J. 2026, 17(1), 39; https://doi.org/10.3390/wevj17010039 - 13 Jan 2026
Abstract
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, [...] Read more.
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, Vibration, and Harshness) performance is the electromagnetic vibration and noise induced by the cogging torque of the built-in brushless DC motor (BLDCM). Traditional suppression methods that rely on stator auxiliary slots exhibit certain limitations. To address this issue, this paper proposes a collaborative optimization method integrating multi-parameter scanning and response surface methodology (RSM) for the design of auxiliary slots on the motor-pump’s stator teeth. The approach begins with a multi-parameter scanning phase to identify a promising region for global optimization. Subsequently, an accurate RSM-based prediction model is established to enable refined parameter tuning. Results demonstrate that the optimized stator structure achieves a 91.2% reduction in cogging torque amplitude for the motor-pump. Furthermore, this structure effectively suppresses radial electromagnetic force, leading to a 5.1% decrease in the overall sound pressure level. This work provides a valuable theoretical foundation and a systematic design methodology for cogging torque mitigation and low-noise design in motor-pumps. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

20 pages, 17607 KB  
Article
Parasitic Inductance Assessment of E-GaN DPT Circuit Through Finite Element Analysis
by Xing-Rou Chen, Huang-Jen Chiu, Yun-Yen Chen, Yi-Xuan Yang and Yu-Chen Liu
Energies 2026, 19(2), 383; https://doi.org/10.3390/en19020383 - 13 Jan 2026
Abstract
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes [...] Read more.
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes them highly suitable for high-frequency applications. However, parasitic inductance in the power loop can introduce resonance phenomena, impacting system stability and switching performance. To address this, this study integrates the parasitic parameters of printed circuit boards (PCBs) with the nonlinear junction capacitance characteristics of GaN devices. Finite element analysis (FEA) is employed to extract PCB parasitic inductance values and analyze their effects on GaN power-switching behavior. The findings indicate that precise extraction and analysis of parasitic inductance are critical for optimizing the performance of GaN switching devices. Additionally, this study investigates mitigation strategies to minimize parasitic inductance, ultimately enhancing GaN device design and reliability. The insights from this research provide valuable guidance for the development of GaN power devices in high-frequency applications. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop