Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Fundamentals of Land Surface Temperature Downscaling
2.2. Data Preparation
2.3. Experimental Area
2.4. Ground Measurements
3. Results and Analysis
3.1. Downscaling Results of Simulated Coarse LST
3.2. Downscaling Results of MODIS LST
4. Discussion
4.1. Possible Reasons for the Poor Performance of the Downscale Results
4.2. Compared with LST Downscaled Using GWR
4.3. Comparison with Existing Studies
4.4. Possible Improvements
5. Conclusions
- (1)
- Increasing the variables in the downscaling factors cannot effectively improve the downscaling accuracy of LST. In certain experimental regions, the incorporation of slope and aspect may enhance the precision of LST downscaling.
- (2)
- The combination of multiple vegetation indices and terrain elements can obtain fine spatial resolution LSTs with high accuracy in different experimental areas. The LSR is not suitable for LST downscaling in ice and snow regions.
- (3)
- The validation results demonstrate that the XGBoost and RF algorithms are more appropriate for LST downscaling than the GWR model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mannstein, H. Surface Energy Budget, Surface Temperature and Thermal Inertia. In Remote Sensing Applications in Meteorology and Climatology; Mannstein, H., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 391–410. [Google Scholar]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, J.; Shi, J. A Physical-Based Framework for Estimating the Hourly All-Weather Land Surface Temperature by Synchronizing Geostationary Satellite Observations and Land Surface Model Simulations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–22. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar]
- Zhang, Y.Z.; Cheng, J. Spatio-Temporal Analysis of Urban Heat Island Using Multisource Remote Sensing Data: A Case Study in Hangzhou, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3317–3326. [Google Scholar] [CrossRef]
- Cheng, J.; Kustas, W. Using Very High Resolution Thermal Infrared Imagery for More Accurate Determination of the Impact of Land Cover Differences on Evapotranspiration in an Irrigated Agricultural Area. Remote Sens. 2019, 11, 613. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.-H.; Li, Z.-L.; Zhou, C.; Wu, W.; Rasmussen, M.O. An improved method for separating soil and vegetation component temperatures based on diurnal temperature cycle model and spatial correlation. Remote Sens. Environ. 2020, 248, 111979. [Google Scholar] [CrossRef]
- Dong, L.; Tang, S.; Wang, F.; Cosh, M.; Li, X.; Min, M. Inversion and Validation of FY-4A Official Land Surface Temperature Product. Remote Sens. 2023, 15, 2437. [Google Scholar] [CrossRef]
- Meng, X.; Liu, W.; Cheng, J.; Guo, H.; Yao, B. Estimating Hourly Land Surface Temperature From FY-4A AGRI Using an Explicitly Emissivity-Dependent Split-Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5474–5487. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Y.; Yang, M. An Improved Annual Temperature Cycle Model with the Consideration of Vegetation Change. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.-L.; Wang, T.; Huang, H.; Nerry, F. Determination of global land surface temperature using data from only five selected thermal infrared channels: Method extension and accuracy assessment. Remote Sens. Environ. 2022, 268, 112774. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Zhang, Z.; Hu, T.; He, G.; Zhang, Z.; Wang, G.; Li, H.; Tan, J.; Liu, X. Land Surface Temperature Retrieval From Landsat 9 TIRS-2 Data Using Radiance-Based Split-Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1100–1112. [Google Scholar] [CrossRef]
- Gao, J.; Sun, H.; Xu, Z.; Zhang, T.; Xu, H.; Wu, D.; Zhao, X. CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather,” long record, and real-time land surface temperature retrievals from microwave satellite observations. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [Google Scholar] [CrossRef]
- Wu, P.; Su, Y.; Duan, S.-b.; Li, X.; Yang, H.; Zeng, C.; Ma, X.; Wu, Y.; Shen, H. A two-step deep learning framework for mapping gapless all-weather land surface temperature using thermal infrared and passive microwave data. Remote Sens. Environ. 2022, 277, 113070. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Zarco-Tejada, P.J.; Jimenez-Munoz, J.C.; Sobrino, J.A.; de Miguel, E.; Villalobos, F.J. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Zarco-Tejada, P.J.; Jimenez-Munoz, J.C.; Sobrino, J.A.; Soriano, M.A.; Fereres, E.; Vega, V.; Pastor, M. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sens. Environ. 2007, 107, 455–470. [Google Scholar] [CrossRef]
- Zhukov, B.; Lorenz, E.; Oertel, D.; Wooster, M.; Roberts, G. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens. Environ. 2006, 100, 29–51. [Google Scholar]
- Sobrino, J.A.; Gómez, M.; Jiménez-Muñoz, J.C.; Olioso, A.; Chehbouni, G. A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX campaigns. J. Hydrol. 2005, 315, 117–125. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Gomez, M.; Ortiz, A.B.; Romaguera, M.; Zaragoza, M.; Julien, Y.; Cuenca, J.; Atitar, M.; et al. Thermal remote sensing in the framework of the SEN2FLEX project: Field measurements, airborne data and applications. Int. J. Remote Sens. 2008, 29, 4961–4991. [Google Scholar] [CrossRef]
- Zhan, W.F.; Chen, Y.H.; Zhou, J.; Li, J.; Liu, W.Y. Sharpening Thermal Imageries: A Generalized Theoretical Framework From an Assimilation Perspective. IEEE Trans. Geosci. Remote Sens. 2011, 49, 773–789. [Google Scholar]
- Yang, B.; Liu, H.; Kang, E.L.; Shu, S.; Xu, M.; Wu, B.; Beck, R.A.; Hinkel, K.M.; Yu, B. Spatio-temporal Cokriging method for assimilating and downscaling multi-scale remote sensing data. Remote Sens. Environ. 2021, 255, 112190. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Wang, J.; Zhou, J.; Quan, J.; Liu, W.; Li, J. Downscaling land surface temperatures with multi-spectral and multi-resolution images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 23–36. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar]
- Liu, D.S.; Pu, R.L. Downscaling thermal infrared radiance for subpixel land surface temperature retrieval. Sensors 2008, 8, 2695–2706. [Google Scholar] [CrossRef]
- Li, M.; Guo, S.; Chen, J.; Chang, Y.; Sun, L.; Zhao, L.; Li, X.; Yao, H. Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling. Remote Sens. 2023, 15, 901. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.Q.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar]
- Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar]
- Wang, Q.M.; Shi, W.Z.; Atkinson, P.M. Area-to-point regression kriging for pan-sharpening. ISPRS J. Photogramm. Remote Sens. 2016, 114, 151–165. [Google Scholar]
- Peng, Y.; Li, W.; Luo, X.; Li, H. A Geographically and Temporally Weighted Regression Model for Spatial Downscaling of MODIS Land Surface Temperatures Over Urban Heterogeneous Regions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5012–5027. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, N.; Cheng, J.; Xu, S. A Stepwise Downscaling Method for Generating High-Resolution Land Surface Temperature from AMSR-E Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5669–5681. [Google Scholar] [CrossRef]
- Tang, K.; Zhu, H.; Ni, P. Spatial Downscaling of Land Surface Temperature over Heterogeneous Regions Using Random Forest Regression Considering Spatial Features. Remote Sens. 2021, 13, 3645. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Colaizzi, P.D. Utility of thermal sharpening over Texas high plains irrigated agricultural fields. J. Geophys. Res. 2007, 112, D19. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas. Remote Sens. 2017, 9, 1243. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Pan, X.; Zhang, Y.; Cao, C. Downscaling Land Surface Temperature in Complex Regions by Using Multiple Scale Factors with Adaptive Thresholds. Sensors 2017, 17, 744. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhou, J.; Ma, J.; Zhu, X.; Wang, W.; Li, M. A Spatial Downscaling Approach for Land Surface Temperature by Considering Descriptor Weight. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, L.; Wu, S.; Zhu, Y.; Dai, Z.; Wang, Y.; Qi, J.; Chen, Y.; Du, Z. A High-Resolution Land Surface Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression. Remote Sens. 2023, 15, 1740. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Tang, B.-H.; Xu, Y.; Fan, D.; Huang, L.; Ge, Z.; Zhang, Z.; Zhong, Y.; Yang, C. An Integrated Object- and Pixel-Based Residual Compensation Framework for Land Surface Temperature Downscaling. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–16. [Google Scholar] [CrossRef]
- Dai, Q.; Yuan, C.; Dai, Y.; Li, Y.; Li, X.; Ni, K.; Xu, J.; Shu, X.; Yang, J. MoCoLSK: Modality-Conditioned High-Resolution Downscaling for Land Surface Temperature. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–17. [Google Scholar] [CrossRef]
- Xia, H. Geographically Constrained Machine Learning-Based Kernel-Driven Method for Downscaling of All-Weather Land Surface Temperature. Remote Sens. 2025, 17, 1413. [Google Scholar] [CrossRef]
- Guijun, Y.; Ruiliang, P.; Wenjiang, H.; Jihua, W.; Chunjiang, Z. A Novel Method to Estimate Subpixel Temperature by Fusing Solar-Reflective and Thermal-Infrared Remote-Sensing Data with an Artificial Neural Network. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2170–2178. [Google Scholar] [CrossRef]
- Yang, G.; Pu, R.; Zhao, C.; Huang, W.; Wang, J. Estimation of subpixel land surface temperature using an endmember index based technique: A case examination on ASTER and MODIS temperature products over a heterogeneous area. Remote Sens. Environ. 2011, 115, 1202–1219. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Li, W.; Ni, L.; Li, Z.-L.; Duan, S.-B.; Wu, H. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2299–2307. [Google Scholar] [CrossRef]
- Bartkowiak, P.; Castelli, M.; Notarnicola, C. Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas. Remote Sens. 2019, 11, 1319. [Google Scholar] [CrossRef]
- Wu, H.; Li, W. Downscaling Land Surface Temperatures Using a Random Forest Regression Model with Multitype Predictor Variables. IEEE Access 2019, 7, 21904–21916. [Google Scholar] [CrossRef]
- Njuki, S.M.; Mannaerts, C.M.; Su, Z. An Improved Approach for Downscaling Coarse-Resolution Thermal Data by Minimizing the Spatial Averaging Biases in Random Forest. Remote Sens. 2020, 12, 3507. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Azadbakht, M. Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Comput. Geosci. 2019, 124, 93–102. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Pardo-Iguzquiza, E.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 515–527. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Li, R.; Wang, H.; Cao, B.; Bian, Z.; Hu, T.; Du, Y.; Sun, L.; Liu, Q. Comparison of the MuSyQ and MODIS Collection 6 Land Surface Temperature Products Over Barren Surfaces in the Heihe River Basin, China. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8081–8094. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Csiszar, I. Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sens. Environ. 2014, 148, 134–145. [Google Scholar] [CrossRef]
- Fujisada, H.; Urai, M.; Iwasaki, A. Technical Methodology for ASTER Global DEM. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3725–3736. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Cheng, J.; Meng, X.; Dong, S.; Liang, S. Generating the 30-m land surface temperature product over continental China and USA from landsat 5/7/8 data. Sci. Remote Sens. 2021, 4, 100032. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J. Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data. Remote Sens. 2018, 10, 474. [Google Scholar] [CrossRef]
- Meng, X.; Guo, H.; Cheng, J.; Yao, B. Can the ERA5 Reanalysis Product Improve the Atmospheric Correction Accuracy of Landsat Series Thermal Infrared Data? IEEE Geosci. Remote Sens. Lett. 2022, 19, 7506805. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, J.; Göttsche, F.-M.; Wang, Z.; Wu, H.; Tang, W.; Li, M.; Liu, S. An atmospheric influence correction method for longwave radiation-based in-situ land surface temperature. Remote Sens. Environ. 2023, 293, 113611. [Google Scholar] [CrossRef]
- Ye, X.; Ren, H.; Zhu, J.; Fan, W.; Qin, Q. Split-Window Algorithm for Land Surface Temperature Retrieval From Landsat-9 Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zeng, Q.; Cheng, J.; Sun, H.; Dong, S. An integrated framework for estimating the hourly all-time cloudy-sky surface long-wave downward radiation for Fengyun-4A/AGRI. Remote Sens. Environ. 2024, 312, 114319. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S. Estimating global land surface broadband thermal-infrared emissivity using advanced very high resolution radiometer optical data. Int. J. Digit. Earth 2013, 6, 34–49. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Estimates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
- Coll, C.; Niclòs, R.; Puchades, J.; García-Santos, V.; Galve, J.M.; Pérez-Planells, L.; Valor, E.; Theocharous, E. Laboratory calibration and field measurement of land surface temperature and emissivity using thermal infrared multiband radiometers. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 227–239. [Google Scholar] [CrossRef]
- Liu, W.; Shi, J.; Liang, S.; Zhou, S.; Cheng, J. Simultaneous retrieval of land surface temperature and emissivity from the FengYun-4A advanced geosynchronous radiation imager. Int. J. Digit. Earth 2022, 15, 198–225. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Wei, Z.; Wei, N.; Zhang, Y.; Zhang, S.; Yuan, H.; Shangguan, W.; Zhang, S.; Li, Q.; et al. Exploring Topography Downscaling Methods for Hyper-Resolution Land Surface Modeling. J. Geophys. Res. Atmos. 2024, 129, e2024JD041338. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, S.-B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature using random forest regression. Remote Sens. Environ. 2019, 221, 635–649. [Google Scholar] [CrossRef]
- Zhu, S.; Guan, H.; Millington, A.C.; Zhang, G. Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area: A case study in Shanghai, China. Int. J. Remote Sens. 2012, 34, 1707–1723. [Google Scholar] [CrossRef]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef]
NDVI | NDSI | SAVI | NMDI | NDDI | MNDWI | NDBI | Dem | Slope | Aspect | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
V2 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
V3 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
V4 | according to the importance of the variables in the machine learning algorithm | |||||||||||||||
V1′ | √ | √ | √ | √ | √ | √ | √ | |||||||||
V2′ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||
V3′ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
V4′ | V4 with the slope and aspect factors removed |
Experimental Area | Site | Name | Latitude | Longitude | Land Cover |
---|---|---|---|---|---|
A1 | HYL | HuYangLin | 41.993 | 101.124 | populus forest |
HHL | HunHeLin | 41.990 | 101.133 | populus & tamarix | |
LD | LuoDi | 41.999 | 101.133 | bareland | |
NT | NongTian | 42.005 | 101.134 | grassland | |
SDQ | SiDaoQiao | 42.001 | 101.137 | tamarix | |
HM | HuangMo | 42.1135 | 100.987 | desert steppe | |
A2 | GB | Gebi | 38.915 | 100.304 | gobi desert |
SSW | ShenShaWo | 38.789 | 100.493 | sand dune | |
JCHM | JiChangHuangMo | 38.778 | 100.697 | desert steppe | |
SD | ShiDi | 38.975 | 100.446 | reed wetland | |
CJZ | ChaoJiZhan | 38.855 | 100.372 | corn | |
YG | YaoGan | 38.827 | 100.476 | grassland | |
HZZ | HuaZhaiZi | 38.766 | 100.320 | desert steppe | |
A3 | ArouCJZ | Arou ChaoJiZhan | 38.047 | 100.464 | alpine meadow |
ArouYangpo | ArouYangpo | 38.089 | 100.520 | ||
ArouYinpo | ArouYinpo | 37.984 | 100.411 | ||
EB | EBao | 37.949 | 100.915 | ||
HZS | HuangZangSi | 38.225 | 100.192 | wheat | |
HCG | HuangCaoGou | 38.003 | 100.731 | alpine meadow | |
YK | YaKou | 38.014 | 100.242 | ||
DSL | DaShaLong | 38.840 | 98.941 | marsh |
Experimental Area | Downscaling Factors | Bias (K) | RMSE (K) |
---|---|---|---|
A1 | V1/V1′ | −3.86/−0.19 | 8.78/4.11 |
V2/V2′ | −4.52/−0.33 | 8.75/4.17 | |
V3/V3′ | −4.53/0.07 | 10.46/5.87 | |
V4/V4′ | −10.02/−4.82 | 22.79/23.63 | |
A2 | V1/V1′ | −3.02/−3.40 | 7.73/6.90 |
V2/V2′ | −3.59/−3.87 | 7.16/6.98 | |
V3/V3′ | −3.71/−3.62 | 7.13/6.97 | |
V4/V4′ | −3.22/−3.68 | 11.23/11.62 | |
A3 | V1/V1′ | −0.82/−0.82 | 4.59/4.69 |
V2/V2′ | −0.48/−0.44 | 4.02/4.19 | |
V3/V3′ | 0.32/0.53 | 6.48/7.17 | |
V4/V4′ | −1.24/−1.03 | 7.85/8.03 |
Reference | Algorithm | Downscaling Factors | Target Resolution | Evaluation | Metric (K) |
---|---|---|---|---|---|
[33] | RF* | Blue, Green, Red, NIR, SWIR1, SWIR2, BSI, MSAVI, NDBI, NDDI, NDVI, NDWI, MNDWI, OSAVI, SAVI, IBI, IVI, UI, DEM, slope, aspect, LC | 100 m | Landsat LST | MAE: 0.70~1.45 RMSE: 0.94~2.07 |
[39] | GWR | NDVI, DEM | 90 m | ASTER LST | MAE: 1.28~1.86 RMSE: 2.7~3.6 |
[40] | GWR RF | NDBI, NDVI, DEM, slope | 30 m | Landsat LST | MAE: 0.71~0.77 RMSE: 0.94~1.19 MAE: 0.88~3.30 RMSE: 1.15~4.23 |
[46] | RF | Blue, Green, Red, NIR, SWIR1, SWIR2, DEM, solar incidence angle, sky-view factor, LC | 240 m | Landsat LST | RMSE: 0.98~1.45 |
[48] | RF | NDVI, DEM | 250 m | Landsat LST | MAE: 1.7 RMSE: 2.2 |
[49] | RF | Blue, Green, Red, NIR, SWIR1, SWIR2, DEM, aspect, slope, hill-shade, NDVI, SAVI, NDDI, NMDI, MNDWI, NDBI, LC | 90 m | ASTER LST | RMSE: 2.10~3.99 |
[50] | RF* | Blue, Green, Red, NIR, RE1, RE2, RE3, NNIR, SWIR1, SWIR2, Water vapor, DEM, aspect, slope, NDVI, SAVI, EVI, FVC, BSI, NDBI, NDWI, NMDI, NDMI | 100 m | Landsat LST | Bias: −1.21~0.72 RMSE: 2.52~3.16 |
[69] | RF | SAVI, NMDI, MNDWI, NDBI, NDDI, LC | 500 m | In situ data | Bias: −2.64~2.45 RMSE: 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Meng, X.; Sun, L.; Guo, Z. Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms. Remote Sens. 2025, 17, 2350. https://doi.org/10.3390/rs17142350
Su Q, Meng X, Sun L, Guo Z. Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms. Remote Sensing. 2025; 17(14):2350. https://doi.org/10.3390/rs17142350
Chicago/Turabian StyleSu, Qi, Xiangchen Meng, Lin Sun, and Zhongqiang Guo. 2025. "Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms" Remote Sensing 17, no. 14: 2350. https://doi.org/10.3390/rs17142350
APA StyleSu, Q., Meng, X., Sun, L., & Guo, Z. (2025). Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms. Remote Sensing, 17(14), 2350. https://doi.org/10.3390/rs17142350