Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = ice force period

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 276
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 225
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 3076 KiB  
Article
The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions
by Jean-Louis Pinault
Atmosphere 2025, 16(6), 702; https://doi.org/10.3390/atmos16060702 - 10 Jun 2025
Viewed by 1409
Abstract
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, [...] Read more.
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, as happened during the Mid-Pleistocene Transition (MPT). Here, we show that various hypotheses are called into question because of the finding of a second transition, the Early Quaternary Transition (EQT), resulting from the million-year period eccentricity parameter. We propose to complement the orbital forcing theory to explain both the MPT and the EQT by invoking the mediation of western boundary currents (WBCs) and the resulting variations in heat transfer from the low to the high latitudes. From observational and theoretical considerations, it appears that very long-period Rossby waves winding around subtropical gyres, the so-called “gyral” Rossby waves (GRWs), are resonantly forced in subharmonic modes from variations in solar irradiance resulting from the solar and orbital cycles. Two mutually reinforcing positive feedbacks of the climate response to orbital forcing have been evidenced: namely the change in the albedo resulting from the cyclic growth and retreat of ice sheets in accordance with the standard Milankovitch theory, and the modulation of the velocity of the WBCs of subtropical gyres. Due to the inherited resonance properties of GRWs, the response of the climate system to orbital forcing is sensitive to small changes in the forcing periods. For both the MPT and the EQT, the transition occurred when the forcing period merged with one of the natural periods of the climate system. The MPT occurred 1.25 Ma ago, when the dominant period shifted from 41 ka to 98 ka, with both periods corresponding to changes in the Earth’s obliquity and eccentricity. The EQT occurred 2.38 Ma ago, when the dominant period shifted from 408 ka to 786 ka, with both periods corresponding to changes in the Earth’s eccentricity. Through this paradigm shift, the objective of this self-consistent approach is essentially to spark new debates around a problem that has been pending since the discovery of glacial–interglacial cycles, where many hypotheses have been put forward without, however, fully answering all our questions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1564
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

32 pages, 14098 KiB  
Article
Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars
by Yan Zhou, Yu-Yan Sara Zhao, Xiaoting Xu and Yiran Wang
Remote Sens. 2025, 17(11), 1939; https://doi.org/10.3390/rs17111939 - 4 Jun 2025
Viewed by 756
Abstract
The deposition and evolution of ice-rich materials on Martian surfaces offer valuable insights into climatic evolution and the potential driving forces behind global climate change. Substantial evidence indicates that the mid-latitudes of Mars played a crucial role in the formation and development of [...] Read more.
The deposition and evolution of ice-rich materials on Martian surfaces offer valuable insights into climatic evolution and the potential driving forces behind global climate change. Substantial evidence indicates that the mid-latitudes of Mars played a crucial role in the formation and development of glacial and periglacial landforms during the Amazonian period. However, few studies have comprehensively examined ice-related landforms in the low-latitude region of Mars. Whether extensive glacial activity has occurred in the equatorial region of Mars and whether there are any potential geological records of such activities remain unclear. In this study, we analyzed remote sensing data from the Martian equatorial region (0°–±30°) and identified existing glacial/periglacial features, as well as remnant landforms of past glaciation. Our findings reveal that glaciation at low latitudes is more widespread than previously thought, with ice-related remnants extending as far equatorward as 13°N in the northern hemisphere and 19°S in the southern hemisphere, highlighting a broader latitudinal range for ice-related landforms. These landforms span multiple episodes of Martian geological history, supporting the hypothesis on the occurrence of repeated glaciation and various high-obliquity events. Evidence of dynamic interactions between ice deposition and sublimation in low-latitude regions demonstrates substantial ice loss over time, leaving ice-related remnants that provide valuable insights into Mars’ climatic evolution. Based on volumetric estimates of the concentric crater fill (CCF), the low-latitude regions of Mars may contain up to 1.05 × 103 km3 of ice. This corresponds to a global equivalent ice layer thickness ranging from 21.7 mm (assuming a pore ice with 30% ice content) to 65.1 mm (assuming glacial ice with 90% ice content), suggesting a potentially greater low-latitude ice reservoir than previously recognized. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 511
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

16 pages, 558 KiB  
Article
Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application
by Xinlin Yan and Tao Sun
Sustainability 2025, 17(9), 3867; https://doi.org/10.3390/su17093867 - 25 Apr 2025
Cited by 1 | Viewed by 700
Abstract
The development of artificial intelligence as the core driving force for industrial upgrading in the era of smart manufacturing and its large-scale application are reshaping the pattern of urban industrial production and energy consumption, with far-reaching impacts on the realization of regional carbon [...] Read more.
The development of artificial intelligence as the core driving force for industrial upgrading in the era of smart manufacturing and its large-scale application are reshaping the pattern of urban industrial production and energy consumption, with far-reaching impacts on the realization of regional carbon emission reduction targets. To effectively measure the impact of Artificial Intelligence Development Level (AIDL) on the Carbon Emission Intensity (ICE) of Chinese cities, this study empirically examines the influence of AI development level on carbon emission intensity using panel data from 275 Chinese cities during the period from 2007 to 2019. Employing a Spatial Durbin Model and a Mediation Effect Model to conduct empirical testing, the results reveal that AI development level has a negative impact on carbon emission intensity, thereby suppressing the increase in carbon emission intensity. AI development level mitigates carbon emission intensity through two pathways: enhancing the level of technological innovation and optimizing industrial structure, exhibiting a reverse mediation effect with impact coefficients of −0.6216 and −0.5682, respectively, both statistically significant at the 1% level. Based on the empirical findings and the mediation effect analysis, this paper proposes corresponding policy recommendations. This study highlights the critical role of advancements in artificial intelligence and the application strategies of smart industrial robots in fostering sustainable smart cities. The findings support further exploration of AI’s impact on the environment and offer new perspectives for achieving urban sustainability. Full article
Show Figures

Figure 1

18 pages, 15284 KiB  
Article
Interannual Variations in Winter Precipitation in Northern East Asia
by Yuchi Zhang, Tianjiao Ma, Yuehua Li and Wen Chen
Water 2025, 17(2), 219; https://doi.org/10.3390/w17020219 - 15 Jan 2025
Viewed by 727
Abstract
Winter precipitation (P) in East Asia (EA) is characterized by a wetter south and a drier north. Most of the existing research has concentrated on elucidating the mechanisms of winter P in southern EA, with relatively less attention given to northern East Asia [...] Read more.
Winter precipitation (P) in East Asia (EA) is characterized by a wetter south and a drier north. Most of the existing research has concentrated on elucidating the mechanisms of winter P in southern EA, with relatively less attention given to northern East Asia (NEA). Our analysis showed that the correlation coefficient (c.c.) of average winter precipitation anomaly percentage (PAP) between southern EA and NEA is 0.24 for the period 1950–2023, indicating substantial regional difference. An empirical orthogonal function (EOF) analysis was conducted on the winter PAP in NEA. The first and second mode (EOF1 and EOF2) account for 45.5% and 17.9% of the total variance, respectively. EOF1 is characterized by a region-wide uniform spatial pattern whereas EOF2 exhibits a north–south dipole pattern. Further analysis indicated that the two EOF modes are related to distinct atmospheric circulation and external forcings. Specifically, EOF1 is linked to a wave train from Central Siberia toward Japan, while EOF2 is connected with an anomaly similar to the Western Pacific pattern. Variations in mid–high latitude sea surface temperatures, sea ice, and snow are potential factors influencing EOF1. EOF2 exhibits a close relationship with tropical SST anomalies. Full article
Show Figures

Figure 1

27 pages, 7003 KiB  
Article
Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change
by Jean-Louis Pinault
Atmosphere 2024, 15(10), 1226; https://doi.org/10.3390/atmos15101226 - 14 Oct 2024
Cited by 1 | Viewed by 1136
Abstract
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only [...] Read more.
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only form under specific patterns of the amplitude of the speed of modulated airflows of Rossby waves at the tropopause, in particular period ranges. This remains true even if extreme events appear as compound events where chaos and timing are crucial. Extreme events are favored when modulated cold and warm airflows result in a dual cyclone-anticyclone system, i.e., the association of two joint vortices of opposite signs. They reverse over a period of the dominant harmonic mode in spatial and temporal coherence with the modulated airflow speed pattern. This key role could result from a transfer of humid/dry air between the two vortices during the inversion of the dual system. Finally, focusing on the two period ranges 17.1–34.2 and 8.56–17.1 days corresponding to 1/16- and 1/32-year period harmonic modes, projections of the amplitude of wind speed at 250 mb, geopotential height at 500 mb, ground air temperature, and precipitation rate are performed by extrapolating their amplitude observed from January 1979 to March 2024. Projected amplitudes are regionalized on a global scale for warmest and coldest half-years, referring to extratropical latitudes. Causal relationships are established between the projected amplitudes of modulated airflow speed and those of ground air temperature and precipitation rate, whether they increase or decrease. The increase in the amplitude of modulated airflow speed of polar vortices induces their latitudinal extension. This produces a tightening of Rossby waves embedded in the polar and subtropical jet streams. In the context of climate change, this has the effect of increasing the efficiency of the resonant forcing of Rossby waves from the solar declination, the optimum of which is located at mid-latitudes. Hence the increased or decreased vulnerability to heatwaves or extreme precipitation events of some regions. Europe and western Asia are particularly affected, which is due to increased activity of the Arctic polar vortex between longitudes 20° W and 40° E. This is likely a consequence of melting ice and changing albedo, which appears to amplify the amplitude of variation in the period range 17.1–34.2 days of poleward circulation at the tropopause of the Arctic polar cell. Full article
Show Figures

Figure 1

29 pages, 19422 KiB  
Article
Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós
by Tamás Zsolt Vári, Elemér Pál-Molnár and Pál Sümegi
Diversity 2024, 16(10), 619; https://doi.org/10.3390/d16100619 - 6 Oct 2024
Viewed by 2305
Abstract
This study presents a comprehensive palaeoenvironmental reconstruction of the southern part of the Danube–Tisza interfluve in the Carpathian Basin from the Late Pleistocene to Early Holocene, addressing the region’s response to global climate forcings and local environmental factors based on multi-proxy analyses of [...] Read more.
This study presents a comprehensive palaeoenvironmental reconstruction of the southern part of the Danube–Tisza interfluve in the Carpathian Basin from the Late Pleistocene to Early Holocene, addressing the region’s response to global climate forcings and local environmental factors based on multi-proxy analyses of two key protected areas: the Katymár brickyard and the hay meadows and loess banks of Hajós. By integrating radiocarbon-dated malacological, macrobotanical, pollen, phytolith, geochemical, and sedimentological analyses, it was possible to provide a picture of past climate–ecosystem interactions. The Katymár North sequence provides an extended chronology from Marine Isotope Stage 3 (MIS3, ca. 36,000 cal BP) through the Last Glacial Maximum (LGM) and into the Early Holocene, while the Hajós sequence offers high-resolution data for the LGM–Holocene transition. By the late Ice Age, humidity and surface moisture superseded temperature as primary palaeoecological limiting factors, promoting ecotone-like forest–steppe environments during cooling periods. Full article
Show Figures

Figure 1

19 pages, 13586 KiB  
Article
Monitoring of the Icing Process and Simulation of Its Formation Mechanism in the Cut Slope of Beihei Highway
by Wei Shan, Peijie Hou, Guangchao Xu, Helong Du, Ying Guo and Chengcheng Zhang
Water 2024, 16(13), 1851; https://doi.org/10.3390/w16131851 - 28 Jun 2024
Cited by 1 | Viewed by 1296
Abstract
Icing in cut slopes is a serious risk to transportation safety in cold regions. Research on the occurrence process and mechanism of icing is a prerequisite for proposing effective management measures. We took the cut slopes of the K162 section of the Beihei [...] Read more.
Icing in cut slopes is a serious risk to transportation safety in cold regions. Research on the occurrence process and mechanism of icing is a prerequisite for proposing effective management measures. We took the cut slopes of the K162 section of the Beihei Highway as the research object. We used a combination of field investigation, geological exploration, monitoring, and simulation to study and analyze the power source, occurrence process, and triggering mechanism of icing in cut slopes. The results show that the geologic type of this cut slope is a mudstone–sandstone interaction stratum. Abundant shallow groundwater is the source of water for icing. The excavation of cut slopes extends the effect of negative temperatures on groundwater flow during the winter period. The process of ice formation in cut slopes can be described as follows: As the environmental temperature drops, the surface soil begins to freeze, resulting in a gradual narrowing of the water channel; then, the groundwater flow is blocked, so that the internal pressure begins to rise. When the internal pressure of the pressurized groundwater exceeds the strength of the frozen soil, groundwater overflows from the sandstone layer to the surface, forming icing. The high pore water pressure inside the cut slope is the precursor for the occurrence of icing. The dynamic pressure of the pore water pressure is the main driving force for the formation of icing in cut slopes. The obstruction of the water channel due to ground freezing is the triggering condition for ice formation in cut slopes. Full article
Show Figures

Figure 1

18 pages, 4421 KiB  
Article
Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age
by Chaoling Jiang, Haoyuan Xu, Yuanhe Tong and Jinjian Li
Forests 2024, 15(6), 972; https://doi.org/10.3390/f15060972 - 31 May 2024
Cited by 1 | Viewed by 2343
Abstract
As a feature of global warming, climate change has been a severe issue in the 21st century. A more comprehensive reconstruction is necessary in the climate assessment process, considering the heterogeneity of climate change scenarios across various meteorological elements and seasons. To better [...] Read more.
As a feature of global warming, climate change has been a severe issue in the 21st century. A more comprehensive reconstruction is necessary in the climate assessment process, considering the heterogeneity of climate change scenarios across various meteorological elements and seasons. To better comprehend the change in minimum temperature in winter in the Jinsha River Basin (China), we built a standard tree-ring chronology from Picea likiangensis var. balfouri and reconstructed the regional mean minimum temperature of the winter half-years from 1606 to 2016. This reconstruction provides a comprehensive overview of the changes in winter temperature over multiple centuries. During the last 411 years, the regional climate has undergone seven warm periods and six cold periods. The reconstructed temperature sensitively captures the climate warming that emerged at the end of the 20th century. Surprisingly, during 1650–1750, the lowest winter temperature within the research area was about 0.44 °C higher than that in the 20th century, which differs significantly from the concept of the “cooler” Little Ice Age during this period. This result is validated by the temperature results reconstructed from other tree-ring data from nearby areas, confirming the credibility of the reconstruction. The Ensemble Empirical Mode Decomposition method (EEMD) was adopted to decompose the reconstructed sequence into oscillations of different frequency domains. The decomposition results indicate that the temperature variations in this region exhibit significant periodic changes with quasi-3a, quasi-7a, 15.5-16.8a, 29.4-32.9a, and quasi-82a cycles. Factors like El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and solar activity, along with Atlantic Multidecadal Oscillation (AMO), may be important driving forces. To reconstruct this climate, this study integrates the results of three machine learning algorithms and traditional linear regression methods. This novel reconstruction method can provide valuable insights for related research endeavors. Furthermore, other global climate change scenarios can be explored through additional proxy reconstructions. Full article
(This article belongs to the Special Issue Response of Tree Rings to Climate Change and Climate Extremes)
Show Figures

Figure 1

18 pages, 4268 KiB  
Article
Unlocking the Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma: A Three-Year Real-Life Study
by Laura Pini, Diego Bagnasco, Bianca Beghè, Fulvio Braido, Paolo Cameli, Marco Caminati, Cristiano Caruso, Claudia Crimi, Gabriella Guarnieri, Manuela Latorre, Francesco Menzella, Claudio Micheletto, Andrea Vianello, Dina Visca, Benedetta Bondi, Yehia El Masri, Jordan Giordani, Andrea Mastrototaro, Matteo Maule, Alessandro Pini, Stefano Piras, Martina Zappa, Gianenrico Senna, Antonio Spanevello, Pierluigi Paggiaro, Francesco Blasi, Giorgio Walter Canonica and on behalf of the SANI Study Groupadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(10), 3013; https://doi.org/10.3390/jcm13103013 - 20 May 2024
Cited by 17 | Viewed by 4947
Abstract
Background: Benralizumab has been shown to restore good control of severe eosinophilic asthma (SEA). Robust data on benralizumab effectiveness over periods longer than 2 years are scarce. Methods: This retrospective multicentric study was conducted on 108 Italian SEA patients treated with benralizumab for [...] Read more.
Background: Benralizumab has been shown to restore good control of severe eosinophilic asthma (SEA). Robust data on benralizumab effectiveness over periods longer than 2 years are scarce. Methods: This retrospective multicentric study was conducted on 108 Italian SEA patients treated with benralizumab for up to 36 months. Partial and complete clinical remission (CR) were assessed. Data were analyzed with descriptive statistics or using linear, logistic, and negative binomial mixed-effect regression models. Results: At 36 months, benralizumab reduced the exacerbation rate by 89% and increased the forced expiratory volume in 1 second (FEV1) (+440 mL at 36 months, p < 0.0001). Benralizumab improved asthma control as well as sinonasal symptoms in patients with chronic rhinosinusitis with nasal polyposis (CRSwNP). Up to 93.33% of patients either reduced or discontinued OCS; benralizumab also decreased ICS use and other asthma medications. Overall, 84.31% of patients achieved partial or complete CR. Conclusions: Benralizumab improved asthma and sinonasal outcomes up to 36 months. These findings support the potential of benralizumab to induce CR, emphasizing its role as a disease-modifying anti-asthmatic drug for the management of SEA. Further research is warranted to expand these findings by minimizing data loss and assessing benralizumab’s long-term safety. Full article
Show Figures

Figure 1

21 pages, 9107 KiB  
Article
Modes of Weather System-Induced Flows through an Arctic Lagoon
by Chunyan Li, Wei Huang, Changsheng Chen, Kevin M. Boswell and Renhao Wu
J. Mar. Sci. Eng. 2024, 12(5), 767; https://doi.org/10.3390/jmse12050767 - 30 Apr 2024
Cited by 2 | Viewed by 1793
Abstract
With the increasing warming of the Arctic, the summertime ice-free period in the coastal Arctic becomes longer and the water exchange between arctic lagoons and coastal Beaufort Sea becomes more important for land–ocean interaction. This study examined the dynamics of water exchange between [...] Read more.
With the increasing warming of the Arctic, the summertime ice-free period in the coastal Arctic becomes longer and the water exchange between arctic lagoons and coastal Beaufort Sea becomes more important for land–ocean interaction. This study examined the dynamics of water exchange between the arctic lagoons and the Arctic Ocean under the influence of weather systems (the transient arctic cyclones and hovering Beaufort High pressure system). We implemented rare observations, numerical modeling with the Finite Volume Community Ocean Model (FVCOM), and a forcing-response Empirical Orthogonal Function (fr-EOF) analysis to determine the weather-driven flow patterns and characteristics in the micro-tidal arctic lagoon (Elson Lagoon) with little freshwater discharge. The results were validated for both tidal and subtidal currents with in situ data. The inlets of the lagoon were significantly impacted by wind associated with the weather systems and the flows through the inlets were highly correlated with each other. The fr-EOF analysis for the 1.5-month FVCOM output indicated three significant modes of wind-driven flow. In the deepest (~16 m) northwestern-most inlet, a counter-wind flow occurred more than 96% of the time due to setup and set down of water level inside the lagoon and the vorticity balance related to the wind stress and water depth. For about 60–80% of the time, the exchange flow was out of the lagoon through the northwestern-most and deepest inlet due to the strong easterly winds dictated by the Beaufort High; this dominant flow is mainly caused by the persistent easterly wind as a limb of the Beaufort High pressure system, modified by the transient arctic cyclones with a westerly wind and inward flows at the westernmost inlet of Elson Lagoon. This study shows that the alternating influence from the cyclone-anticyclone weather systems produces a meteorological tide in the subtidal spectrum which dominates the water exchange in the region through the multiple inlets. With the observed increase in cyclone strength and frequency under the warming trend, this may imply a greater contribution from the westerly wind because of the increased cyclonic activities. If this is the case, the inward flow might increase and have an effect on sediment, larval, and nutrient transports through this system. Full article
(This article belongs to the Special Issue Hydrodynamic Circulation Modelling in the Marine Environment)
Show Figures

Figure 1

9 pages, 2444 KiB  
Opinion
Is Recent Warming Exceeding the Range of the Past 125,000 Years?
by Jan Esper, Philipp Schulz and Ulf Büntgen
Atmosphere 2024, 15(4), 405; https://doi.org/10.3390/atmos15040405 - 25 Mar 2024
Cited by 3 | Viewed by 2955
Abstract
The Intergovernmental Panel on Climate Change (IPCC) concluded that the latest decade was warmer than any multi-century period over the past 125,000 years. This statement rests on a comparison of modern instrumental measurements against the course of past temperatures reconstructed from natural proxy [...] Read more.
The Intergovernmental Panel on Climate Change (IPCC) concluded that the latest decade was warmer than any multi-century period over the past 125,000 years. This statement rests on a comparison of modern instrumental measurements against the course of past temperatures reconstructed from natural proxy archives, such as lake and marine sediments, and peat bogs. Here, we evaluate this comparison with a focus on the hundreds of proxy records developed by paleoclimatologists across the globe to reconstruct climate variability over the Holocene (12,000 years) and preceded by the Last Glacial Period (125,000 years). Although the existing proxy data provide a unique opportunity to reconstruct low-frequency climate variability on centennial timescales, they lack temporal resolution and dating precision for contextualizing the most recent temperature extremes. While the IPCC’s conclusion on the uniqueness of latest-decade warming is thus not supported by comparison with these smoothed paleotemperatures, it is still likely correct as ice core-derived forcing timeseries show that greenhouse gases were not elevated during any pre-instrumental period of the Holocene. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

Back to TopTop