Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
Site | Lat. (°N) | Lon. (°E) | Occur. Time | Sub-Area | Disaster Chain | Inducing Factors |
---|---|---|---|---|---|---|
Peilong Gully | 30.1 | 94.96 | Jul, 1983, Aug, 1984; Jun, 1985 | YGZB | ice–rock avalanche—GLOF—debris flow | Pre. and Temp. |
Midui Gully | 29.46 | 96.5 | Jul, 1988 | PLZB | ice–rock avalanche—GLOF—debris flow | Pre. and Temp. |
Xiaga Lake | 28.80 | 91.94 | May, 1995 | YLZBMR | ice avalanche—GLOF | Temp. |
Zhamunong Gully | 30.22 | 94.98 | Apr, 2000 | YGZB | ice–rock avalanche—landslide—barrier dam—outburst flood | Temp. |
Ouguchonggu Co | 29.63 | 93.55 | 2003 | YLZBMR | ice–rock avalanche—GLOF | Unknown |
Tianmo Gully | 29.96 | 95.29 | Sep, 2007; Jul, 2010; Sep, 2010; Jul, 2018 | PLZB | ice–rock avalanche—debris flow—barrier dam | Pre. and Temp. |
Jianmupuqu River | 29.96 | 95.32 | Apr, 2008 | PLZB | ice–rock avalanche—debris flow—barrier dam—flood | Pre. and Temp. |
Zhemai Co | 28.01 | 92.34 | Jul, 2009 | Other | ice avalanche—GLOF | Temp. |
Cuoga Lake | 30.83 | 94.00 | Jul, 2009 | YGZB | ice–rock avalanche—GLOF | Unknown |
Ranzeria Co | 30.47 | 93.53 | Jul, 2013 | YGZB | ice–rock avalanche—GLOF—debris flow | Pre. and Temp. |
Nalongzangbu Gully | 30.51 | 94.94 | Jun, 2014 | YGZB | ice–rock avalanche—debris flow—GLOF | Pre. and Temp. |
Tula Gully | 30.74 | 94.25 | Jul, 2015 | YGZB | ice–rock avalanche—GLOF | Pre. and Temp. |
Sedongpu Gully | 29.8 | 94.92 | 2014; Oct, 2017; Dec, 2017; Jul, 2018; Oct, 2018 | YLZBLR | ice–rock avalanche—debris flow—barrier dam | Earthq. and Pre. |
Zhibai Gully | 29.65 | 94.96 | Sep, 2020 | YLZBLR | ice–rock avalanche—debris flow | Earthq. and Temp. |
2.2. Data
2.3. Methods
2.3.1. Snowfall Calculation
2.3.2. Extracting Meteorological Data in Glacier and Avalanche Areas
2.3.3. Trend Estimate and Test
2.3.4. Violin Plot and Rank-Sum Test
3. Results
3.1. Regional Climate Distributions and Changes in SET
3.1.1. Regional Temperature Distributions and Changes
3.1.2. Regional Precipitation Distributions and Changes
3.1.3. Regional Snowfall Distributions and Changes
3.2. Climate Change in Cryosphere and Its Impact on Disasters
3.2.1. Temperature Change over Glaciers and Its Impact on Disasters
3.2.2. Precipitation Change over Glaciers and Its Impact on Disasters
3.2.3. Snowfall Change in Avalanche-Prone Areas and Its Impact on Disasters
3.3. Meteorological Indicators for Predicting Cryospheric Disasters in SET
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TP | Tibetan Plateau |
SET | Southeast Tibet |
GLOF | glacial lake outburst flood |
YLZB | Yarlung Zangbo River |
YLZBLR | lower reaches of the Yarlung Zangbo River |
YLZBMR | middle reaches of the Yarlung Zangbo River |
YGZB | Yigong Zangbo River |
PLZB | Parlung Zangbo River |
ERA5 | fifth-generation ECMWF atmospheric reanalysis |
TPMFD | meteorological forcing dataset for the Third Pole region |
References
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035, (In Chinese with English abstract). [Google Scholar]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.-S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, X.; Leavitt, S.W.; Wang, W.; An, W.; Xu, G.; Sun, W.; Wang, Y.; Qin, D.; Ren, J. A 400-Year Tree-Ring δ18O Chronology for the Southeastern Tibetan Plateau: Implications for Inferring Variations of the Regional Hydroclimate. Glob. Planet. Change 2013, 104, 23–33. [Google Scholar] [CrossRef]
- Deng, M.F.; Chen, N.S.; Wang, T.; Ding, H.T. Fluctuation of Daily Rainfall Extreme in Southeastern Tibet. J. Nat. Disasters 2017, 26, 152–159, (In Chinese with English abstract). [Google Scholar]
- Wu, M.; Huang, J.; Spicer, R.A.; Li, S.; Zhao, J.; Deng, W.; Ding, W.; Tang, H.; Xing, Y.; Tian, Y.; et al. The Early Oligocene Establishment of Modern Topography and Plant Diversity on the Southeastern Margin of the Tibetan Plateau. Glob. Planet. Change 2022, 214, 103856. [Google Scholar] [CrossRef]
- Zhao, C.; Xiong, Z.; Farnsworth, A.; Spicer, R.A.; He, S.; Wang, C.; Zeng, D.; Cai, F.; Wang, H.; Tian, X.; et al. The Late Eocene Rise of SE Tibet Formed an Asian ‘Mediterranean’ Climate. Glob. Planet. Change 2023, 231, 104313. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Su, P.; Wei, F.; Huang, H.; Chen, Q. Advances in the Study of Glacier Avalanches in Tibet. Chin. J. Geol. Hazard Control 2023, 34, 132–145, (In Chinese with English abstract). [Google Scholar]
- Nian, T.; Zhao, R.; Zheng, D.; Xu, B.; Xu, L.; Yan, C. Advances in the Study of Ice-Rock Avalanche Disaster Chains in Yarlung Zangbo River Basin in Southeast Tibet. J. Hydraul. Eng. 2024, 55, 1146–1162, (In Chinese with English abstract). [Google Scholar]
- Shao, C.; You, H.; Cao, Z.; Wang, C.; Tang, F.; Zhang, D.; Lou, H.; Xu, G.; Chang, L.; Yang, Q.; et al. Tectonic Characteristics and Seismic Activities of Yaluzangbu Grand Canyon, Tibet, China. Technol. Earthq. Disaster Prev. 2008, 3, 398–412, (In Chinese with English abstract). [Google Scholar]
- Liu, W.; Carling, P.A.; Hu, K.; Wang, H.; Zhou, Z.; Zhou, L.; Liu, D.; Lai, Z.; Zhang, X. Outburst Floods in China: A Review. Earth-Sci. Rev. 2019, 197, 102895. [Google Scholar] [CrossRef]
- Yin, Y.; Xing, A. Aerodynamic Modeling of the Yigong Gigantic Rock Slide-Debris Avalanche, Tibet, China. Bull. Eng. Geol. Environ. 2012, 71, 149–160. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard Cascade and Mechanism of Large Debris Flows in Tianmo Gully, SE Tibetan Plateau and Implications to Hazard Monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Liu, C.; Lü, J.; Tong, L.; Chen, H.; Liu, Q.; Xiao, R.; Tu, J. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geol. China 2019, 46, 219–234, (In Chinese with English abstract). [Google Scholar]
- Zhang, P.; Li, B.; Gao, H.; Wan, J. Research on High-Altitude Avalanche Susceptibility Area Zoning Based on Informativeness Modeling in the Duoxiong River Basin, Nyingchi Area of Xizang Autonomous Region. Chin. J. Geol. Hazard Control 2024, 35, 44–57, (In Chinese with English abstract). [Google Scholar]
- Song, C.; Ke, L.; Huang, B.; Richards, K.S. Can Mountain Glacier Melting Explain the GRACE-Observed Mass Loss in the Southeast Tibetan Plateau: From a Climate Perspective? Glob. Planet. Change 2015, 124, 1–9. [Google Scholar] [CrossRef]
- Wang, W.; Yao, T.; Yang, X. Variations of Glacial Lakes and Glaciers in the Boshula Mountain Range, Southeast Tibet, from the 1970s to 2009. Ann. Glaciol. 2011, 52, 9–17. [Google Scholar] [CrossRef]
- Yao, T.; Yu, W.; Wu, G.; Xu, B.; Yang, W.; Zhao, H.; Wang, W.; Li, S.; Wang, N.; Li, Z.; et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782, (In Chinese with English abstract). [Google Scholar]
- Cui, P.; Chen, R.; Xiang, L.; Su, F. Risk Analysis of Mountain Hazards in Tibetan Plateau Under Global Warming. Prog. Inq. Mutat. Clim. 2014, 10, 103–109. [Google Scholar]
- Wang, H.; Wang, B.-B.; Cui, P.; Ma, Y.-M.; Wang, Y.; Hao, J.-S.; Wang, Y.; Li, Y.-M.; Sun, L.-J.; Wang, J.; et al. Disaster Effects of Climate Change in High Mountain Asia: State of Art and Scientific Challenges. Adv. Clim. Change Res. 2024, 15, 367–389. [Google Scholar] [CrossRef]
- Liang, E.Y.; Shao, X.M.; Xu, Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor. Appl. Climatol. 2009, 98, 9–18. [Google Scholar] [CrossRef]
- Wang, S.-J. Spatiotemporal Variability of Temperature Trends on the Southeast Tibetan Plateau, China. Int. J. Climatol. 2018, 38, 1953–1963. [Google Scholar] [CrossRef]
- Li, C.; Cui, P.; Hao, J.; Zhang, G.; Wang, J.; Jia, Y. Variation Characteristics of Temperature and Precipitation over the Southeast Xizang since 1960. Plateau Meteorol. 2023, 42, 344–358, (In Chinese with English abstract). [Google Scholar]
- Shi, C.; Daux, V.; Zhang, Q.-B.; Risi, C.; Hou, S.-G.; Stievenard, M.; Pierre, M.; Li, Z.; Masson-Delmotte, V. Reconstruction of Southeast Tibetan Plateau Summer Climate Using Tree Ring δ18O: Moisture Variability over the Past Two Centuries. Clim. Past 2012, 8, 205–213. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Tibetan Plateau during Recent Decades: A Review Based on Observations and Simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.; Chen, D.; van der Ent, R.J.; Liu, X.; Li, W.; Haile, G.G. Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. J. Hydrometeorol. 2019, 20, 217–229. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in Daily Climate Extremes in the Eastern and Central Tibetan Plateau during 1961–2005. J. Geophys. Res. 2008, 113, D07101. [Google Scholar] [CrossRef]
- Duan, J.; Chen, L.; Li, L.; Wu, P.; Christidis, N.; Ma, Z.; Lott, F.C.; Ciavarella, A.; Stott, P.A. Anthropogenic Influences on the Extreme Cold Surge of Early Spring 2019 over the Southeastern Tibetan Plateau. Bull. Am. Meteorol. Soc. 2021, 102, S111–S116. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Zhou, L.; Ran, L. Historical Changes and Future Projections of Extreme Temperature and Precipitation along the Sichuan-Tibet Railway. J. Meteorol. Res. 2021, 35, 402–415. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in Precipitation Extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Bai, Y.; Du, J.; Wang, T.; Wangdoi, S.; Dang, X. Spatio-Temporal Change of Extreme Precipitation Index of Southeastern Tibet from 1971 to 2020. Plateau Mountain Meteorol. Res. 2022, 42, 31–40, (In Chinese with English abstract). [Google Scholar]
- Gao, J.; Williams, M.W.; Fu, X.; Wang, G.; Gong, T. Spatiotemporal Distribution of Snow in Eastern Tibet and the Response to Climate Change. Remote Sens. Environ. 2012, 121, 1–9. [Google Scholar] [CrossRef]
- Xu, W.; Ma, L.; Ma, M.; Zhang, H.; Yuan, W. Spatial–Temporal Variability of Snow Cover and Depth in the Qinghai–Tibetan Plateau. J. Clim. 2017, 30, 1521–1533. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Li, Y.; Duan, W.; Li, B.; Fang, G.; Li, Z.; Zhu, Z.; Feng, M. Decreasing Trends of Mean and Extreme Snowfall in High Mountain Asia. Sci. Total Environ. 2024, 921, 171211. [Google Scholar] [CrossRef]
- Li, C.; Hao, J.; Zhang, G.; Wang, Y.; Fang, H.; Hou, W.; Cui, P. Extreme Snowfall Variations in the Southeastern Tibetan Plateau under Warming Climate. Atmos. Res. 2024, 311, 107690. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, X.; You, Y.; Hu, X.; Liu, W.; Li, Y. Landslides and Dammed Lakes Triggered by the 2017 Ms6.9 Milin Earthquake in the Tsangpo Gorge. Landslides 2019, 16, 993–1001. [Google Scholar] [CrossRef]
- Cui, P.; Su, F.; Zou, Q.; Chen, N.; Zhang, Y. Risk Assessment and Disaster Reduction Strategies for Mountainous and Meteorological Hazards in Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3067–3077, (In Chinese with English abstract). [Google Scholar]
- Peng, D.; Zhang, L.; Jiang, R.; Zhang, S.; Shen, P.; Lu, W.; He, X. Initiation Mechanisms and Dynamics of a Debris Flow Originated from Debris-Ice Mixture Slope Failure in Southeast Tibet, China. Eng. Geol. 2022, 307, 106783. [Google Scholar] [CrossRef]
- Huang, H.; Gong, C. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau. Earth Sci. 2024, 49, 3784–3798, (In Chinese with English abstract). [Google Scholar]
- Chen, N.; Zhou, H.; Hu, G. Development Rules of Debris Flow Under the Influence of Climate Change in Nyingchi. Adv. Clim. Change Res. 2011, 7, 412–417, (In Chinese with English abstract). [Google Scholar]
- Zou, Q.; Cui, P.; Jiang, H.; Wang, J.; Li, C.; Zhou, B. Analysis of Regional River Blocking by Debris Flows in Response to Climate Change. Sci. Total Environ. 2020, 741, 140262. [Google Scholar] [CrossRef]
- Wen, H.; Wu, X.; Liao, X.; Wang, D.; Huang, K.; Wünnemann, B. Application of Machine Learning Methods for Snow Avalanche Susceptibility Mapping in the Parlung Tsangpo Catchment, Southeastern Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2022, 198, 103535. [Google Scholar] [CrossRef]
- Cui, P.; Ge, Y.; Li, S.; Li, Z.; Xu, X.; Zhou, G.G.D.; Chen, H.; Wang, H.; Lei, Y.; Zhou, L.; et al. Scientific Challenges in Disaster Risk Reduction for the Sichuan–Tibet Railway. Eng. Geol. 2022, 309, 106837. [Google Scholar] [CrossRef]
- Kad, P.; Ha, K.-J. Recent Tangible Natural Variability of Monsoonal Orographic Rainfall in the Eastern Himalayas. J. Geophys. Res. Atmos. 2023, 128, e2023JD038759. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Yao, X.; Liu, S.; Sun, M.; Zhang, X. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. J. Nat. Resour. 2014, 29, 1377–1390, (In Chinese with English abstract). [Google Scholar]
- Jiang, Y.; Tang, W.; Yang, K.; He, J.; Shao, C.; Zhou, X.; Lu, H.; Chen, Y.; Li, X.; Shi, J. Development of a High-Resolution Near-Surface Meteorological Forcing Dataset for the Third Pole Region. Sci. China Earth Sci. 2025, 68, 1274–1290. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.D.; Zhou, B.; et al. TPHiPr: A Long-Term (1979–2020) High-Accuracy Precipitation Dataset (1/30° Daily) for the Third Pole Region Based on High-Resolution Atmospheric Modeling and Dense Observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Ouyang, L.; Wang, Y.; Jiang, Y.; Li, X.; Chen, D.; Prein, A. Added Value of Kilometer-Scale Modeling over the Third Pole Region: A CORDEX-CPTP Pilot Study. Clim. Dyn. 2021, 57, 1673–1687. [Google Scholar] [CrossRef]
- Liu, S.; Guo, W.; Xu, J. The Second Glacier Inventory Dataset of China (Version 1.0) (2006–2011); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2012; Available online: https://doi.org/10.3972/glacier.001.2013.db (accessed on 4 March 2025).
- Rao, P.; Wang, F.; Yuan, X.; Liu, Y.; Jiao, Y. Evaluation and Comparison of 11 Sets of Gridded Precipitation Products over the Qinghai-Tibet Plateau. Atmos. Res. 2024, 302, 107315. [Google Scholar] [CrossRef]
- Vehvilainen, B. Temperature Index Snow Models Snow Cover. In Models in Operational Watershed Forecasting; National Board of Waters and the Environment: Helsinki, Finland, 1992; pp. 18–20. [Google Scholar]
- Yang, T.; Li, Q.; Zou, Q.; Hamdi, R.; Chen, X.; Bao, Y.; Cui, F.; De Maeyer, P.; Li, L. Quantifying the Snowfall Variations in the Third Pole Region from 1980 to 2020. Atmos. Res. 2023, 295, 106985. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, M.E. On Smoothing Potentially Non-Stationary Climate Time Series. Geophys. Res. Lett. 2004, 31, L07214. [Google Scholar] [CrossRef]
- Shroder, J.F.; Haeberli, W.; Whiteman, C. Snow and Ice-Related Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Zhou, J.; Cui, P.; Hao, M.H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Cui, P.; Yang, K.; Chen, J. Relationship between occurrence of debris flow and antecedent precipitation: Taking the Jiangjia Gully as an example. Sci. Soil Water Conserv. 2003, 1, 11–15, (In Chinese with English abstract). [Google Scholar]
- Hao, J.; Huang, F.; Liu, Y.; Li, L. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China. J. Mt. Sci. 2018, 15, 1397–1411. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef]
- Klene, A.E.; Nelson, F.E.; Shiklomanov, N.I.; Hinkel, K.M. The n-factor in natural landscapes: Variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 2001, 33, 140–148. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; McCreight, J.L. Northern hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. 2007, 27, 47–63. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, Q.; Chen, S.; Jiang, H.; Zhou, B.; Yao, H.; Yang, T. Extreme climate and human activities contribute to low-frequency, large-scale catastrophic debris flow: A case study in the Heishui Gully. Geomat. Nat. Hazards Risk 2024, 15, 2316719. [Google Scholar] [CrossRef]
Symbol | Full Name |
---|---|
Tavg | Annual mean temperature |
TXmax | Annual extreme maximum temperature |
DTg0 | Percentage of days with daily mean temperature above 0 °C in a whole year (indicating melt) |
DTc0 | Percentage of days with daily minimum temperature below 0 °C and daily maximum temperature above 0 °C in a whole year (indicating freeze–thaw cycle) |
Ptot | Annual total precipitation |
PX1d | Maximum daily precipitation |
PX7d | Maximum cumulative precipitation for 7 consecutive days |
Stot | Annual total snowfall |
SX1d | Maximum daily snowfall |
SX3d | Maximum cumulative snowfall for 3 consecutive days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Chen, J.; Su, L.; Yang, Z.; Yang, T. Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters. Atmosphere 2025, 16, 547. https://doi.org/10.3390/atmos16050547
Fang C, Chen J, Su L, Yang Z, Yang T. Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters. Atmosphere. 2025; 16(5):547. https://doi.org/10.3390/atmos16050547
Chicago/Turabian StyleFang, Congxi, Jinlei Chen, Lijun Su, Zongji Yang, and Tao Yang. 2025. "Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters" Atmosphere 16, no. 5: 547. https://doi.org/10.3390/atmos16050547
APA StyleFang, C., Chen, J., Su, L., Yang, Z., & Yang, T. (2025). Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters. Atmosphere, 16(5), 547. https://doi.org/10.3390/atmos16050547