Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = ice-covered regions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14813 KiB  
Article
Application and Comparison of Satellite-Derived Sea Surface Temperature Gradients to Identify Seasonal and Interannual Variability off the California Coast: Preliminary Results and Future Perspectives
by Jorge Vazquez-Cuervo, Marisol García-Reyes, David S. Wethey, Daniele Ciani and Jose Gomez-Valdes
Remote Sens. 2025, 17(15), 2722; https://doi.org/10.3390/rs17152722 - 6 Aug 2025
Abstract
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product [...] Read more.
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product (MUR, 0.01° grid scale) and the Operational SST and Ice Analysis (OSTIA, 0.05° grid scale), available through the Group for High Resolution SST (GHRSST). Both products show similar seasonal variability, with maxima occurring in the summer time frame. Additionally, both products show an increasing trend of SST gradients near the coast. However, differences exist between the two products (maximum gradient intensities were around 0.11 and 0.06 °C/km for OSTIA and MUR, respectively). The potential contributions of both cloud cover and the collocation of the MUR SST onto the OSTIA SST grid product to these differences were examined. Spectra and coherences were examined at two specific latitudes along the coast where upwelling can occur. A major conclusion is that future work needs to focus on cloud cover and its impact on the derivation of SST in coastal regions. Future comparisons also need to apply collocation methodologies that maintain, as much as possible, the spatial variability of the high-resolution product. Full article
Show Figures

Figure 1

25 pages, 9834 KiB  
Article
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been [...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 332
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 267
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
by Qi Su, Xiangchen Meng, Lin Sun and Zhongqiang Guo
Remote Sens. 2025, 17(14), 2350; https://doi.org/10.3390/rs17142350 - 9 Jul 2025
Viewed by 395
Abstract
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 [...] Read more.
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 m, leveraging auxiliary variables including vegetation indices, terrain parameters, and land surface reflectance. By establishing non-linear relationships between LST and predictive variables through eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, the proposed framework was rigorously validated using in situ measurements across China’s Heihe River Basin. Comparative analyses demonstrated that integrating multiple vegetation indices (e.g., NDVI, SAVI) with terrain factors yielded superior accuracy compared to factors utilizing land surface reflectance or excessive variable combinations. While slope and aspect parameters marginally improved accuracy in mountainous regions, including them degraded performance in flat terrain. Notably, land surface reflectance proved to be ineffective in snow/ice-covered areas, highlighting the need for specialized treatment in cryospheric environments. This work provides a reference for LST downscaling, with significant implications for environmental monitoring and urban heat island investigations. Full article
Show Figures

Graphical abstract

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 535
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

17 pages, 1214 KiB  
Article
EECNet: An Efficient Edge Computing Network for Transmission Line Ice Thickness Recognition
by Yu Zhang, Yangyang Jiao, Yinke Dou, Liangliang Zhao, Qiang Liu and Yang Liu
Processes 2025, 13(7), 2033; https://doi.org/10.3390/pr13072033 - 26 Jun 2025
Viewed by 322
Abstract
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper [...] Read more.
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper introduces an Efficient Edge Computing Network (EECNet) specifically designed for identifying ice thickness on transmission lines. Firstly, pruning is applied to the Efficient Neural Network (ENet), removing redundant components within the encoder to decrease both the computational complexity and the number of parameters in the model. Secondly, a Dilated Asymmetric Bottleneck Module (DABM) is proposed. By integrating different types of convolutions, this module effectively strengthens the model’s capability to extract features from ice-covered transmission lines. Then, an Efficient Partial Conv Module (EPCM) is designed, introducing an adaptive partial convolution selection mechanism that innovatively combines attention mechanisms with partial convolutions. This design enhances the model’s ability to select important feature channels. The method involves segmenting ice-covered images to obtain iced regions and then calculating the ice thickness using the iced area and known cable parameters. Experimental validation on an ice-covered transmission line dataset shows that EECNet achieves a segmentation accuracy of 92.7% in terms of the Mean Intersection over Union (mIoU) and an F1-Score of 96.2%, with an ice thickness recognition error below 3.4%. Compared to ENet, the model’s parameter count is reduced by 41.7%, and the detection speed on OrangePi 5 Pro is improved by 27.3%. After INT8 quantization, the detection speed is increased by 26.3%. These results demonstrate that EECNet not only enhances the recognition speed on edge equipment but also maintains high-precision ice thickness recognition. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 2057 KiB  
Article
Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel
by Ewelina Orysiak, Jakub Figas, Maciej Prygiel, Maksymilian Ziółek and Bartosz Ryłko
Appl. Sci. 2025, 15(13), 7118; https://doi.org/10.3390/app15137118 - 24 Jun 2025
Viewed by 393
Abstract
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the [...] Read more.
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the safe and efficient use of liquefied natural gas (LNG) as bunkering fuel in the region. The analysis draws on long-term meteorological and hydrological datasets (1971–2020), including satellite observations and in situ measurements. It identifies operational constraints, such as wind speed, wave height, visibility, and ice cover, and assesses their impact on LNG logistics and terminal functionality. Thresholds for safe operations are evaluated in accordance with IMO and ISO safety standards. An ice severity forecast for 2011–2030 was developed using the ECHAM5 global climate model under the A1B emission scenario, indicating potential seasonal risks to LNG operations. While baseline safety criteria are generally met, environmental variability in the region may still cause temporary disruptions. Findings underscore the need for resilient port infrastructure, including anti-icing systems, heated transfer equipment, and real-time environmental monitoring, to ensure operational continuity. Integrating weather forecasting into LNG logistics supports uninterrupted deliveries and contributes to EU goals for energy diversification and emissions reduction. The study concludes that strategic investments in LNG infrastructure—tailored to regional climatic conditions—can enhance energy security in the southern Baltic, provided environmental risks are systematically accounted for in operational planning. Full article
Show Figures

Figure 1

16 pages, 2211 KiB  
Article
Impact of Convective Heat Transfer on Circular Tube Components in Polar Ships Within Ice-Covered Regions
by Houli Liu, Haiming Wen, Jing Cao, Xueyang Han, Chenyang Liu and Dayong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1207; https://doi.org/10.3390/jmse13071207 - 21 Jun 2025
Viewed by 1362
Abstract
The upper facilities of polar marine equipment face severe freezing risks in ice-covered regions, necessitating energy-efficient electric heat tracing design. Existing models neglect coupled environmental factors (temperature–wind–humidity), leading to the overestimation of heating power. In this paper, experiment and CFD simulation are used [...] Read more.
The upper facilities of polar marine equipment face severe freezing risks in ice-covered regions, necessitating energy-efficient electric heat tracing design. Existing models neglect coupled environmental factors (temperature–wind–humidity), leading to the overestimation of heating power. In this paper, experiment and CFD simulation are used to study the change of convective heat transfer coefficients of electric tracing circular tube components under the polar coupling environmental conditions of wind speed of 0~8 m/s, temperature of −40~0 °C, and air relative humidity of 10~95%, and the corresponding mathematical prediction model is established. The results show that increasing the wind speed and relative humidity will both increase the convective heat transfer coefficient of the circular tube, while the temperature is inversely proportional to the convective heat transfer coefficient of the circular tube. The convective heat transfer coefficient shows an average growth rate of only 2.8–3.8% as the temperature decreases from −10 °C to −40 °C, which is significantly lower than the effects of wind speed (average growth rate 59–50%) and humidity (average growth rate 7.5–12.7%). When the wind speed exceeds 2 m/s, the growth rate of humidity’s effect on the coefficient increases from 17.82% to 33.96%. Mathematical prediction models can provide certain references for the calculation and design of reasonable heating amounts for anti-icing and de-icing of polar equipment’s circular tube components under ice-covered regions. Full article
Show Figures

Figure 1

21 pages, 7576 KiB  
Article
Interpreting Global Terrestrial Water Storage Dynamics and Drivers with Explainable Deep Learning
by Haijun Huang, Xitian Cai, Lu Li, Xiaolu Wu, Zichun Zhao and Xuezhi Tan
Remote Sens. 2025, 17(13), 2118; https://doi.org/10.3390/rs17132118 - 20 Jun 2025
Viewed by 458
Abstract
Sustained reductions in terrestrial water storage (TWS) have been observed globally using Gravity Recovery and Climate Experiment (GRACE) satellite data since 2002. However, the underlying mechanisms remain incompletely understood due to limited record lengths and data discontinuity. Recently, explainable artificial intelligence (XAI) has [...] Read more.
Sustained reductions in terrestrial water storage (TWS) have been observed globally using Gravity Recovery and Climate Experiment (GRACE) satellite data since 2002. However, the underlying mechanisms remain incompletely understood due to limited record lengths and data discontinuity. Recently, explainable artificial intelligence (XAI) has provided robust tools for unveiling dynamics in complex Earth systems. In this study, we employed a deep learning technique (Long Short-Term Memory network, LSTM) to reconstruct global TWS dynamics, filling gaps in the GRACE record. We then utilized the Local Interpretable Model-agnostic Explanations (LIME) method to uncover the underlying mechanisms driving observed TWS reductions. Our results reveal a consistent decline in the global mean TWS over the past 22 years (2002–2024), primarily influenced by precipitation (17.7%), temperature (16.0%), and evapotranspiration (10.8%). Seasonally, the global average of TWS peaks in April and reaches a minimum in October, mirroring the pattern of snow water equivalent with approximately a one-month lag. Furthermore, TWS variations exhibit significant differences across latitudes and are driven by distinct factors. The largest declines in TWS occur predominantly in high latitudes, driven by rising temperatures and significant snow/ice variability. Mid-latitude regions have experienced considerable TWS losses, influenced by a combination of precipitation, temperature, air pressure, and runoff. In contrast, most low-latitude regions show an increase in TWS, which the model attributes mainly to increased precipitation. Notably, TWS losses are concentrated in coastal areas, snow- and ice-covered regions, and areas experiencing rapid temperature increases, highlighting climate change impacts. This study offers a comprehensive framework for exploring TWS variations using XAI and provides valuable insights into the mechanisms driving TWS changes on a global scale. Full article
Show Figures

Figure 1

19 pages, 5960 KiB  
Article
Numerical and Experimental Study on Deicing of Wind Turbine Blades by Electric Heating Under Complex Flow Field
by Jianwei Li, Panpan Yang, Xuemei Huang, Leian Zhang and Jinghua Wang
Machines 2025, 13(6), 483; https://doi.org/10.3390/machines13060483 - 3 Jun 2025
Viewed by 428
Abstract
Wind turbine blades are prone to icing in cold environments, which leads to decreased aerodynamic performance, increased power loss, and even endangers the safe and stable operation of wind turbines. Electric heating anti-deicing method is the most effective solution because of its flexible [...] Read more.
Wind turbine blades are prone to icing in cold environments, which leads to decreased aerodynamic performance, increased power loss, and even endangers the safe and stable operation of wind turbines. Electric heating anti-deicing method is the most effective solution because of its flexible control, rapid response, and high deicing efficiency. However, in the process of blade high-speed rotation, the complex flow field effect significantly affects the blade heat transfer performance, which leads to the problems of high energy consumption, low heat utilization, and uneven heating of traditional electric heating anti-icing/deicing methods, limiting their application effect in complex working conditions. Based on the physical mechanism and heat exchange characteristics of electric heating deicing of wind turbine blades, a coupled flow–heat transfer numerical model suitable for complex flow field conditions was constructed in this study, aiming to realize the dynamic simulation of the global temperature field and the phase transition process of ice sheets under different heating modes. Furthermore, the deicing efficiency characteristics of continuous heating and cyclic heating modes were compared and analyzed. The blade tip section of a Sinoma87.5 was taken as the experimental object, and the deicing experiment of blade by electric heating was carried out under artificial ice-covering laboratory conditions. The simulation and experimental results show that the deicing process by electric heating can be divided into three typical stages: initial temperature rise, stagnation, and rapid temperature rise. Under the influence of incoming flow conditions, the temperature rise of the front stagnation point region lags behind that of the windward side, and the steady-state peak temperature is lower. Compared with the cyclic heating mode, the continuous heating mode can enter and cross the stagnation period more quickly. The peak steady-state temperature of the continuous heating mode is 24.2 °C, and the deviation from the simulation result is only 2.8 °C, which is within the acceptable error range, effectively verifying the reliability of the numerical calculation model established. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

23 pages, 9220 KiB  
Article
Machine Learning-Enhanced River Ice Identification in the Complex Tibetan Plateau
by Xin Pang, Hongyi Li, Hongrui Ren, Yaru Yang, Qin Zhao, Yiwei Liu, Xiaohua Hao and Liting Niu
Remote Sens. 2025, 17(11), 1889; https://doi.org/10.3390/rs17111889 - 29 May 2025
Viewed by 459
Abstract
Accurate remote sensing identification of river ice not only provides scientific evidence for climate change but also offers early warning information for disasters such as ice jams. Currently, many researchers have used remote sensing index-based methods to identify river ice in alpine regions. [...] Read more.
Accurate remote sensing identification of river ice not only provides scientific evidence for climate change but also offers early warning information for disasters such as ice jams. Currently, many researchers have used remote sensing index-based methods to identify river ice in alpine regions. However, in high-altitude areas, these index-based methods face limitations in recognizing river ice and distinguishing ice-snow mixtures. With the rapid advancement of machine learning techniques, some scholars have begun to use machine learning methods to extract river ice in northern latitudes. However, there is still a lack of systematic studies on the ability of machine learning to enhance river ice identification in high-altitude, complex terrains. The study evaluates the performance of machine learning methods and the RDRI index method across six aspects: river type, altitude, river width, ice periods, satellite data, and snow cover interference. The results show that machine learning, particularly the RF method, demonstrates superior generalization ability and higher recognition accuracy for river ice in the complex high-altitude terrain of the Tibetan Plateau by leveraging a variety of input data, including spectral and topographical information. The RF model performs best under all types of test conditions, with an average Kappa coefficient of 0.9088, outperforming other machine learning methods and significantly outperforming the traditional exponential method, demonstrating stronger recognition capabilities. Machine learning methods are adaptable to different types of river ice, showing particularly improved recognition of river ice in braided river systems. RF and SVM exhibit more accurate river ice recognition across different altitudinal gradients, with RF and SVM significantly improving the identification accuracy of river ice (0–90 m) on the plateau. RF and SVM methods offer more precise boundary recognition when identifying river ice across different ice periods. Additionally, RF demonstrates better generalization in the transfer of multisource satellite data. RF’s performance is outstanding under different snow cover conditions, overcoming the limitations of traditional methods in identifying river ice under thick snow. Machine learning methods, which are well suited for large sample learning and have strong generalization capabilities, show significant potential for application in river ice identification within high-altitude, complex terrains. Full article
Show Figures

Figure 1

22 pages, 4299 KiB  
Article
Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters
by Congxi Fang, Jinlei Chen, Lijun Su, Zongji Yang and Tao Yang
Atmosphere 2025, 16(5), 547; https://doi.org/10.3390/atmos16050547 - 5 May 2025
Viewed by 631
Abstract
Southeast Tibet is characterized by extensive alpine glaciers and deep valleys, making it highly prone to cryospheric disasters such as avalanches, ice/ice–rock avalanches, glacial lake outburst floods, debris flows, and barrier lakes, which pose severe threats to infrastructure and human safety. Understanding how [...] Read more.
Southeast Tibet is characterized by extensive alpine glaciers and deep valleys, making it highly prone to cryospheric disasters such as avalanches, ice/ice–rock avalanches, glacial lake outburst floods, debris flows, and barrier lakes, which pose severe threats to infrastructure and human safety. Understanding how cryospheric disasters respond to climate warming remains a critical challenge. Using 3.3 km resolution meteorological downscaling data, this study analyzes the spatiotemporal evolution of multiple climate indicators from 1979 to 2022 and assesses their impacts on cryospheric disaster occurrence. The results reveal a significant warming trend across Southeast Tibet, with faster warming in glacier-covered regions. Precipitation generally decreases, though the semi-arid northwest experiences localized increases. Snowfall declines, with the steepest decrease observed around the lower reaches of the Yarlung Zangbo River. In the moisture corridor of the lower reaches of the Yarlung Zangbo River, warming intensifies freeze–thaw cycles, combined with high baseline extreme daily precipitation, which increases the likelihood of glacial disaster chains. In northwestern Southeast Tibet, accelerated glacier melting due to warming, coupled with increasing extreme precipitation, heightens glacial disaster probabilities. While long-term snowfall decline may reduce avalanches, high baseline extreme snowfall suggests short-term threats remain. Finally, this study establishes meteorological indicators for predicting changes in cryospheric disaster risks under climate change. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

15 pages, 7285 KiB  
Article
Research on Sea Ice and Local Ice Load Monitoring System for Polar Cargo Vessels
by Jinhui Jiang, Shuaikang He, Herong Jiang, Xiaodong Chen and Shunying Ji
J. Mar. Sci. Eng. 2025, 13(4), 808; https://doi.org/10.3390/jmse13040808 - 18 Apr 2025
Cited by 1 | Viewed by 559
Abstract
Sea ice and the resulting loads are major safety concerns for vessels operating in ice-covered regions. This study presents a tailored sea ice and local ice load monitoring system specifically designed for polar cargo vessels. The system employs shipboard cameras coupled with a [...] Read more.
Sea ice and the resulting loads are major safety concerns for vessels operating in ice-covered regions. This study presents a tailored sea ice and local ice load monitoring system specifically designed for polar cargo vessels. The system employs shipboard cameras coupled with a DeepLab v3+-based algorithm to achieve real-time ice concentration identification, demonstrating 90.68% accuracy when validated against historical Arctic Sea ice imagery. For structural load monitoring, we developed a hybrid methodology integrating numerical simulations, full-scale strain measurements, and classification society standards, enabling the precise evaluation of ice-induced structural responses. The system’s operational process is demonstrated through comprehensive case studies of characteristic ice collision scenarios. Furthermore, this system serves as an exemplary implementation of a navigation assistance framework for polar cargo vessels, offering both real-time operational guidance and long-term reference data for enhancing ice navigation safety. Full article
Show Figures

Figure 1

18 pages, 7051 KiB  
Article
Sensitivity Analysis of Dissolved Oxygen in Cold Region Rivers Through Numerical Modelling
by Yifan Wu, Julia Blackburn, Yuntong She and Wenming Zhang
Water 2025, 17(8), 1135; https://doi.org/10.3390/w17081135 - 10 Apr 2025
Viewed by 508
Abstract
Dissolved oxygen (DO) is one of the most critical water quality constituents in cold region rivers. Harsh winter conditions pose significant challenges for DO sampling, making numerical modeling a valuable tool for gaining insights into DO concentrations during winter. Sensitivity analysis is essential [...] Read more.
Dissolved oxygen (DO) is one of the most critical water quality constituents in cold region rivers. Harsh winter conditions pose significant challenges for DO sampling, making numerical modeling a valuable tool for gaining insights into DO concentrations during winter. Sensitivity analysis is essential for understanding the relative importance of the model parameters to the DO concentrations; however, such studies are rare. This study conducted a DO sensitivity analysis in the Lower Athabasca River, Canada, using a water quality model with ice effects in the MIKE HYDRO River. The simulated flow, water level, water temperature and DO concentrations closely matched observed values along the study reach. A bidirectional perturbation analysis was conducted to assess the sensitivity of DO concentrations to 14 model parameters. The results indicate that photosynthesis and respiration are the two most influential processes affecting river DO under winter conditions despite lower biomass activity compared to open-water conditions. A distinct seasonal pattern was observed for most parameters, with DO sensitivity during winter ice-covered periods being significantly higher than in summer open-water conditions. The study provides valuable insights for the development of integrated water quality and ice models for cold region rivers. Full article
Show Figures

Figure 1

Back to TopTop