remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing Applications in Hydrology and Water Resources Management

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Environmental Remote Sensing".

Deadline for manuscript submissions: 10 July 2025 | Viewed by 1251

Special Issue Editors


E-Mail Website
Guest Editor
Commonwealth Scientific and Industrial Research Organisation—Environment, Canberra, Australia
Interests: ecohydrological modeling; effects of climate change and land management on water availability; ecosystem service accounting

E-Mail Website
Guest Editor
Department of Forestry, College of Forest Resources, Forest and Wildlife Research Center, Mississippi State University, Starkville, MS 39759, USA
Interests: impacts of climate change and human activities on the interaction between surface water and groundwater; field-scale evapotranspiration mapping using remotely sensed data with cloud computing; multi-sensor data fusion for improved spatiotemporal sampling; vegetation health monitoring for agriculture and natural resource management
Special Issues, Collections and Topics in MDPI journals
Eastern Forest Environmental Threat Assessment Center, Southern Research Station, US Department of Agriculture Forest Service, Research Triangle Park, NC 27709, USA
Interests: effects of climate change and land management on water quantity and quality, and water supply and demand at a regional scale; Application of computer simulation models, GIS, and remote sensing in regional hydrology; Evapotranspiration and ecosystem productivity modeling at regional to continental scales
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
USGS EROS Center, North Central Climate Adaptation Science Center, Fort Collins, CO 80523, USA
Interests: remote sensing hydrology; evapotranspiration and soil moisture modeling; drought monitoring and food security; water use, quality, and availability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water, a fundamental resource, is at the nexus of climate change challenges and the needs of an expanding global populace. As we navigate these complex issues, the imperative to accurately gauge water availability, trace its sources, and predict its fluctuations due to environmental and anthropogenic factors grows. However, traditional ground-based methods, while valuable, often grapple with the constraints of localized study costs and the intricacies of expansive assessments. The rapid advancements in remote sensing technology, coupled with the increasing accessibility of satellite data, have revolutionized the field of hydrology and water resources management.

This Special Issue aims to bridge these research gaps by highlighting diverse case studies that employ advanced remote sensing applications. We welcome contributions that explore the use of remotely sensed data from various platforms such as UAVs and airborne and satellite sensors in estimating hydrological processes. We are particularly focused on studies that demonstrate the integration of these remote sensing insights into robust models suitable for local or regional water resource management. By presenting this collection, we hope to stimulate interdisciplinary dialogue, promote scientific advancement, and advocate for sustainable water management strategies using remote sensing in our changing world.

Topics of interest may include, but are not limited to, the following:

  • Applications in monitoring and managing surface and ground water using remote sensing.
  • Remote sensing for water resource management.
  • Water availability assessment and prediction using satellite data.
  • Estimation of evapotranspiration and runoff through remote sensing.
  • Integration of remote sensing data with hydrological models.
  • Impactful case studies on remote sensing applications in water resource management.

Dr. Ning Liu
Dr. Yun Yang
Dr. Ge Sun
Dr. Gabriel Senay
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • water use
  • water supply
  • water availability
  • hydrologic modeling
  • remote sensing
  • water resource management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 23461 KiB  
Article
Direct and Indirect Effects of Large-Scale Forest Restoration on Water Yield in China’s Large River Basins
by Yaoqi Zhang and Lu Hao
Remote Sens. 2025, 17(9), 1581; https://doi.org/10.3390/rs17091581 - 29 Apr 2025
Abstract
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due [...] Read more.
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due to the limited observational constraints on moisture transport. Here, we integrate the Budyko model with the Lagrangian-based UTrack moisture-tracking dataset to disentangle the direct (via ET) and indirect (via precipitation) large-scale hydrological impacts of China’s four-decade forest restoration campaign across eight major river basins. Multisource validation datasets, including gauged runoff records, hydrological reanalysis products, and satellite-derived forest cover maps, were systematically incorporated to verify the Budyko model at the nested spatial scales. Our scenario analyses reveal that during 1980–2015, extensive afforestation individually reduced China’s terrestrial water yield by −28 ± 25 mm yr−1 through dominant ET increases. Crucially, atmospheric moisture recycling mechanisms attenuated this water loss by 12 ± 5 mm yr−1 nationally, with marked spatial heterogeneity across the basins. In some moisture-limited watersheds in the Yellow River Basin, the negative ET effect was compensated for to a certain extent by precipitation recycling, demonstrating net positive hydrological outcomes. We conclude that China’s forest expansion imposes local water stress (direct effect) by elevating ET, while the concomitant strengthening of continental-scale moisture recycling generates compensatory water gains (indirect effect). These findings advance the mechanistic understanding of the vegetation-climate-water nexus, providing quantitative references for optimizing forestation strategies under atmospheric water connectivity constraints. Full article
Show Figures

Figure 1

Back to TopTop