Global Aerosol Climatology from ICESat-2 Lidar Observations
Abstract
1. Introduction
2. Material and Methods
2.1. ICESat-2
2.2. ICESat-2 ATL09 CAD Algorithm
2.3. CNN U-Net CAD Algorithm
3. Results
3.1. Comparison of Results by ATL09 CAD and CNN
3.2. Annual Mean
3.3. Seasonal Variations
3.3.1. Arabian Peninsula (ARP) and Arabian Sea (ARS)
3.3.2. South Asia (SAS)
3.3.3. Southeast Asia (SEA)
3.3.4. East Asia (EAS)
3.3.5. Africa
3.3.6. North America and South America
3.3.7. Oceans
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AERONET | AErosol RObotic NETwork |
AOD | Aerosol Optical Depth |
ARP | Arabian Peninsula |
ARS | Arabian Sea |
ATLAS | Advanced Topographic Laser Altimeter System |
CAD | Cloud-Aerosol Discrimination |
CATS | Cloud-Aerosol Transport System |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CALIPSO | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations |
CNN | Convolutional Neural Network |
DDA | Density Dimension Algorithm |
EAS | East Asia |
EarthCARE | Earth Cloud, Aerosol and Radiation Explorer |
FoO | Frequency of Occurrence |
ICESat-2 | Ice, Cloud, and land Elevation Satellite-2 |
IGP | Indo-Gangetic Plain |
IPCC | Intergovernmental Panel on Climate Change |
ITCZ | Intertropical Convergence Zone |
MISR | Multiangle Imaging Spectroradiometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NRB | Normalized Relative Backscatter |
PBL | Planetary Boundary Layer |
RH | Relative Humidity |
SAS | South Asia |
SAA | South Atlantic Anomaly |
SAL | Saharan Air Layer |
SEA | Southeast Asia |
SNR | Signal-to-Noise Ratio |
SZA | Solar Zenith Angle |
Appendix A
References
- Thornhill, G.D.; Collins, W.J.; Kramer, R.J.; Olivié, D.; Skeie, R.B.; O’COnnor, F.M.; Abraham, N.L.; Checa-Garcia, R.; Bauer, S.E.; Deushi, M.; et al. Effective radiative forcing from emissions of reactive gases and aerosols—A multi-model comparison. Atmos. Chem. Phys. 2021, 21, 853–874. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.; et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed]
- Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M.S. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 2005, 438, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar]
- Horowitz, H.M.; Garland, R.M.; Thatcher, M.; Landman, W.A.; Dedekind, Z.; Van der Merwe, J.; Engelbrecht, F.A. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET. Atmos. Chem. Phys. 2017, 17, 13999–14023. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Liu, L.; Geogdzhayev, I.V.; Travis, L.D.; Cairns, B.; Lacis, A.A. Toward unified satellite climatology of aerosol properties.: 3. MODIS versus MISR versus AERONET. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 540–552. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef]
- Kalluri, S.; Cao, C.; Heidinger, A.; Ignatov, A.; Key, J.; Smith, T. The advanced very high resolution radiometer: Contributing to earth observations for over 40 years. Bull. Am. Meteorol. Soc. 2021, 102, E351–E366. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos. 2008, 113, D14S07. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Holben, B. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. Atmos. 2005, 110, D10S04. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- McGill, M.J.; Yorks, J.E.; Scott, V.S.; Kupchock, A.W.; Selmer, P.A. The cloud-aerosol transport system (CATS): A technology demonstration on the International Space Station. In Lidar Remote Sensing for Environmental Monitoring XV; SPIE: San Diego, CA, USA, 2015; Volume 9612, pp. 34–39. [Google Scholar]
- Nowottnick, E.P.; Christian, K.E.; Yorks, J.E.; McGill, M.J.; Midzak, N.; Selmer, P.A.; Lu, Z.; Wang, J.; Salinas, S.V. Aerosol detection from the cloud–aerosol transport system on the international space station: Algorithm overview and implications for diurnal sampling. Atmosphere 2022, 13, 1439. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 laser altimetry mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Wehr, T.; Kubota, T.; Tzeremes, G.; Wallace, K.; Nakatsuka, H.; Ohno, Y.; Koopman, R.; Rusli, S.; Kikuchi, M.; Eisinger, M.; et al. The EarthCARE mission–science and system overview. Atmos. Meas. Tech. 2023, 16, 3581–3608. [Google Scholar] [CrossRef]
- Hair, J.W.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Ferrare, R.A.; Mack, T.L.; Welch, W.; Izquierdo, L.R.; Hovis, F.E. Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6752. [Google Scholar] [CrossRef]
- Yu, H.; Chin, M.; Winker, D.M.; Omar, A.H.; Liu, Z.; Kittaka, C.; Diehl, T. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. J. Geophys. Res. Atmos. 2010, 115, D00H30. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, J.H.; Tackett, J.L.; Su, H.; Fu, R. Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations. J. Geophys. Res. Atmos. 2013, 118, 4572–4596. [Google Scholar] [CrossRef]
- Shikwambana, L.; Sivakumar, V. Global distribution of aerosol optical depth in 2015 using CALIPSO level 3 data. J. Atmos. Sol.-Terr. Phys. 2018, 173, 150–159. [Google Scholar] [CrossRef]
- Pan, H.; Huang, J.; Kumar, K.R.; An, L.; Zhang, J. The CALIPSO retrieved spatiotemporal and vertical distributions of AOD and extinction coefficient for different aerosol types during 2007–2019: A recent perspective over global and regional scales. Atmos. Environ. 2022, 274, 118986. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Zhao, H.; Yao, W.; Li, L.; Zhang, L.; Wang, H.; Wang, Y.; Zhang, X. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007–2019) of CALIOP observations. Atmos. Chem. Phys. 2021, 21, 15309–15336. [Google Scholar] [CrossRef]
- Lee, L.; Zhang, J.; Reid, J.S.; Yorks, J.E. Investigation of CATS aerosol products and application toward global diurnal variation of aerosols. Atmos. Chem. Phys. 2019, 19, 12687–12707. [Google Scholar] [CrossRef]
- Yu, Y.; Kalashnikova, O.V.; Garay, M.J.; Lee, H.; Choi, M.; Okin, G.S.; Yorks, J.E.; Campbell, J.R.; Marquis, J. A global analysis of diurnal variability in dust and dust mixture using CATS observations. Atmos. Chem. Phys. 2021, 21, 1427–1447. [Google Scholar] [CrossRef]
- Christian, K.E.; Palm, S.P.; Yorks, J.E.; Nowottnick, E.P. Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations. Remote Sens. 2025, 17, 482. [Google Scholar] [CrossRef]
- Palm, S.P.; Yang, Y.; Herzfeld, U.; Hancock, D.; Hayes, A.; Selmer, P.; Hart, W.; Hlavka, D. ICESat-2 atmospheric channel description, data processing and first results. Earth Space Sci. 2021, 8, e2020EA001470. [Google Scholar] [CrossRef]
- Kuang, S.; Burris, J.F.; Newchurch, M.J.; Johnson, S.; Long, S. Differential absorption lidar to measure subhourly variation of tropospheric ozone profiles. IEEE Trans. Geosci. Remote Sens. 2010, 49, 557–571. [Google Scholar] [CrossRef]
- Palm, S.; Yang, Y.; Herzfeld, U.; Hancock, D. ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Layer Characteristics, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2022. [CrossRef]
- Anderson, P.C.; Rich, F.J.; Borisov, S. Mapping the South Atlantic Anomaly continuously over 27 years. J. Atmos. Sol.-Terr. Phys. 2018, 177, 237–246. [Google Scholar] [CrossRef]
- Yang, G.; Martino, A.J.; Lu, W.; Cavanaugh, J.; Bock, M.; Krainak, M.A. IceSat-2 ATLAS photon-counting receiver: Initial on-orbit performance. In Advanced Photon Counting Techniques XIII; SPIE: Baltimore, MD, USA, 2019; Volume 10978, pp. 48–55. [Google Scholar]
- Noel, V.; Chepfer, H.; Hoareau, C.; Reverdy, M.; Cesana, G. Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly. Atmos. Meas. Tech. 2014, 7, 1597–1603. [Google Scholar] [CrossRef]
- Oladipo, B.; Gomes, J.; McGill, M.; Selmer, P. Leveraging deep learning as a new approach to layer detection and cloud–aerosol classification using ICESat-2 atmospheric data. Remote Sens. 2024, 16, 2344. [Google Scholar] [CrossRef]
- Yorks, J.E.; Selmer, P.A.; Kupchock, A.; Nowottnick, E.P.; Christian, K.E.; Rusinek, D.; Dacic, N.; McGill, M.J. Aerosol and cloud detection using machine learning algorithms and space-based lidar data. Atmosphere 2021, 12, 606. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.A.; Winker, D.M.; Hostetler, C.A.; Poole, L.R.; Hlavka, D.; Hart, W.; McGill, M. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res. Atmos. 2004, 109, D15202. [Google Scholar] [CrossRef]
- Selmer, P.; Yorks, J.E.; Nowottnick, E.P.; Cresanti, A.; Christian, K.E. A Deep Learning Lidar Denoising Approach for Improving Atmospheric Feature Detection. Remote Sens. 2024, 16, 2735. [Google Scholar] [CrossRef]
- Choi, W.; Lee, H.; Park, J. A first approach to aerosol classification using space-borne measurement data: Machine learning-based algorithm and evaluation. Remote Sens. 2021, 13, 609. [Google Scholar] [CrossRef]
- McGill, M.J.; Selmer, P.A.; Kupchock, A.W.; Yorks, J.E. Machine learning-enabled real-time detection of cloud and aerosol layers using airborne lidar. Front. Remote Sens. 2023, 4, 1116817. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Iqbal, H. HarisIqbal88/PlotNeuralNet v1.0.0; Zenodo. 2018. Available online: https://zenodo.org/records/2526396 (accessed on 1 April 2025).
- Qu, W.J.; Wang, J.; Zhang, X.Y.; Wang, D.; Sheng, L.F. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res. 2015, 153, 500–511. [Google Scholar] [CrossRef]
- Pokharel, M.; Guang, J.; Liu, B.; Kang, S.; Ma, Y.; Holben, B.N.; Xia, X.; Xin, J.; Ram, K.; Rupakheti, D.; et al. Aerosol properties over Tibetan Plateau from a decade of AERONET measurements: Baseline, types, and influencing factors. J. Geophys. Res. Atmos. 2019, 124, 13357–13374. [Google Scholar] [CrossRef]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Pu, B.; Yang, Z.L.; Parajuli, S.P. High summertime aerosol loadings over the Arabian Sea and their transport pathways. J. Geophys. Res. Atmos. 2018, 123, 10–568. [Google Scholar] [CrossRef]
- Banerjee, T.; Anchule, A.; Sorek-Hamer, M.; Latif, M.T. Vertical stratification of aerosols over South Asian cities. Environ. Pollut. 2022, 309, 119776. [Google Scholar] [CrossRef]
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Di Girolamo, L.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–468. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Shalaby, A.; Rappenglueck, B.; Eltahir, E.A.B. The climatology of dust aerosol over the arabian peninsula. Atmos. Chem. Phys. Discuss. 2015, 15, 1523–1571. [Google Scholar]
- Jin, S.; Ma, Y.; Huang, Z.; Huang, J.; Gong, W.; Liu, B.; Wang, W.; Fan, R.; Li, H. A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia. Atmos. Chem. Phys. 2023, 23, 8187–8210. [Google Scholar] [CrossRef]
- Mhawish, A.; Sorek-Hamer, M.; Chatfield, R.; Banerjee, T.; Bilal, M.; Kumar, M.; Sarangi, C.; Franklin, M.; Chau, K.; Garay, M.; et al. Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remote Sens. Environ. 2021, 259, 112410. [Google Scholar] [CrossRef]
- Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P.R.; Diehl, T.L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; et al. A multi-model evaluation of aerosols over South Asia: Common problems and possible causes. Atmos. Chem. Phys. 2015, 15, 5903–5928. [Google Scholar] [CrossRef]
- Malm, W.C.; Day, D.E. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 2001, 35, 2845–2860. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Jana, S.; Gogoi, M.M.; Babu, S.S. Change in precipitation pattern over South Asia in response to the trends in regional warming and free-tropospheric aerosol loading. Sci. Rep. 2024, 14, 14528. [Google Scholar] [CrossRef]
- Gautam, R.; Liu, Z.; Singh, R.P.; Hsu, N.C. Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys. Res. Lett. 2009, 36, L06813. [Google Scholar] [CrossRef]
- Banerjee, T.; Shitole, A.S.; Mhawish, A.; Anand, A.; Ranjan, R.; Khan, F.; Srithawirat, T.; Latif, M.T.; Mall, R.K. Aerosol climatology over South and Southeast Asia: Aerosol types, vertical profile, and source fields. J. Geophys. Res. Atmos. 2021, 126, e2020JD033554. [Google Scholar] [CrossRef]
- Singh, N.; Mhawish, A.; Deboudt, K.; Singh, R.S.; Banerjee, T. Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications. Atmos. Environ. 2017, 157, 59–74. [Google Scholar] [CrossRef]
- Villalobos, A.M.; Amonov, M.O.; Shafer, M.M.; Devi, J.J.; Gupta, T.; Tripathi, S.N.; Rana, K.S.; Mckenzie, M.; Bergin, M.H.; Schauer, J.J. Source apportionment of carbonaceous fine particulate matter (PM2. 5) in two contrasting cities across the Indo–Gangetic Plain. Atmos. Pollut. Res. 2015, 6, 398–405. [Google Scholar] [CrossRef]
- Chang, C.P.; Wang, Z.; McBride, J.; Liu, C.H. Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Clim. 2005, 18, 287–301. [Google Scholar] [CrossRef]
- Duncan, B.N.; Martin, R.V.; Staudt, A.C.; Yevich, R.; Logan, J.A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. Atmos. 2003, 108, ACH 1-1–ACH 1-22. [Google Scholar] [CrossRef]
- Cohen, J.B. Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett. 2014, 9, 114018. [Google Scholar] [CrossRef]
- Wang, J.; Ge, C.; Yang, Z.; Hyer, E.J.; Reid, J.S.; Chew, B.-N.; Mahmud, M.; Zhang, Y.; Zhang, M. Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography. Atmos. Res. 2013, 122, 486–503. [Google Scholar] [CrossRef]
- Liang, Y.; Gui, K.; Che, H.; Li, L.; Zheng, Y.; Zhang, X.; Zhang, X.; Zhang, P.; Zhang, X. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. Sci. Total Environ. 2023, 857, 159435. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, L.; Wu, M.; Wang, H.; Song, F.; Leung, L.R.; Hao, X.; Li, J.; Chen, L.; Li, H.; et al. Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nat. Commun. 2022, 13, 959. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos. 2010, 115, D00K05. [Google Scholar] [CrossRef]
- Gui, L.; Tao, M.; Wang, Y.; Wang, L.; Chen, L.; Lin, C.; Tao, J.; Wang, J.; Yu, C. Climatology of aerosol types and their vertical distribution over East Asia based on CALIPSO lidar measurements. Int. J. Climatol. 2022, 42, 6042–6054. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Wang, F.; Huang, J.; Xia, F.; Lou, M.; Wu, Y.; Jiang, J.H.; Xie, T.; Zhaxi, Y.; et al. Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations. Atmos. Res. 2016, 178, 580–589. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Li, Y.; Li, Y. An investigation of PM2. 5 concentration changes in Mid-Eastern China before and after COVID-19 outbreak. Environ. Int. 2023, 175, 107941. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Wang, Y.; Zhang, L.; Zhao, H.; Li, L.; Zhong, J.; Yao, W.; Zhang, X. Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations. Sci. Total Environ. 2021, 787, 147543. [Google Scholar] [CrossRef]
- Queface, A.J.; Piketh, S.J.; Eck, T.F.; Tsay, S.C.; Mavume, A.F. Climatology of aerosol optical properties in Southern Africa. Atmos. Environ. 2011, 45, 2910–2921. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Ichoku, C.; Hyer, E.; Zeng, J. Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region. J. Geophys. Res. Atmos. 2013, 118, 12–139. [Google Scholar] [CrossRef]
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kållberg, P. Saharan dust in the Amazon Basin. Tellus B 1992, 44, 133–149. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Artaxo, P.; Pauliquevis, T.; Souza, R. Further evidence for significant smoke transport from Africa to Amazonia. Geophys. Res. Lett. 2011, 38, L20802. [Google Scholar] [CrossRef]
- Das, S.; Harshvardhan, H.; Bian, H.; Chin, M.; Curci, G.; Protonotariou, A.P.; Mielonen, T.; Zhang, K.; Wang, H.; Liu, X. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. J. Geophys. Res. Atmos. 2017, 122, 6391–6415. [Google Scholar] [CrossRef]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Campos y Sansano, A.; Panechou, K. Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Glob. Biogeochem. Cycles 2020, 34, e2020GB006536. [Google Scholar] [CrossRef]
- Hersey, S.P.; Garland, R.M.; Crosbie, E.; Shingler, T.; Sorooshian, A.; Piketh, S.; Burger, R. An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmos. Chem. Phys. 2015, 15, 4259–4278. [Google Scholar] [CrossRef] [PubMed]
- Tyson, P.D.; Garstang, M.; Swap, R.; Kallberg, P.; Edwards, M. An air transport climatology for subtropical southern Africa. Int. J. Climatol. 1996, 16, 265–291. [Google Scholar] [CrossRef]
- Tsamalis, C.; Chédin, A.; Pelon, J.; Capelle, V. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmos. Chem. Phys. 2013, 13, 11235–11257. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2004, 85, 353–366. [Google Scholar] [CrossRef]
- Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M. The fate of saharan dust across the atlantic and implications for a central american dust barrier. Atmos. Chem. Phys. 2011, 11, 8415–8431. [Google Scholar] [CrossRef]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.N.; Massie, S.T.; et al. Satellite-observed pollution from Southern Hemisphere biomass burning. J. Geophys. Res. Atmos. 2006, 111, D14312. [Google Scholar] [CrossRef]
- Vignati, E.; Facchini, M.C.; Rinaldi, M.; Scannell, C.; Ceburnis, D.; Sciare, J.; Kanakidou, M.; Myriokefalitakis, S.; Dentener, F.; O’Dowd, C.D. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment. Atmos. Environ. 2010, 44, 670–677. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.S.; Alexander, B.; Lin, J.T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137–3157. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Li, J.; Liu, Y.; Zhang, Y.; Li, J.; Han, Z. An updated aerosol simulation in the Community Earth System Model (v2. 1.3): Dust and marine aerosol emissions and secondary organic aerosol formation. Geosci. Model Dev. Discuss. 2024, 17, 7995–8021. [Google Scholar] [CrossRef]
Region Name | Abbreviation | Winter | Spring | Summer | Fall | Annual Mean |
---|---|---|---|---|---|---|
Greenland/Iceland | GIC | 1.1 ± 0.7 | 0.4 ± 0.3 | 0.1 ± 0.1 | 0.6 ± 0.4 | 0.6 ± 0.6 |
N.W.North-America | NWN | 1.7 ± 0.8 | 0.7 ± 0.3 | 0.6 ± 0.3 | 1.0 ± 0.4 | 1.0 ± 0.6 |
N.E.North-America | NEN | 2.4 ± 0.9 | 0.9 ± 0.4 | 0.4 ± 0.3 | 1.1 ± 0.4 | 1.2 ± 0.9 |
W.North-America | WNA | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.8 ± 0.5 | 0.9 ± 0.6 | 0.7 ± 0.5 |
C.North-America | CNA | 0.7 ± 0.3 | 0.6 ± 0.4 | 1.3 ± 0.8 | 1.0 ± 0.6 | 0.9 ± 0.6 |
E.North-America | ENA | 0.9 ± 0.5 | 0.7 ± 0.6 | 1.1 ± 0.6 | 1.0 ± 0.5 | 1.0 ± 0.6 |
N.Central-America | NCA | 0.9 ± 0.9 | 1.5 ± 1.4 | 1.3 ± 1.0 | 1.2 ± 1.0 | 1.2 ± 1.1 |
S.Central-America | SCA | 3.7 ± 1.4 | 5.3 ± 1.2 | 3.2 ± 1.6 | 2.7 ± 0.9 | 3.7 ± 1.7 |
Caribbean | CAR | 5.7 ± 1.1 | 4.8 ± 0.9 | 5.5 ± 1.4 | 3.7 ± 0.5 | 4.9 ± 1.3 |
N.W.South-America | NWS | 2.7 ± 1.8 | 2.4 ± 1.6 | 1.5 ± 1.0 | 2.0 ± 1.0 | 2.1 ± 1.4 |
N.South-America | NSA | 3.4 ± 1.1 | 3.1 ± 1.1 | 2.2 ± 1.0 | 3.9 ± 1.2 | 3.1 ± 1.3 |
N.E.South-America | NES | 2.0 ± 1.2 | 1.8 ± 0.9 | 1.6 ± 1.2 | 2.7 ± 2.1 | 2.0 ± 1.5 |
South-American-Monsoon | SAM | 1.8 ± 1.0 | 1.4 ± 1.0 | 2.5 ± 1.9 | 2.1 ± 1.3 | 1.9 ± 1.4 |
S.W.South-America | SWS | 1.1 ± 0.8 | 1.0 ± 0.7 | 1.0 ± 0.8 | 1.0 ± 0.8 | 1.0 ± 0.8 |
S.E.South-America | SES | 0.8 ± 0.4 | 0.7 ± 0.5 | 0.6 ± 0.4 | 0.7 ± 0.4 | 0.7 ± 0.4 |
S.South-America | SSA | 0.7 ± 0.5 | 1.0 ± 0.7 | 1.1 ± 0.8 | 1.0 ± 0.6 | 1.0 ± 0.7 |
N.Europe | NEU | 1.4 ± 0.4 | 0.7 ± 0.4 | 0.5 ± 0.3 | 1.0 ± 0.4 | 0.9 ± 0.5 |
West&Central-Europe | WCE | 1.2 ± 0.5 | 1.2 ± 0.5 | 1.0 ± 0.5 | 1.2 ± 0.5 | 1.2 ± 0.5 |
E.Europe | EEU | 1.4 ± 0.5 | 0.9 ± 0.4 | 0.6 ± 0.3 | 0.8 ± 0.3 | 0.9 ± 0.5 |
Mediterranean | MED | 2.2 ± 1.4 | 2.3 ± 1.6 | 3.7 ± 2.1 | 3.1 ± 1.8 | 2.8 ± 1.8 |
Sahara | SAH | 3.1 ± 1.2 | 5.8 ± 1.8 | 6.7 ± 1.8 | 4.4 ± 1.6 | 5.0 ± 2.1 |
Western-Africa | WAF | 9.0 ± 2.8 | 7.2 ± 1.6 | 3.5 ± 1.4 | 4.1 ± 1.1 | 5.9 ± 2.9 |
Central-Africa | CAF | 5.6 ± 2.9 | 5.7 ± 1.8 | 4.8 ± 3.0 | 3.3 ± 0.9 | 4.9 ± 2.5 |
N.Eastern-Africa | NEAF | 6.6 ± 1.9 | 5.4 ± 1.6 | 3.9 ± 2.5 | 3.9 ± 1.6 | 4.9 ± 2.2 |
S.Eastern-Africa | SEAF | 3.9 ± 2.6 | 3.0 ± 1.9 | 5.0 ± 1.7 | 3.7 ± 1.6 | 3.9 ± 2.1 |
W.Southern-Africa | WSAF | 1.1 ± 0.7 | 0.9 ± 0.7 | 3.7 ± 2.8 | 2.0 ± 1.3 | 1.9 ± 2.0 |
E.Southern-Africa | ESAF | 2.3 ± 1.3 | 2.5 ± 1.5 | 4.9 ± 1.7 | 4.4 ± 2.0 | 3.5 ± 2.0 |
Madagascar | MDG | 2.2 ± 0.8 | 2.0 ± 0.8 | 2.2 ± 1.1 | 3.5 ± 0.9 | 2.5 ± 1.1 |
Russian-Arctic | RAR | 3.1 ± 0.9 | 1.1 ± 0.4 | 0.5 ± 0.3 | 1.5 ± 0.4 | 1.5 ± 1.1 |
W.Siberia | WSB | 1.8 ± 0.7 | 0.9 ± 0.3 | 0.7 ± 0.3 | 0.9 ± 0.3 | 1.1 ± 0.6 |
E.Siberia | ESB | 2.5 ± 1.3 | 0.9 ± 0.5 | 0.9 ± 0.6 | 1.1 ± 0.5 | 1.4 ± 1.1 |
Russian-Far-East | RFE | 2.6 ± 1.0 | 0.9 ± 0.4 | 1.0 ± 0.5 | 1.2 ± 0.4 | 1.4 ± 0.9 |
W.C.Asia | WCA | 2.5 ± 1.7 | 2.8 ± 1.9 | 5.0 ± 3.2 | 4.4 ± 2.7 | 3.7 ± 2.6 |
E.C.Asia | ECA | 3.2 ± 2.2 | 3.0 ± 2.2 | 1.7 ± 1.7 | 3.1 ± 2.4 | 2.7 ± 2.2 |
Tibetan-Plateau | TIB | 1.1 ± 2.2 | 1.2 ± 2.4 | 0.7 ± 1.5 | 1.2 ± 2.4 | 1.0 ± 2.2 |
E.Asia | EAS | 4.3 ± 2.1 | 3.5 ± 1.9 | 2.5 ± 1.4 | 3.2 ± 1.7 | 3.4 ± 1.9 |
Arabian-Peninsula | ARP | 6.7 ± 1.6 | 8.0 ± 1.7 | 8.8 ± 2.8 | 7.8 ± 1.9 | 7.8 ± 2.2 |
S.Asia | SAS | 7.9 ± 2.4 | 8.9 ± 2.3 | 6.2 ± 3.2 | 7.0 ± 3.1 | 7.5 ± 3.0 |
S.E.Asia | SEA | 5.4 ± 1.6 | 5.0 ± 1.8 | 3.7 ± 1.4 | 4.2 ± 1.2 | 4.6 ± 1.7 |
N.Australia | NAU | 4.5 ± 1.6 | 1.9 ± 1.3 | 1.3 ± 1.3 | 2.4 ± 1.6 | 2.5 ± 1.9 |
C.Australia | CAU | 1.2 ± 0.7 | 0.7 ± 0.5 | 0.6 ± 0.6 | 0.7 ± 0.6 | 0.8 ± 0.6 |
E.Australia | EAU | 1.9 ± 1.0 | 1.4 ± 0.9 | 1.0 ± 0.6 | 1.8 ± 1.1 | 1.5 ± 1.0 |
S.Australia | SAU | 1.9 ± 0.6 | 2.1 ± 0.6 | 1.9 ± 0.8 | 1.7 ± 0.6 | 1.9 ± 0.7 |
New-Zealand | NZ | 1.1 ± 0.5 | 1.5 ± 0.6 | 1.5 ± 0.8 | 1.3 ± 0.6 | 1.4 ± 0.7 |
N.Pacific-Ocean | NPO | 4.4 ± 2.2 | 3.0 ± 2.0 | 2.4 ± 1.8 | 3.3 ± 1.4 | 3.3 ± 2.0 |
Equatorial.Pacific-Ocean | EPO | 5.8 ± 2.3 | 4.8 ± 1.3 | 4.6 ± 2.3 | 4.6 ± 2.3 | 5.0 ± 2.2 |
S.Pacific-Ocean | SPO | 2.4 ± 1.4 | 2.8 ± 1.2 | 2.9 ± 1.3 | 2.4 ± 1.3 | 2.6 ± 1.3 |
N.Atlantic-Ocean | NAO | 3.9 ± 1.8 | 3.2 ± 2.2 | 3.6 ± 2.9 | 3.6 ± 1.7 | 3.6 ± 2.2 |
Equatorial.Atlantic-Ocean | EAO | 5.6 ± 1.8 | 5.9 ± 1.8 | 5.3 ± 1.9 | 4.1 ± 1.3 | 5.2 ± 1.8 |
S.Atlantic-Ocean | SAO | 2.1 ± 0.8 | 2.7 ± 0.9 | 3.0 ± 1.1 | 2.1 ± 0.9 | 2.5 ± 1.0 |
Arabian-Sea | ARS | 7.9 ± 0.8 | 10.0 ± 1.2 | 9.4 ± 2.7 | 7.8 ± 1.8 | 8.8 ± 2.0 |
Bay-of-Bengal | BOB | 7.1 ± 1.3 | 8.5 ± 1.9 | 5.8 ± 1.0 | 4.4 ± 1.0 | 6.5 ± 2.0 |
Equatorial.Indic-Ocean | EIO | 4.6 ± 1.6 | 4.8 ± 1.4 | 4.1 ± 1.3 | 4.3 ± 1.2 | 4.4 ± 1.4 |
S.Indic-Ocean | SIO | 3.2 ± 1.3 | 4.1 ± 1.4 | 4.0 ± 1.2 | 3.4 ± 1.5 | 3.7 ± 1.4 |
Southern-Ocean | SOO | 1.0 ± 0.5 | 1.8 ± 0.6 | 2.3 ± 0.7 | 1.4 ± 0.6 | 1.6 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, S.; McGill, M.; Gomes, J.; Selmer, P.; Finneman, G.; Begolka, J. Global Aerosol Climatology from ICESat-2 Lidar Observations. Remote Sens. 2025, 17, 2240. https://doi.org/10.3390/rs17132240
Kuang S, McGill M, Gomes J, Selmer P, Finneman G, Begolka J. Global Aerosol Climatology from ICESat-2 Lidar Observations. Remote Sensing. 2025; 17(13):2240. https://doi.org/10.3390/rs17132240
Chicago/Turabian StyleKuang, Shi, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman, and Jackson Begolka. 2025. "Global Aerosol Climatology from ICESat-2 Lidar Observations" Remote Sensing 17, no. 13: 2240. https://doi.org/10.3390/rs17132240
APA StyleKuang, S., McGill, M., Gomes, J., Selmer, P., Finneman, G., & Begolka, J. (2025). Global Aerosol Climatology from ICESat-2 Lidar Observations. Remote Sensing, 17(13), 2240. https://doi.org/10.3390/rs17132240