Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Sampling
2.2. Walter-Lieth Diagram
2.3. Radiocarbon Analysis
2.4. Magnetic Susceptibility, Grain Size, Loss on Ignition, and Geochemical Analysis
2.5. Malacological Analysis
2.6. Anthracological Analysis
2.7. Phytolith Analysis
3. Results
3.1. Walter–Lieth Diagram
3.2. Radiocarbon Results
3.2.1. Katymár North Loess Wall
3.2.2. Hajós Hay Meadows and Loess Banks
3.3. Sedimentological and Geochemical Results
3.3.1. Katymár North Loess Wall
3.3.2. Hajós Hay Meadows and Loess Banks
3.4. Malacological Results
3.4.1. Hajós Hay Meadows and Loess Banks
3.4.2. Katymár North Loess Wall
3.5. Phytolith and Anthracological Results
4. Discussion
4.1. MIS3 Level (ca. 36,000–29,000 cal BP)
4.2. MIS3/MIS2 Transition (ca. 29,000–25,000 cal BP)
4.3. MIS2 Level (ca. 25,000–14,000 cal BP)
4.4. Late Glacial Level (14,000–11,700 cal BP)
4.5. Early Holocene (11,700–8200 cal BP)
4.6. Mid-Holocene (8200–4200 cal BP)
4.7. Late Holocene (4200 cal BP to Present)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sümegi, P.; Molnár, D.; Gulyás, S.; Náfrádi, K.; Sümegi, B.P.; Törőcsik, T.; Persaits, G.; Molnár, M.; Vandenberghe, J.; Zhou, L. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: The loess-paleosol sequence of Katymár brickyard (Hungary). Quat. Int. 2019, 504, 40–55. [Google Scholar] [CrossRef]
- Birks, H.J.B.; Birks, H.H. Quaternary Palaeoecology; Edward Arnold Press: London, UK, 1980; p. 289. [Google Scholar]
- Sümegi, P.; Náfrádi, K.; Törőcsik, T.; Jakab, G.; Bodor, E.; Molnár, M.; Sümegi, B.P.; Tapody, R.O.; Knipl, I.; Kustár, R.; et al. Prehistoric environment of the Sárköz region in the Danube Valley, southern Hungary. Case studies from infilled oxbow lakes. In The Environmental History of the Prehistoric Sárköz Region in Southern Hungary; Bánffy, E., Ed.; Confinia et Horizontes 1; Beier & Beran: Langenweißbach, Germany, 2020; pp. 83–160. [Google Scholar]
- Evans, J.G.; O’Connor, T. Environmental Archaeology; Shutton Publishing: Stroud, UK, 1999; pp. 1–242. [Google Scholar]
- Újvári, G.; Varga, A.; Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 2008, 69, 421–437. [Google Scholar] [CrossRef]
- Hum, L. Geochemical investigations of the Dunaszekcső loess-paleosoil sequence. Acta Mineral. Petrogr. 1998, 39, 139–150. [Google Scholar]
- Hum, L.; Fényes, J. The geochemical characteristics of loesses and paleosols in the South-Eastern Transdanube (Hungary). Acta Mineral. Petrogr. 1995, 36, 89–100. [Google Scholar]
- Buggle, B.; Glaser, B.; Zöller, L.; Hambach, U.; Marković, S.; Glaser, I.; Gerasimenko, N. Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 2008, 27, 1058–1075. [Google Scholar] [CrossRef]
- Buggle, B.; Hambach, U.; Glaser, B.; Gerasimenko, N.; Marković, S.; Glaser, I.; Zöller, L. Stratigraphy and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess–paleosol sequences. Quat. Int. 2009, 196, 86–106. [Google Scholar] [CrossRef]
- Buggle, B.; Glaser, B.; Hambach, U.; Gerasimenko, N.; Marković, S. An evaluation of geochemical weathering indices in loess–paleosol studies. Quat. Int. 2011, 240, 12–21. [Google Scholar] [CrossRef]
- Buggle, B.; Hambach, U.; Müller, K.; Zöller, L.; Marković, S.B.; Glaser, B. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 2014, 117, 4–22. [Google Scholar] [CrossRef]
- Stevens, T.; Marković, S.B.; Zech, M.; Hambach, U.; Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle. Quat. Sci. Rev. 2011, 30, 662–681. [Google Scholar] [CrossRef]
- Obreht, I.; Zeeden, C.; Schulte, P.; Ham bach, U.; Eck meier, E.; Timar-Gabor, A.; Lehmkuhl, F. Aeolian dynamics at the Orlovat loess-paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Res. 2015, 18, 69–81. [Google Scholar] [CrossRef]
- Marković, S.B.; Kostić, N.S.; Oches, E.A. Paleosols in the Ruma loess section (Vojvodina, Serbia). Rev. Mex. Ciencias Geol. 2004, 21, 79–87. [Google Scholar]
- Marković, S.B.; Oches, E.A.; McCoy, W.D.; Frechen, M.; Gaudenyi, T. Malacological and sedimentological evidence for “warm” glacial climate from the Irig loess sequence, Vojvodina, Serbia. Geochem. Geophys. Geosyst. 2007, 8, 1–13. [Google Scholar] [CrossRef]
- Marković, S.B.; Bokhorst, M.P.; Vandenberghe, J.; McCoy, W.D.; Oches, E.A.; Hambach, U.; Gaudényi, T.; Jovanović, M.; Zöller, L.; Stevens, T.; et al. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. J. Quat. Sci. 2008, 23, 73–84. [Google Scholar] [CrossRef]
- Marković, S.B.; Hambach, U.; Catto, N.; Jovanović, M.; Buggle, B.; Machalett, B.; Zöller, L.; Glaser, B.; Frechen, M. Middle and late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quat. Int. 2009, 198, 255–266. [Google Scholar] [CrossRef]
- Marković, S.B.; Timar-Gabor, A.; Stevens, T.; Hambach, U.; Popov, D.; Tomić, N.; Obreht, I.; Jovanović, M.; Lehmkuhl, F.; Kels, H.; et al. Environmental dynamics and luminescence chronology from the Orlovat loess–palaeosol sequence (Vojvodina, northern Serbia). J. Quat. Sci. 2014, 29, 189–199. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Kukla, G.J.; Hambach, U.; Fitzsimmons, K.E.; Gibbard, P.; Jovanović, M.; Svirčev, Z. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Quat. Int. 2015, 376, 29–61. [Google Scholar] [CrossRef]
- Marković, S.B.; Sümegi, P.; Stevens, T.; Schaetzl, R.J.; Obreht, I.; Chu, W.; Buggle, B.; Zech, M.; Zech, R.; Zeeden, C.; et al. The Crvenka loess-paleosol sequence: A record of continuous grassland domination in the southern Carpathian Basin during the Late Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 509, 33–46. [Google Scholar] [CrossRef]
- Sümegi, P.; Gulyás, S.; Molnár, D.; Molnár, M.; Sümegi, B.P.; Makó, L.; Almond, P.; Zeeden, C.; Törőcsik, T.; Nett-Bösken, J.; et al. New chronology and extended paleoenvironmental data to the 1975 loess profile of Madaras brickyard, S Hungary. J. Quat. Sci. 2021, 36, 1364–1381. [Google Scholar] [CrossRef]
- Náfrádi, K.; Barna, P.J.; Sümegi, P. Geoarchaeological investigations at Sormás, Török-földek, a Neolithic site in Southwestern Transdanubia, Hungary. J. Archaeol. Sci. Rep. 2015, 1, 8–20. [Google Scholar] [CrossRef]
- Troels-Smith, J. Characterization of unconsolidated sediments. Dan. Geol. Unders. 1955, 4, 10. (In Danish) [Google Scholar]
- Miháltz, I. Az Észak-Alföld keleti részének földtani térképezése. In A Magyar Állami Földtani Intézet évi jelentése (1951.); Magyar Állami Földtani Intézet: Budapest, Hungary, 1953; pp. 61–68. (In Hungarian) [Google Scholar]
- Molnár, B.; Krolopp, E. Latest Pleistocene geohistory of the Bácska Loess Area. Acta Miner. Petro. 1978, 23, 245–264. [Google Scholar]
- Molnár, B.; Geiger, J. Possibility for subdividing apparently homogeneous depositional sequences by combined use of sedimentological, palaeontological and mathematical method. GeoJournal 1995, 36, 169–177. [Google Scholar] [CrossRef]
- Frömming, E. Biologie der Mitteleuropäischen Landgastropoden; Deucher et Humboldt: Berlin, Germany, 1954. [Google Scholar]
- Ložek, V. Quartärmollusken der Tschechoslowakei. Rozpr. Ústredniho Ust. Geol. 1964, 31, 1–374. [Google Scholar]
- Belokopytov, I.E.; Beresnevich, V.V. Giktorf’s peat borers. Torfyanaya Promyfhlennost 1955, 8, 9. [Google Scholar]
- Aaby, B.; Digerfeldt, G. Sampling techniques for lakes and mires. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; JohnWiley & Sons: Chichester, UK, 1986; pp. 181–194. [Google Scholar]
- Vleeschouwer, F.; Chambers, F.; Swindles, G. Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 2010, 7, 10. [Google Scholar]
- Hay Meadows and Loess Banks of Hajós|Kiskunsági Nemzeti Park. Available online: https://www.knp.hu/en/hay-meadows-and-loess-banks-of-hajos (accessed on 7 March 2024).
- Walter, H.; Lieth, H. Klimadiagramm Weltatlas; G. Fischer: Jena, Germany, 1960. [Google Scholar]
- The Climatol R Package. Available online: http://www.climatol.eu (accessed on 1 June 2024).
- RStudio Desktop—Posit. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 1 June 2024).
- Országos Meteorológiai Szolgálat. Available online: https://www.met.hu (accessed on 1 June 2024).
- Országos Meteorológiai Szolgálat—Meteorológiai Adattár. Available online: https://odp.met.hu (accessed on 1 June 2024).
- Jakab, G.; Sümegi, P.; Magyari, E. A new paleobotanical method for the description of Late Quaternary organic sediments (mire-development pathway and paleoclimatic records from southern Hungary). Acta Geol. Hung. 2004, 47, 373–409. [Google Scholar] [CrossRef]
- Jakab, G.; Sümegi, P.; Magyari, E. New quantitative method for the palaeobotanical description of Late Quaternary organic sediments (mire-development pathway and paleoclimatic records from southern Hungary). Antaeus 2004, 27, 181–212. [Google Scholar]
- rbacon: Age-Depth Modelling Using Bayesian Statistics. Available online: https://cran.r-project.org/web/packages/rbacon/index.html (accessed on 1 June 2024).
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Oldfield, F.; Thompson, R.; Barber, K.E. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections. Science 1978, 199, 679–680. [Google Scholar] [CrossRef]
- Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Publishing: Keniloworth, UK, 1994. [Google Scholar]
- Sümegi, P.; Náfrádi, K.; Molnár, D.; Sávai, S. Results of paleoecological studies in the loess region of Szeged-Öthalom (SE Hungary). Quat. Int. 2015, 372, 66–78. [Google Scholar] [CrossRef]
- Nugteren, G.; Vandenberghe, J.; Ko van Huissteden, J.; An, Z. A Quaternary Climate Record Based on Grain Size Analysis from the Luochuan Loess Section on the Central Loess Plateau, China. Glob. Planet. Chang. 2004, 41, 167–183. [Google Scholar] [CrossRef]
- Konert, M.; Vandenberghe, J. Comparison of Laser Grain Size Analysis with Pipette and Sieve Analysis: A Solution for the Underestimation of the Clay Fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Mücher, H.; Roebroeks, W.; Gemke, D. Lithostratigraphy and Palaeoenvironment of the Pleistocene Deposits at Maastricht-Belvédère. Meded. Rijks Geol. Dienst. 1985, 39, 7–18. [Google Scholar]
- Vandenberghe, J.; Nugteren, G. Rapid Climatic Changes Recorded in Loess Successions. Glob. Planet. Chang. 2001, 28, 1–9. [Google Scholar] [CrossRef]
- Vandenberghe, J. Grain Size of Fine-GrainedWindblown Sediment: A Powerful Proxy for Process Identification. Earth-Sci. Rev. 2013, 121, 18–30. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Antoine, P.; Hatté, C.; Lang, A.; Zöller, L.; Fontugne, M.; Othman, D.B.; Luck, J.M.; Moine, O.; Labonne, M.; et al. Abrupt Millennial Climatic Changes from Nussloch (Germany) UpperWeichselian Eolian Records during the Last Glaciation. Quat. Sci. Rev. 2002, 21, 1577–1582. [Google Scholar] [CrossRef]
- Rousseau, D.; Sima, A.; Antoine, P.; Hatté, C.; Lang, A.; Zöller, L. Link between European and North Atlantic Abrupt Climate Changes over the Last Glaciation. Geophys. Res. Lett. 2007, 34, 2007GL031716. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. 1974, 44, 242–248. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolim. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Dániel, P. Results of the geochemical analysis of the samples from Bátoliget II profile. In The Geohistory of Bátorliget Marshland; Sümegi, P., Gulyás, S., Eds.; Archaeolingua Press: Budapest, Hungary, 2004; pp. 95–128. [Google Scholar]
- Dániel, P.; Kovács, B.; Gyori, Z.; Sümegi, P. A Combined Sequential Extraction Method for Analysis of Ions Bounded to Mineral Component. In Proceedings of the 4th Soil and Sediment Contaminant Analysis Workshop, Lausanne, Switzerland, 23–25 September 1996; p. 396. [Google Scholar]
- Krolopp, E.; Sümegi, P. Palaeoecological reconstruction of the late Pleistocene, based on loess malacofauna in Hungary. GeoJournal 1995, 36, 213–222. [Google Scholar] [CrossRef]
- Sümegi, P. Loess and Upper Paleolithic Environment in Hungary; Aurea Kiadó: Nagykovácsi, Hungary, 2005; pp. 1–312. [Google Scholar]
- Sümegi, P.; Krolopp, E. Quartermalacological analyses for modeling of the upper weichselian palaeoenvironmental changes in the Carpathian Basin. Quat. Int. 2002, 91, 53–63. [Google Scholar] [CrossRef]
- Alexandrowicz, W.P. Molluscan assemblages of Late Glacial and Holocene calcareous tufa in Southern Poland. Folia Quat. 2004, 75, 3–309. [Google Scholar]
- Krolopp, E. Biostratigraphic division of Hungarian Pleistocene Formations according to their Mollusc fauna. Acta Geol. Hung. 1983, 26, 62–89. [Google Scholar]
- Soós, L. A Kárpát-Medence Mollusca-Faunája; Akadémiai Kiadó: Budapest, Hungary, 1943. [Google Scholar]
- Evans, J.G. Land Snails in Archeology; Seminar Press: London, UK, 1972; pp. 1–436. [Google Scholar]
- Welter-Schultes, F.W. European Non-Marine Molluscs, a Guide for Species Identification; Planet Poster Edition: Göttingen, Germany, 2012. [Google Scholar]
- Kerney, M.P.; Cameron, R.A.; Jungbluth, J.H. Die Landschnecken Nord-Und Mitteleuropas; Parey Press: Berlin, Germany, 1983; pp. 1–384. [Google Scholar]
- Horsák, M.; Chytrý, M.; Danihelka, J.; Kočí, M.; Kubešová, S.; Lososová, Z.; Otýpková, Z.; Tichý, L. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Horsák, M.; Chytrý, M.; Pokryszko, B.M.; Danihelka, J.; Ermakov, N.; Hájek, M.; Hájková, P.; Kintrová, K.; Kočí, M.; Kunešová, S.; et al. Habitats of relict terrestrial snails in southern Siberia: Lessons for the reconstruction of palaeoenvironments of full-glacial Europe. J. Biogeogr. 2010, 37, 1450–1462. [Google Scholar] [CrossRef]
- Horsák, M.; Chytrý, M.; Hájková, P.; Hájek, M.; Danihelka, J.; Horsáková, V.; Ermakov, N.; German, D.A.; Kočí, M.; Lustyk, P.; et al. European glacial relict snails and plants: Environmental context of their modern refugial occurrence in southern Siberia. Boreas 2015, 44, 638–657. [Google Scholar] [CrossRef]
- Sümegi, P.; Magyari, E.; Dániel, P.; Molnár, M.; Törőcsik, T. Responses of terrestrial ecosystems to Dansgaard–Oeshger cycles and Heinrich-events: A 28,000-year record of environmental changes from SE Hungary. Quat. Int. 2013, 293, 34–50. [Google Scholar] [CrossRef]
- Sümegi, P. Refuting ideas based on a small batch of data: Malacothermometry aid in the reconstruction of mean July paleo-temperatures in the Carpathian Basin for the last glacial of the Pleistocene. Archeometriai Műhely 2019, 16, 143–166. [Google Scholar]
- Sümegi, P.; Gulyás, S.; Persaits, G.; Páll, D.G.; Molnár, D. The chronostratigraphy of the Basaharc double paleosol complex and the mende upper paleosol complex as seen from recent paleoecological results from the brickyard of Basaharc, Hungary. Quat. Int. 2011, 240, 181–192. [Google Scholar] [CrossRef]
- Jacomet, S.; Kreuz, A. Archäobotanik. Aufgaben, Methoden und Ergebnisse Vegetations- und Agrargeschichtlicher Forschung; Verlag Eugen Ulmer: Stuttgart, Germany, 1999. (In German) [Google Scholar]
- Gyulai, F. Arcaeobotany in Hungary. Seed, Fruit, Food and Beverage Remains In the Carpathian Basin from the Neolitic to the Late Middle Ages; Jószöveg Műhely Kiadó: Budapest, Hungary, 2001. (In Hungarian) [Google Scholar]
- Chabal, L.; Fabre, L.; Terral, J.F.; Théry-Parisot, I. L’anthracologie (Anthracology). In La Botanique; Bourquin-Mignot, C., Brochier, J.E., Chabal, L., Crozat, S., Fabre, L., Guibal, F., Marinval, P., Richard, H., Terral, J.F., Théry, I., Eds.; Editions Errance: Paris, France, 1999; pp. 43–104. [Google Scholar]
- Asouti, E.; Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 2005, 10, 1–18. [Google Scholar] [CrossRef]
- Greguss, P. A Középeurópai Lomblevelő Fák És Cserjék Meghatározása Szövettani Alapon; Országos Magyar Természettudományi Múzeum: Budapest, Hungary, 1945. [Google Scholar]
- Greguss, P. Xylotomy of the Living Conifers; Akadémia Kiadó: Budapest, Hungary, 1972. [Google Scholar]
- Schweingruber, F.H. Mikroskopische Holzanatomie. Eidgenössiche Forschungsantalt für Wald; Schnee Landchaft: Birmensd, Germany, 1990. (In German) [Google Scholar]
- Persaits, G.; Gulyás, S.; Náfrádi, K.; Sümegi, P.; Szalontay, C. Phytolithic aided paleoenvironmental studies from the Dutch Neolithic. Open Geosci. 2015, 7, 732–741. [Google Scholar] [CrossRef]
- Golyeva, A.A. Fitoliti I Ih Informacionaja Rol V Izucsenii Prirodnih I Arceologicseszkih Objektov; Nauki Rossziszkaja Akademija: Moskva, Russia, 2001. [Google Scholar]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Gkinis, V. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Bond, G.; Heinrich, H.; Broecker, W.; McManus, J.; Labeyrie, L.; Andrews, J. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 1992, 360, 245–249. [Google Scholar] [CrossRef]
- Bond, G.; Broecker, W.; Johansen, S.; Labeyrie, L.; McManus, J.; Jouzel, J.; Bonani, G. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 1993, 365, 245–249. [Google Scholar] [CrossRef]
- Bond, G.C.; Showers, W.; Elliot, M.; Evans, M.; Lotti, R.; Hajdas, I.; Bonani, G.; Johnson, S. The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles, and the Little Ice Age. In Mechanisms of Global Climate Change at Millennial Time Scales; Clark, P.U., Webb, R.S., Keigwin, L.D., Eds.; American Geophysical Union: Washington, DC, USA, 1999; Volume 112, pp. 35–58. [Google Scholar]
- Obase, T.; Abe-Ouchi, A.; Saito, F. Abrupt climate changes in the last two deglaciations simulated with different Northern ice sheet discharge and insolation. Sci. Rep. 2021, 11, 22359. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Vinther, B.M.; Clausen, H.B.; Andersen, K.K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quat. Sci. Rev. 2007, 26, 1907–1914. [Google Scholar] [CrossRef]
- Fleitmann, D.; Mudelsee, M.; Burns, S.J.; Bradley, R.S.; Kramers, J.; Matter, A. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 2008, 23, PA1102. [Google Scholar] [CrossRef]
- Kobashi, T.; Severinghaus, J.P.; Brook, E.J.; Barnola, J.M.; Grachev, A.M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quat. Sci. Rev. 2007, 26, 1212–1222. [Google Scholar] [CrossRef]
- Cheng, H.; Fleitmann, D.; Edwards, R.; Wang, X.; Cruz, F.; Auler, A.; Mangin, A.; Wang, Y.; Kong, X.; Burns, S.; et al. Timing and structure of the 8.2 kyr B.P. event inferred from δ¹⁸O records of stalagmites from China, Oman, and Brazil. Geology 2009, 37, 1007–1010. [Google Scholar] [CrossRef]
- Alley, R.B.; Mayewski, P.A.; Sowers, T.; Stuiver, M.; Taylor, K.C.; Clark, P.U. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 1997, 25, 483–486. [Google Scholar] [CrossRef]
- Li, C.H.; Li, Y.X.; Zheng, Y.F.; Yu, S.Y.; Tang, L.Y.; Li, B.B.; Cui, Q.Y. A high-resolution pollen record from East China reveals large climate variability near the Northgrippian-Meghalayan boundary (around 4200 years ago) exerted societal influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 512, 156–165. [Google Scholar] [CrossRef]
- Staubwasser, M.; Sirocko, F.; Grootes, P.M.; Segl, M. Climate change at the 4.2 ka BP termination of the Indus Valley civilization and Holocene South Asian monsoon variability. Geophys. Res. Lett. 2003, 30, 1425. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish soil classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Łachacz, A.; Nitkiewicz, S. Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Sci. Annu. 2021, 72, 140643. [Google Scholar] [CrossRef]
- Vári, T.Z.; Gulyás, S.; Sümegi, P. Reconstructing the paleoenvironmental evolution of Lake Kolon (Hungary) through integrated geochemical and sedimentological analyses of Quaternary sediments. Quaternary 2023, 6, 39. [Google Scholar] [CrossRef]
- Vári, T.Z.; Sümegi, P. Geochemical and sedimentological analyses on the Romanian Sphagnum peat bog Tăul fără fund. Mires Peat 2024, 31, 4. [Google Scholar]
- Boros, Á. Duna-Tisza Köze Növényföldrajza. Földrajzi Értesítő 1952, 1, 39–53. [Google Scholar]
- Vári, T.Z.; Pál-Molnár, E.; Sümegi, P. Reconstructing the Paleoenvironmental Evolution of Lake Kolon (Hungary) through Palaeoecological, Statistical and Historical Analyses. Diversity 2023, 15, 1095. [Google Scholar] [CrossRef]
- Molnár, B. The Geology and Hydrogeology of Kiskunsági (Little Cumania) National Park; JATE Press: Szeged, Hungary, 2015; p. 524. (In Hungarian) [Google Scholar]
- Gábris, G.; Nádor, A. Long-term fluvial archives in Hungary: Response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: A review and new synthesis. Quat. Sci. Rev. 2007, 26, 2758–2783. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Kasse, C.; Gábris, G.; Bohncke, S.; Van Huissteden, K. Fluvial style changes during the last 35,000 years in the Tisza valley. In Proceedings of the XVI INQUA Congress, Reno, NV, USA, 23–30 July 2003; p. 68. [Google Scholar]
- Kiss, T.; Hernesz, P.; Sümeghy, B.; Gyöngyövics, K.; Sipos, G. The evolution of the Great Hungarian Plain fluvial system: Fluvial processes in a subsiding area from the beginning of the Weichselian. Quat. Int. 2015, 388, 142–155. [Google Scholar] [CrossRef]
- Molnár, D.; Sávai, S.; Hupuczi, J.; Galović, L.; Sümegi, P. Malacological investigations on East-Croatian loess-paleosol profiles. Archeometriai Műhely 2010, 8, 127–136. [Google Scholar]
- Banak, A.; Mandić, O.; Kovačić, M.; Pavelić, D. Late Pleistocene climate history of the Baranja loess plateau–Evidence from the Zmajevac loess-paleosol section (northeastern Croatia). Geol. Croat. 2012, 65, 411–422. [Google Scholar] [CrossRef]
- Jia, Y.-N.; Yan, H.; Dong, J.; Kang, S.; Wang, G.; Liu, C.; Zhang, Q.; Dodson, J. Hydrothermal and eco-environmental evolution on the southeastern Chinese Loess Plateau since the last deglaciation: Evidence from terrestrial mollusk records. Quat. Sci. Rev. 2024, 311, 108648. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, N.; Li, F.; Huang, L.; Lu, H.; Stenseth, N.C. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 2021, 269, 107147. [Google Scholar] [CrossRef]
- Alexandrowicz, W.P.; Dmytruk, R. Molluscs in Eemian-Vistulian deposits of the Kolodiiv section, Ukraine (East Carpathian Foreland) and their palaeoecological interpretation. Geol. Q. 2007, 51, 173–178. [Google Scholar]
- Horsák, M.; Juricková, L.; Picka, J. Měkkýši České a Slovenské Republiky. Molluscs of the Czech and Slovak Republics; Kabourek: Zlín, Czech Republic, 2013; 264p. [Google Scholar]
- Horsák, M.; Chytrý, M.; Axmanová, I. Exceptionally poor land snail fauna of central Yakutia (NE Russia): Climatic and habitat determinants of species richness. Polar Biol. 2013, 36, 185–191. [Google Scholar] [CrossRef]
- Varga, Z.; Borhidi, A.; Fekete, G.; Debreczy, Z.; Bartha, D.; Bölöni, J.; Molnár, A.; Kun, A.; Molnár, Z.; Lendvai, G.; et al. The concept, types and their characterization of the forest steppe relicts. In Lowland Forest Steppe Relicts in Hungary; Molnár, Z., Kun, A., Eds.; World Wide Foundation: Budapest, Hungary, 2000; pp. 7–19. (In Hungarian) [Google Scholar]
- Fekete, G.; Molnár, Z.; Kun, A.; Botta-Dukát, Z. On the structure of the Pannonian forest steppe: Grasslands on sand. Acta Zool. Acad. Sci. Hung. 2002, 48, 137–150. [Google Scholar]
- Fekete, G.; Molnár, Z.; Magyari, E.; Somodi, I.; Varga, Z. A new framework for understanding Pannonian vegetation patterns: Regularities, deviations, and uniqueness. Community Ecol. 2014, 15, 12–26. [Google Scholar] [CrossRef]
- Molnár, Z.; Biró, M.; Bartha, S.; Fekete, G. Past trends, present state and future prospects of Hungarian forest steppes. In Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World; Werger, M.J.A., van Staalduinen, M.A., Eds.; Springer: Dordrecht, Netherlands, 2012; pp. 209–252. [Google Scholar]
- Bába, K. Malacocoenological investigation of some sandy grasslands and forests in the Danube-Tisza Interfluve. Szegedi Tanárképző Főisk. Tud. Közl. 1969, 14, 83–92. (In Hungarian) [Google Scholar]
- Bába, K. A history and present-day situation of the investigation of the recent land snails in the Great Hungarian Plain. Tiscia 1980, 15, 93–102. [Google Scholar]
- Bába, K. History of the investigation of the terrestrial snails of the Great Hungarian Plain and its present situation. II. Tiscia 1983, 18, 83–95. [Google Scholar]
- Sümegi, P.; Persaits, G.; Gulyás, S. Woodland-grassland ecotonal shifts in environmental mosaics: Lessons learnt from the environmental history of the Carpathian Basin (Central Europe) during the Holocene and the Last Ice Age based on investigation of paleobotanical and mollusk remains. In Ecotones Between Forest and Grassland; Myster, R.W., Ed.; Springer: New York, NY, USA, 2012; pp. 17–57. [Google Scholar]
- Sümegi, P.; Molnár, D.; Sávai, S.; Náfrádi, K.; Novák, Z.; Szelepcsényi, Z.; Törőcsik, T. First radiocarbon dated paleoecological data from the freshwater carbonates of the Danube-Tisza Interfluve. Open Geosci. 2015, 7, 1–13. [Google Scholar] [CrossRef]
- Gábori, M.; Gábori-Csánk, V. Études archéologiques et stratigraphiques dans les stations de loess paléolithiques de Hongrie. Acta Archaeol. Hung. 1957, 8, 249–285. [Google Scholar]
- Gáboriné Csánk, V. Az ősember Magyarországon; Gondolat: Budapest, Hungary, 1980; p. 264. (In Hungarian) [Google Scholar]
- Pécsi, M. Negyedkor és Löszkutatás; Akadémiai Kiadó: Budapest, Hungary, 1993; p. 375. [Google Scholar]
- Willis, K.J. The vegetational history of the Balkans. Quat. Sci. Rev. 1994, 13, 769–788. [Google Scholar] [CrossRef]
- Willis, K.J.; Sümegi, P.; Braun, M.; Tóth, A. The Late Quaternary environmental history of Bátorliget, N.E. Hungary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 118, 1–47. [Google Scholar] [CrossRef]
- Willis, K.J.; Braun, M.; Sümegi, P.; Tóth, A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 1997, 78, 740–750. [Google Scholar] [CrossRef]
- Willis, K.J.; Sümegi, P.; Braun, M.; Bennett, K.D.; Tóth, A. Prehistoric land degradation in Hungary: Who, how and why? Antiquity 1998, 72, 101–113. [Google Scholar] [CrossRef]
- Willis, K.J.; Rudner, E.; Sümegi, P. The full-glacial forests of central and southeastern Europe: Evidence from Hungarian palaeoecological records. Quat. Res. 2000, 53, 203–213. [Google Scholar] [CrossRef]
- Willis, K.J.; Van Andel, T.H. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 2004, 23, 2369–2387. [Google Scholar] [CrossRef]
- Feurdean, A.; Perşoiu, A.; Tanţău, I.; Stevens, T.; Magyari, E.K.; Onac, B.P.; Marković, S.; Andrič, M.; Connor, S.; Fărcaş, S.; et al. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 2014, 106, 206–224. [Google Scholar] [CrossRef]
- Magyari, E.K.; Kuneš, P.; Jakab, G.; Sümegi, P.; Pelánková, B.; Schäbitz, F.; Braun, M.; Chytrý, M. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia? Quat. Sci. Rev. 2014, 95, 60–79. [Google Scholar] [CrossRef]
- Magyari, E.K.; Chapman, J.C.; Passmore, D.G.; Allen, J.R.M.; Huntley, J.P.; Huntley, B. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 2010, 37, 915–935. [Google Scholar] [CrossRef]
- Pató, Z.A.; Standovár, T.; Gałka, M.; Jakab, G.; Molnár, M.; Szmorad, F.; Magyari, E. Exposure matters: Forest dynamics reveal an early Holocene conifer refugium on a north-facing slope in Central Europe. Holocene 2020, 30, 1833–1848. [Google Scholar] [CrossRef]
- Damblon, F.; Haesaerts, P. Anthracology and radio-chronology of the Upper Pleistocene in the loessic areas of Eurasia. In Charcoal Analysis. Methodological Approaches, Palaeoecological Results and Wood Uses; Thiébault, S., Ed.; BAR International Series 1063; Archaeopress: Oxford, UK, 2002; pp. 65–71. [Google Scholar]
- Damblon, F.; Haesaerts, P. Charcoal as tracer of local tree taxa in the Pleistocene loess field of Central Europe. Which relationship with flora, vegetation, landscape or climate? Sagvntvm Extra 2011, 11, 28. [Google Scholar]
- Dong, Y.; Wu, N.; Jiang, W.; Li, F.; Lu, H. Cascading response of flora and terrestrial mollusks to last deglacial warming. Glob. Ecol. Conserv. 2020, 24, e01360. [Google Scholar] [CrossRef]
- Sümegi, P.; Gulyás, S.; Molnár, D.; Sümegi, B.P.; Almond, P.C.; Vandenberghe, J.; Zhou, L.; Pál-Molnár, E.; Törőcsik, T.; Hao, Q.; et al. New chronology of the best-developed loess/paleosol sequence of Hungary capturing the past 1.1 Ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quat. Sci. Rev. 2018, 191, 144–166. [Google Scholar] [CrossRef]
- Sümegi, P. Late Quaternary Environmental History of Hungary; MTA Doktori Értekezés: Budapest-Szeged, Hungary, 2007; p. 428, (In Hungarian with English Summary). [Google Scholar]
- Gallet, S.; Jahn, B.; Torii, M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem. Geol. 1996, 133, 67–88. [Google Scholar] [CrossRef]
- Gallet, S.; Jahn, B.; Vliet Lanoe, B.; Dia, A.; Rossello, E. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet. Sci. Lett. 1998, 156, 157–172. [Google Scholar] [CrossRef]
- Jahn, B.; Gallet, S.; Han, J. Geochemistry of the Xining, Xifeng, and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka. Chem. Geol. 2001, 178, 71–94. [Google Scholar] [CrossRef]
- Liang, L.; Sun, Y.; Beets, C.J.; Prins, M.A.; Wu, F.; Vandenberghe, J. Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau. J. Asian Earth Sci. 2013, 69, 177–184. [Google Scholar] [CrossRef]
- Muhs, D.R.; Bettis, E.A., III. Geochemical variations in Peoria Loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quat. Res. 2000, 53, 49–61. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M.; McCulloch, M.T. Geochemistry of loess, continental crustal composition, and crustal model ages. Geochim. Cosmochim. Acta 1983, 47, 1897–1905. [Google Scholar] [CrossRef]
- Ahmad, I.; Chandra, R. Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering. J. Asian Earth Sci. 2013, 66, 73–89. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Bosq, M.; Kreutzer, S.; Bertran, P.; Degeai, J.P.; Dugas, P.; Kadereit, A.; Lanos, P.; Moine, O.; Pfaffner, N.; Queffelec, A.; et al. Chronostratigraphy of two Late Pleistocene loess-palaeosol sequences in the Rhône Valley (southeast France). Quat. Sci. Rev. 2020, 245, 106473. [Google Scholar] [CrossRef]
- Bosq, M.; Bertran, P.; Degeai, J.P.; Queffelec, A.; Moine, O. Geochemical signature of sources, recycling, and weathering in the Last Glacial loess from the Rhône Valley (southeast France) and comparison with other European regions. Aeolian Res. 2020, 42, 100561. [Google Scholar] [CrossRef]
- Sümegi, P.; Hertelendi, E.; Magyari, E.; Molnár, M. Evolution of the environment in the Carpathian Basin during the last 30,000 BP years and its effects on the ancient habits of the different cultures. In Archeometrical Research in Hungary II; Költő, L., Bartosiewicz, L., Eds.; Budapest-Kaposvár: Budapest, Hungary, 1998; pp. 183–197. [Google Scholar]
- Sümegi, P.; Kertész, R. Palaeogeographic characteristic of the Carpathian Basin—An ecological trap during the Early Neolithic? In From the Mesolithic to the Neolithic; Kertész, R., Makkay, J., Eds.; Archaeolingua Press: Budapest, Hungary, 2001; pp. 405–416. [Google Scholar]
- Sümegi, P.; Gulyás, S.; Jakab, G. Holocene paleoclimatic and paleohydrological changes in Lake Balaton as inferred from a complex quantitative environmental historical study of a lacustrine sequence of the Szigliget embayment. Doc. Praehist. 2008, 35, 33–43. [Google Scholar] [CrossRef]
- Bánffy, E.; Juhász, I.; Sümegi, P. A prelude to the Neolithic in the Balaton region—New results to an old problem. In A Short Walk through the Balkans: The First Farmers of the Carpathian Basin and Adjacent Regions; Spataro, M., Biagi, P., Eds.; Atti della Società per la Preistoria e Protostoria della Regione Friuli; Venezia Giulia, XVI: Trieste, Italy, 2009; pp. 223–237. [Google Scholar]
- Sümegi, P. Palaeogeographical background of the Mesolithic and Early Neolithic settlement in the Carpathian Basin. In Mesolithic/Neolithic Interactions in the Balkans and in the Middle Danube Basin; Kozlowski, J.K., Nowak, M., Eds.; BAR International Series 1726; Archeopress: Oxford, UK, 2007; pp. 45–53. [Google Scholar]
- Magyari, E.K.; Jakab, G.; Sümegi, P. Holocene vegetation dynamics in the Bereg Plain, NE Hungary—The Báb-tava pollen and plant macrofossil record. Acta Geo. Debrecina 2009, 42, 1–16. [Google Scholar]
- Smith, A.G. The influence of Mesolithic and Neolithic man on British vegetation. In Studies in the Vegetational History of the British Isles; Walker, D., West, R.G., Eds.; Cambridge University Press: Cambridge, UK, 1970; pp. 81–96. [Google Scholar]
- Zvelebil, M. Mesolithic prelude and Neolithic revolution. In Hunters in Transition; Zvelebil, M., Ed.; Cambridge University Press: Cambridge, UK, 1986; pp. 5–16. [Google Scholar]
- Zvelebil, M.; Rowley-Conwy, P. Foragers and farmers in Atlantic Europe. In Hunters in Transition; Zvelebil, M., Ed.; Cambridge University Press: Cambridge, UK, 1986; pp. 67–93. [Google Scholar]
- Grøn, O.; Klokkernes, T.; Turov, M.G. Cultural small-scale variations in a hunter-gatherer society: Or ‘everybody wants to be a little bit different!’ An ethno-archaeological study from Siberia. In Proceedings of the Seventh International Conference on the Mesolithic in Europe, Belfast 2005; McCartan, S., Schulting, R., Warren, G., Woodman, P., Eds.; Oxbow Books: Oxford, UK, 2009; pp. 203–209. [Google Scholar]
Depth (cm) | Lab Code | Material | Uncal BP + σ | (95.4%) cal BP + σ | Modelled cal BP + σ | Modelled cal BP Median |
---|---|---|---|---|---|---|
2 | DeA–22498 | Holocene organic soil | 5390 ± 26 | 6210 ± 60 | 14,450 ± 600 | 14,510 |
82 | DeA–22499 | Pupilla muscorum shell | 13,309 ± 45 | 16,000 ± 90 | 16,220 ± 370 | 16,080 |
182 | DeA–22500 | Pupilla muscorum shell | 17,178 ± 59 | 20,730 ± 90 | 19,230 ± 830 | 19,430 |
282 | DeA–22501 | Pupilla muscorum shell | 17,846 ± 71 | 21,670 ± 150 | 21,380 ± 300 | 21,440 |
296 | DeA–23495 | Pinus charcoal | 17,881 ± 69 | 21,720 ± 160 | 21,630 ± 250 | 21,610 |
382 | DeA–22502 | Pupilla muscorum shell | 18,655 ± 67 | 22,590 ± 130 | 22,660 ± 240 | 22,610 |
482 | DeA–22503 | Pupilla muscorum shell | 19,952 ± 78 | 23,980 ± 100 | 23,830 ± 290 | 23,890 |
582 | DeA–22504 | Pupilla muscorum shell | 19,925 ± 74 | 23,960 ± 100 | 24,930 ± 360 | 24,940 |
682 | DeA–22505 | Pupilla muscorum shell | 22,119 ± 91 | 26,300 ± 190 | 26,220 ± 250 | 26,210 |
782 | DeA–23497 | Pinus charcoal | 23,046 ± 94 | 27,340 ± 100 | 27,440 ± 250 | 27,340 |
882 | DeA–22506 | Pupilla muscorum shell | 24,070 ± 110 | 28,220 ± 200 | 28,720 ± 490 | 28,560 |
982 | DeA–22507 | Pupilla muscorum shell | 24,917 ± 121 | 29,120 ± 150 | 30,610 ± 1040 | 30,020 |
1120 | DeA–22508 | Pupilla muscorum shell | 31,598 ± 259 | 35,920 ± 270 | 33,890 ± 1780 | 33,510 |
Depth (cm) | Lab Code | Material | Uncal BP + σ | (95.4%) cal BP + σ | Modelled cal BP + σ | Modelled cal BP Median |
---|---|---|---|---|---|---|
100 | Deb–9329 | Peat | 1650 ± 80 | 1540 ± 90 | 1640 ± 256 | 1586 |
165 | Deb–9326 | Peat | 1770 ± 80 | 1660 ± 90 | 2989 ± 661 | 2906 |
220 | Deb–9328 | Peat | 3960 ± 80 | 4410 ± 130 | 4858 ± 578 | 4686 |
236 | ETH–41278 | Typha | 5560 ± 40 | 6350 ± 40 | 6306 ± 144 | 6332 |
270 | Deb–9325 | Peat | 7310 ± 80 | 8130 ± 90 | 8132 ± 231 | 8127 |
296 | Deb–9327 | Peat | 9130 ± 130 | 10,310 ± 180 | 10,070 ± 481 | 10,179 |
344 | ETH–41275 | Peat | 10,540 ± 45 | 12,570 ± 70 | 12,445 ± 244 | 12,550 |
420 | GdA–554 | Shell | 21,190 ± 140 | 25,520± 160 | 17,290 ± 2003 | 16,953 |
Factors | Units | Minimum | Average | Median | Maximum | Standard Deviation |
---|---|---|---|---|---|---|
Organic material | % | 0.54 | 1.68 | 1.51 | 7.29 | 0.75 |
Carbonate content | % | 4.96 | 12.05 | 12.89 | 14.81 | 2.38 |
Inorganic material | % | 83.61 | 86.27 | 85.72 | 93.18 | 2.09 |
Magnetic susceptibility | 10−6 m3kg−1 | 14.9 | 24.18 | 24.2 | 67.9 | 6.69 |
Clay | % | 1.18 | 18.39 | 18.71 | 23.89 | 2.92 |
Silt | % | 49.8 | 70.32 | 70.23 | 82.87 | 4.52 |
Sand | % | 2.15 | 11.28 | 10.84 | 38.03 | 5.34 |
Calcium (Ca) | ppm | 12.8 | 391.87 | 345.88 | 1355.3 | 235.71 |
Magnesium (Mg) | ppm | 1.15 | 111.43 | 103.23 | 1173.13 | 87.98 |
Sodium (Na) | ppm | 0.01 | 1.22 | 0.77 | 10.4 | 1.25 |
Potassium (K) | ppm | 0.04 | 1.24 | 1.15 | 4.83 | 0.81 |
Iron (Fe) | ppm | 0.3 | 17.52 | 15.86 | 96.55 | 12.68 |
Manganese (Mn) | ppm | 0.01 | 1.34 | 0.71 | 146 | 8.7 |
Aluminium (Al) | ppm | 0.07 | 10.52 | 8.86 | 42.1 | 7.71 |
Barium (Ba) | ppm | 0 | 0.15 | 0.1 | 1.77 | 0.22 |
Strontium (Sr) | ppm | 0 | 0.5 | 0.41 | 2.41 | 0.4 |
Factors | Units | Minimum | Average | Median | Maximum | Standard Deviation |
---|---|---|---|---|---|---|
Organic material | % | 0 | 50.85 | 70.9 | 97.5 | 35.1 |
Carbonate content | % | 0 | 2.97 | 1.5 | 8.4 | 2.43 |
Inorganic material | % | 0.8 | 46.18 | 25.6 | 100 | 36.15 |
Magnetic susceptibility | 10−6 m3kg−1 | 7 | 37.29 | 38 | 71 | 20.02 |
Clay | % | 0 | 10.61 | 13.15 | 27.6 | 6.42 |
Silt | % | 51.5 | 87.77 | 86.45 | 100 | 7.21 |
Sand | % | 0 | 1.63 | 0 | 48.5 | 2.36 |
Calcium (Ca) | ppm | 11 | 3086.43 | 1905.5 | 8514 | 2415.27 |
Magnesium (Mg) | ppm | 8 | 1027.02 | 642 | 2855 | 808.62 |
Sodium (Na) | ppm | 3 | 328.27 | 205.44 | 913.6 | 257.14 |
Potassium (K) | ppm | 3 | 241.49 | 112.29 | 721.74 | 213.87 |
Iron (Fe) | ppm | 7 | 366.53 | 386.93 | 852 | 173.54 |
Manganese (Mn) | ppm | 0 | 134.52 | 142.59 | 315.24 | 65.63 |
Arbour pollen (AP) | pieces | 166 | 303.6 | 275 | 567 | 115.71 |
Non-arbour pollen (NAP) | pieces | 9 | 238.26 | 267 | 467 | 117.26 |
Aqua + Spore | pieces | 0 | 32.16 | 35 | 60 | 13.29 |
Total pollen count | pieces | 477 | 574.02 | 572 | 670 | 45.65 |
Zone | Depth (cm) | Age (cal BP) | Environment | Dominant Groups | Dominant Species |
---|---|---|---|---|---|
MLZ-1 | 1116–856 | 36,000–28,400 | Warm steppe, forest–steppe | Mesoph., Xeroph. SSE EU, Holarctic | Granaria frumentum, Pupilla triplicate, Chondrula tridens |
MLZ-2 | 856–624 | 28,400–25,400 | Cold steppe | Mesoph., Xeroph. SSE EU, W EU, EU, Holarctic | Pupilla muscorum, Pupilla triplicata, Chondrula tridens, Vallonia costata |
MLZ-3 | 624–408 | 25,400–23,000 | Cold steppe | Mesoph., Hygroph. EU, W EU, Holarctic | Vitrea crystallina, Punctum pygmaeum |
MLZ-4 | 408–12 | 23,000–6200 | Cold open habitat | Most diverse groups by humidity and biogeography | Vallonia tenuilabris, Pupilla sterri |
MLZ-5 | 12–0 | 6200– | Warm steppe, forest–steppe | Mesoph., Xeroph. SSE European, Holarctic | Granaria frumentum, Pupilla triplicata |
Zone | Units | Minimum | Average | Median | Maximum | Standard Deviation |
---|---|---|---|---|---|---|
MLZ-1 | °C | 16.14 | 18.51 | 18.55 | 20.03 | 0.98 |
MLZ-2 | °C | 12.20 | 16.69 | 16.75 | 18.62 | 0.81 |
MLZ-3 | °C | 11.71 | 15.08 | 15.25 | 16.76 | 0.88 |
MLZ-4 | °C | 10.46 | 12.62 | 12.46 | 16.04 | 1.29 |
MLZ-5 | °C | 19.52 | 19.78 | 19.85 | 19.92 | 0.18 |
Zone | Depth (cm) | Age (cal BP) | Main Characteristics | Plant Remains |
---|---|---|---|---|
PTZ-1 | 1120–1100 | 36,000–34,800 | Elongate long cells, elongate long-cell skeletons, non-grass larger cells, a small number of parallelepipedal bulliforms and cuneiform bulliforms | Pinus, Betula, burnt Pinus |
PTZ-2 | 1100–892 | 34,800–28,700 | Abundant only in elongate long cells and sponge spicules | – |
PTZ-3 | 892–870 | 28,700–28,550 | A decrease in elongate long cells, sponge spicules drop to 0, and an increase in other forms | Pinus, burnt Pinus |
PTZ-4 | 870–792 | 28,550–27,450 | Abundant only in elongate long cells and sponge spicules | – |
PTZ-5 | 792–776 | 27,450–27,250 | A decrease in elongate long cells, sponge spicules drop to 0, and an increase in other forms | Pinus, burnt Pinus |
PTZ-6 | 776–300 | 27,250–21,650 | Abundant only in elongate long cells and sponge spicules | – |
PTZ-7 | 300–296 | 21,650–21,550 | A decrease in elongate long cells, sponge spicules drop to 0, and an increase in other forms | burnt Pinus |
PTZ-8 | 296–20 | 21,550–6200 | Abundant only in elongate long cells and sponge spicules, declining from 100 cm | – |
PTZ-9 | 20–0 | 6200– | Sponge spicules drop to 0, and various phytolith forms increase | Quercus at 0 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vári, T.Z.; Pál-Molnár, E.; Sümegi, P. Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós. Diversity 2024, 16, 619. https://doi.org/10.3390/d16100619
Vári TZ, Pál-Molnár E, Sümegi P. Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós. Diversity. 2024; 16(10):619. https://doi.org/10.3390/d16100619
Chicago/Turabian StyleVári, Tamás Zsolt, Elemér Pál-Molnár, and Pál Sümegi. 2024. "Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós" Diversity 16, no. 10: 619. https://doi.org/10.3390/d16100619
APA StyleVári, T. Z., Pál-Molnár, E., & Sümegi, P. (2024). Palaeoenvironmental Analysis of the Southern Part of the Danube–Tisza Interfluve (Hungary): The Northern Loess Wall of Katymár and the Hay Meadows and Loess Banks of Hajós. Diversity, 16(10), 619. https://doi.org/10.3390/d16100619