Climate Change in the Cryosphere and Its Impacts

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Climatology".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 746

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco—Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: arctic passages; sea ice; climate change; land surface processes on the Qinghai–Tibetan plateau

Special Issue Information

Dear Colleagues,

The Earth is approximately 1.1 ℃ warmer than it was at the start of the industrial revolution. The cryosphere is one of the five major layers of the Earth, referring to the layer of negative temperature with a certain thickness on the Earth’s surface. It is extremely sensitive to global warming, serving as an “indicator” and “amplifier” of climate change. In addition, cryospheric changes have significant impacts on regional and even global climate, hydrological water resources, vegetation, ecological environment, and engineering services. Today, global ecological environmental protection issues are prominent, regional water resources development and utilization face challenges, and the security of the Arctic waterway urgently needs to be improved. In this context, scientific research on the cryosphere now has new historical missions and responsibilities.

This Special Issue aims to enhance the understanding of cryospheric processes and mechanisms, explores the interactions, and contributes to the state of the art regarding the impacts of cryospheric changes under global warming. This topic also encompasses advances in observations and land–atmosphere interactions in the cryosphere.

  • Topics of interest for the Special Issue include, but are not limited to, the following:
  • Climate change impact on the cryosphere;
  • Processes and mechanisms of the cryosphere, and the simulation
  • Impacts of cryospheric changes;
  • Land–atmosphere interactions in the cryosphere.

Dr. Jinlei Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cryosphere
  • arctic
  • Antarctica
  • Tibetan Plateau
  • climate Change
  • sea-ice–atmosphere interaction
  • land-atmosphere Interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 23518 KiB  
Article
Avalanche Hazard Dynamics and Causal Analysis Along China’s G219 Corridor: A Case Study of the Wenquan–Khorgas Section
by Xuekai Wang, Jie Liu, Qiang Guo, Bin Wang, Zhiwei Yang, Qiulian Cheng and Haiwei Xie
Atmosphere 2025, 16(7), 817; https://doi.org/10.3390/atmos16070817 - 4 Jul 2025
Abstract
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through [...] Read more.
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through image interpretation. Snowpack properties were primarily acquired via in situ field testing within the study area. Methodologically, statistical modeling and RAMMS::AVALANCHE simulations revealed spatiotemporal and dynamic characteristics of avalanches. Subsequent application of the Certainty Factor (CF) model and sensitivity analysis determined dominant controlling factors and quantified zonal influence intensity for each parameter. This study, utilizing field reconnaissance and drone aerial photography, identified 86 avalanche points in the study area. We used field tests and weather data to run the RAMMS::AVALANCHE model. Then, we categorized and summarized regional avalanche characteristics using both field surveys and simulation results. Furthermore, the Certainty Factor Model (CFM) and the parameter Sensitivity Index (Sa) were applied to assess the influence of elevation, slope gradient, aspect, and maximum snow depth on the severity of avalanche disasters. The results indicate the following: (1) Avalanches exhibit pronounced spatiotemporal concentration: temporally, they cluster between February and March and during 13:00–18:00 daily; spatially, they concentrate within the 2100–3000 m elevation zone. Chute-confined avalanches dominate the region, comprising 73.26% of total events; most chute-confined avalanches feature multiple release areas; therefore the number of release areas exceeds avalanche points; in terms of scale, medium-to-large-scale avalanches dominate, accounting for 86.5% of total avalanches. (2) RAMMS::AVALANCHE simulations yielded the following maximum values for the region: flow height = 15.43 m, flow velocity = 47.6 m/s, flow pressure = 679.79 kPa, and deposition height = 10.3 m. Compared to chute-confined avalanches, unconfined slope avalanches exhibit higher flow velocities and pressures, posing greater hazard potential. (3) The Certainty Factor Model and Sensitivity Index identify elevation, slope gradient, and maximum snow depth as the key drivers of avalanches in the study area. Their relative impact ranks as follows: maximum snow depth > elevation > slope gradient > aspect. The sensitivity index values were 1.536, 1.476, 1.362, and 0.996, respectively. The findings of this study provide a scientific basis for further research on avalanche hazards, the development of avalanche warning systems, and the design of avalanche mitigation projects in the study area. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

22 pages, 4299 KiB  
Article
Climate Change in Southeast Tibet and Its Potential Impacts on Cryospheric Disasters
by Congxi Fang, Jinlei Chen, Lijun Su, Zongji Yang and Tao Yang
Atmosphere 2025, 16(5), 547; https://doi.org/10.3390/atmos16050547 - 5 May 2025
Viewed by 460
Abstract
Southeast Tibet is characterized by extensive alpine glaciers and deep valleys, making it highly prone to cryospheric disasters such as avalanches, ice/ice–rock avalanches, glacial lake outburst floods, debris flows, and barrier lakes, which pose severe threats to infrastructure and human safety. Understanding how [...] Read more.
Southeast Tibet is characterized by extensive alpine glaciers and deep valleys, making it highly prone to cryospheric disasters such as avalanches, ice/ice–rock avalanches, glacial lake outburst floods, debris flows, and barrier lakes, which pose severe threats to infrastructure and human safety. Understanding how cryospheric disasters respond to climate warming remains a critical challenge. Using 3.3 km resolution meteorological downscaling data, this study analyzes the spatiotemporal evolution of multiple climate indicators from 1979 to 2022 and assesses their impacts on cryospheric disaster occurrence. The results reveal a significant warming trend across Southeast Tibet, with faster warming in glacier-covered regions. Precipitation generally decreases, though the semi-arid northwest experiences localized increases. Snowfall declines, with the steepest decrease observed around the lower reaches of the Yarlung Zangbo River. In the moisture corridor of the lower reaches of the Yarlung Zangbo River, warming intensifies freeze–thaw cycles, combined with high baseline extreme daily precipitation, which increases the likelihood of glacial disaster chains. In northwestern Southeast Tibet, accelerated glacier melting due to warming, coupled with increasing extreme precipitation, heightens glacial disaster probabilities. While long-term snowfall decline may reduce avalanches, high baseline extreme snowfall suggests short-term threats remain. Finally, this study establishes meteorological indicators for predicting changes in cryospheric disaster risks under climate change. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

Back to TopTop