Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Datasets and Surface Property Data
2.2. Mapping of a Global Database of Published Characteristics of Typical Glaciers and the Distribution of Buried Water Ice Resources
2.3. Volume Calculation of Concentric Crater Fill (CCF)
2.4. Crater Size–Frequency Distribution (CSFD)
3. Results
3.1. Characteristics and Global Distribution of Ice-Related Landforms at Low Latitudes
3.1.1. Crater Fill (CF)
3.1.2. Lobate Debris Aprons (LDAs)
3.1.3. Possible Sublimation Depressions (Non-Crater) (PSDNs)
3.1.4. Glacier-like Form (GLF)
3.1.5. Lineated Valley Fills (LVFs)
3.1.6. Elevation Distribution of Ice-Related Landforms at Low Latitudes
3.2. Crater Fills (CFs) in Low-Latitude Regions
3.2.1. Statistical Analysis of the CFs
3.2.2. Total Volume of Identified CCFs at Low Latitudes
3.2.3. Age Estimates for the CFs
4. Discussion
5. Conclusions
- Ice-related landforms in the lower latitudes of Mars are more extensive than previously thought. The latitudinal extent of ice-related remnants has extended equatorially to 13°N in the northern hemisphere and 19°S in the southern hemisphere, highlighting a broader range for ice-related landforms;
- The identified ice-related landforms were formed during multiple episodes of Martian geologic history, indicating that Mars has experienced repeated glacial/periglacial processes. These findings support the hypothesis that surface ice extends closer to the equator during periods of high obliquity;
- Evidence of a dynamic interplay between ice accumulation and ice loss (sublimation) has been observed at low latitudes. These regions had significantly higher ice contents in the past and have since undergone extensive sublimation and removal. Many ice-related remnants have been preserved;
- Crater fills (CFs) are the most abundant type of ice-related landform at low latitudes, comprising approximately 85% of all the observed features. Among these, irregular fill is the most prevalent subtype. CFs in the northern hemisphere are at lower average elevations (−1165 m) than those in the southern hemisphere (552 m), but their numbers are significantly greater. The elevation contrast between the northern and southern CFs reflects both Martian hemispheric topography and possible differences in climate-driven ice stability. Directional fills are primarily found on the polar-facing walls of craters;
- The total volume of CCFs at low latitudes on Mars was approximately 1.05 × 103 km3. Assuming an ice content of 90%, this corresponds to a global equivalent ice layer thickness of 65.1 mm; based on a more conservative assumption of 30% ice content, the equivalent thickness is 21.7 mm. The ice content at low latitudes is likely higher than that suggested by previous studies, necessitating a revised estimate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Types | Specific Images | Area Size | Number of Craters | Estimated Age with Errors |
---|---|---|---|---|
Centric crater fill | Figure 12a | 6.47 × 101 km2 | 132 | 220 ± 20 Ma |
Crater irregular fill 1 | Figure 12b | 3.63 × 101 km2 | 6 | 140 ± 50 Ma |
Crater irregular fill 2 | Figure 12c | 3.81 × 100 km2 | 14 | 2.8 + 0.4 Ga/2.8 − 0.7 Ga |
Crater irregular fill 3 | Figure 12d | 2.62 × 101 km2 | 113 | 3.4 + 0.05 Ga/3.4 − 0.07 Ga |
Crater directional fill | Figure A9 | 8.98 × 100 km2 | 26 | 4.2 ± 0.8 Ma |
References
- Carr, M.H. Mars Global Surveyor observations of Martian fretted terrain. J. Geophys. Res. Planets 2001, 106, 23571–23593. [Google Scholar] [CrossRef]
- Holt, J.W.; Safaeinili, A.; Plaut, J.J.; Head, J.W.; Phillips, R.J.; Seu, R.; Kempf, S.D.; Choudhary, P.; Young, D.A.; Putzig, N.E. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 2008, 322, 1235–1238. [Google Scholar] [CrossRef]
- Sinha, R.K.; Ray, D. Extensive glaciation in the Erebus Montes region of Mars. Icarus 2021, 367, 114557. [Google Scholar] [CrossRef]
- Séjourné, A.; Costard, F.; Swirad, Z.M.; Łosiak, A.; Bouley, S.; Smith, I.; Balme, M.R.; Orgel, C.; Ramsdale, J.D.; Hauber, E. Grid mapping the Northern Plains of Mars: Using morphotype and distribution of ice-related landforms to understand multiple ice-rich deposits in Utopia Planitia. J. Geophys. Res. Planets 2019, 124, 483–503. [Google Scholar] [CrossRef]
- Sinha, R.K.; Vijayan, S. Geomorphic investigation of craters in Alba Mons, Mars: Implications for Late Amazonian glacial activity in the region. Planet. Space Sci. 2017, 144, 32–48. [Google Scholar] [CrossRef]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary. J. Geophys. Res. Planets 2007, 112, E08004. [Google Scholar] [CrossRef]
- Mangold, N. Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures. J. Geophys. Res. Planets 2003, 108, 8021. [Google Scholar] [CrossRef]
- Souness, C.; Hubbard, B.; Milliken, R.E.; Quincey, D. An inventory and population-scale analysis of martian glacier-like forms. Icarus 2012, 217, 243–255. [Google Scholar] [CrossRef]
- Van Gasselt, S.; Hauber, E.; Neukum, G. Lineated valley fill at the Martian dichotomy boundary: Nature and history of degradation. J. Geophys. Res. Planets 2010, 115, E08003. [Google Scholar] [CrossRef]
- Baker, D.M.; Head, J.W.; Marchant, D.R. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 2010, 207, 186–209. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R.; Dickson, J.L.; Kress, A.M.; Baker, D.M. Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet. Sci. Lett. 2010, 294, 306–320. [Google Scholar] [CrossRef]
- Plaut, J.J.; Picardi, G.; Safaeinili, A.; Ivanov, A.B.; Milkovich, S.M.; Cicchetti, A.; Kofman, W.; Mouginot, J.; Farrell, W.M.; Phillips, R.J. Subsurface radar sounding of the south polar layered deposits of Mars. Science 2007, 316, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Kress, A.M.; Head, J.W. Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice. Geophys. Res. Lett. 2008, 35, L23206. [Google Scholar] [CrossRef]
- Pedersen, G.B.M.; Head, J.W. Evidence of widespread degraded Amazonian-aged ice-rich deposits in the transition between Elysium Rise and Utopia Planitia, Mars: Guidelines for the recognition of degraded ice-rich materials. Planet. Space Sci. 2010, 58, 1953–1970. [Google Scholar] [CrossRef]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Concentric crater fill in Utopia Planitia: History and interaction between glacial “brain terrain” and periglacial mantle processes. Icarus 2009, 202, 462–476. [Google Scholar] [CrossRef]
- Levy, J.; Head, J.; Marchant, D. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. Planets 2009, 114, E01007. [Google Scholar] [CrossRef]
- Forget, F.; Haberle, R.M.; Montmessin, F.; Levrard, B.; Head, J.W. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 2006, 311, 368–371. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Carr, M.H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 1985, 315, 559–561. [Google Scholar] [CrossRef]
- Bina, A. The Periglacial Landscape of Mars: Insight into the ‘Decameter-scale Rimmed Depressions’ in Utopia Planitia. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2018. [Google Scholar]
- Laskar, J.; Correia, A.C.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 2004, 170, 343–364. [Google Scholar] [CrossRef]
- Madeleine, J.-B.; Forget, F.; Head, J.W.; Levrard, B.; Montmessin, F.; Millour, E. Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus 2009, 203, 390–405. [Google Scholar] [CrossRef]
- Levy, J.S.; Fassett, C.I.; Head, J.W.; Schwartz, C.; Watters, J.L. Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. Planets 2014, 119, 2188–2196. [Google Scholar] [CrossRef]
- Morgan, G.A.; Head III, J.W.; Marchant, D.R. Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 2009, 202, 22–38. [Google Scholar] [CrossRef]
- Brough, S.; Hubbard, B.; Hubbard, A. Area and volume of mid-latitude glacier-like forms on Mars. Earth Planet. Sci. Lett. 2019, 507, 10–20. [Google Scholar] [CrossRef]
- Hepburn, A.J.; Holt, T.; Hubbard, B.; Ng, F. Creating HiRISE digital elevation models for Mars using the open-source Ames Stereo Pipeline. Geosci. Instrum. Methods Data Syst. 2019, 8, 293–313. [Google Scholar] [CrossRef]
- Kadish, S.J.; Head, J.W.; Fastook, J.L.; Marchant, D.R. Middle to Late Amazonian tropical mountain glaciers on Mars: The ages of the Tharsis Montes fan-shaped deposits. Planet. Space Sci. 2014, 91, 52–59. [Google Scholar] [CrossRef]
- Shean, D.E.; Head, J.W.; Marchant, D.R. Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit. J. Geophys. Res. Planets 2005, 110, E05001. [Google Scholar] [CrossRef]
- Williams, J.M.; Scuderi, L.A.; Newsom, H.E. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sens. 2022, 14, 1887. [Google Scholar] [CrossRef]
- Butcher, F.E.G. Water Ice at Mid-Latitudes on Mars. In Oxford Research Encyclopedia of Planetary Science; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Chuang, F.C.; Crown, D.A. Surface characteristics and degradational history of debris aprons in the Tempe Terra/Mareotis fossae region of Mars. Icarus 2005, 179, 24–42. [Google Scholar] [CrossRef]
- Dickson, J.L.; Head, J.W.; Fassett, C.I. Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian. Icarus 2012, 219, 723–732. [Google Scholar] [CrossRef]
- Souness, C.; Hubbard, B. Mid-latitude glaciation on Mars. Prog. Phys. Geogr. 2012, 36, 238–261. [Google Scholar] [CrossRef]
- Neukum, G.; Jaumann, R.; Hoffmann, H.; Hauber, E.; Head, J.; Basilevsky, A.; Ivanov, B.; Werner, S.; Van Gasselt, S.; Murray, J. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 2004, 432, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Shean, D.E. Candidate ice-rich material within equatorial craters on Mars. Geophys. Res. Lett. 2010, 37, L24202. [Google Scholar] [CrossRef]
- Mitrofanov, I.; Malakhov, A.; Djachkova, M.; Golovin, D.; Litvak, M.; Mokrousov, M.; Sanin, A.; Svedhem, H.; Zelenyi, L. The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus 2022, 374, 114805. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112, E05S04. [Google Scholar] [CrossRef]
- McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C. Seasonal flows on warm Martian slopes. Science 2011, 333, 740–743. [Google Scholar] [CrossRef]
- Fergason, R.L.; Hare, T.M.; Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex, US Geological Survey. 2018. Available online: https://astrogeology.usgs.gov/search?target=&system=&p=1&accscope=&searchBar= (accessed on 19 July 2023).
- Smith, D.E.; Zuber, M.T.; Frey, H.V.; Garvin, J.B.; Head, J.W.; Muhleman, D.O.; Pettengill, G.H.; Phillips, R.J.; Solomon, S.C.; Zwally, H.J.; et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 2001, 106, 23689–23722. [Google Scholar] [CrossRef]
- Head, J.W.; Nahm, A.L.; Marchant, D.R.; Neukum, G. Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res. Lett. 2006, 33, L08S03. [Google Scholar] [CrossRef]
- Diot, X.; El-Maarry, M.R.; Guallini, L.; Schlunegger, F.; Norton, K.P.; Thomas, N.; Sutton, S.; Grindrod, P.M. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars. J. Geophys. Res. Planets 2015, 120, 2258–2276. [Google Scholar] [CrossRef]
- Adeli, S.; Hauber, E.; Kleinhans, M.; Le Deit, L.; Platz, T.; Fawdon, P.; Jaumann, R. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars. Icarus 2016, 277, 286–299. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets 2012, 117, E05004. [Google Scholar] [CrossRef]
- Putzig, N.E.; Morgan, G.A.; Sizemore, H.G.; Hollibaugh Baker, D.M.; Petersen, E.I.; Pathare, A.V.; Dundas, C.M.; Bramson, A.M.; Courville, S.W.; Perry, M.R.; et al. Ice Resource Mapping on Mars. In Handbook of Space Resources; Springer: Cham, Switzerland, 2023; pp. 583–616. [Google Scholar]
- Garvin, J.; Sakimoto, S.; Frawley, J. Craters on Mars: Global geometric properties from gridded MOLA topography. In Proceedings of the Sixth International Conference on Mars, Pasadena, CA, USA, 20–25 July 2003. [Google Scholar]
- Hartmann, W.; Daubar, I. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 2017, 52, 493–510. [Google Scholar] [CrossRef]
- Hartmann, W.K. Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus 2005, 174, 294–320. [Google Scholar] [CrossRef]
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Michael, G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zhuo, M.; Zhang, X.R. Automatic Crater Detection Tool for Moon, Mars, and Mercury [DS/OL]; Science Data Bank: Beijing, China, 2024. [Google Scholar]
- Hartmann, W.; Daubar, I. Utilizing Small Impact Craters to Clarify the History of Martian Surfaces. In Proceedings of the 79th Annual Meeting of the Meteoritical Society, Berkeley, CA, USA, 27–31 July 2016; p. 6435. [Google Scholar]
- Hauber, E.; van Gasselt, S.; Chapman, M.G.; Neukum, G. Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: Indicators of the Martian paleoclimate. J. Geophys. Res. Planets 2008, 113, E02007. [Google Scholar] [CrossRef]
- Levy, J.S.; Head, J.W. Evidence for remnants of ancient ice-rich deposits: Mangala Valles outflow channel, Mars. Terra Nova 2005, 17, 503–509. [Google Scholar] [CrossRef]
- Guallini, L. Esker-Like Ring-Shaped Ridges in Peta, Novara and Two Other Unnamed Craters on Mars: Evidences of Ancient Glaciers? Space Sci. Rev. 2017, 110, 85–130. [Google Scholar]
- Parker, T. Sinuous Ridges in Peta Crater, Mars. In Proceedings of the 42nd Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011; p. 2776. [Google Scholar]
- Levy, J.S.; Goudge, T.A.; Head, J.W.; Fassett, C.I. Candidate volcanic and impact-induced ice depressions on Mars. Icarus 2017, 285, 185–194. [Google Scholar] [CrossRef]
- Baliyan, S.; Hayne, P.; Vijayan, S. Isil Crater on Mars: Insights into Volcanic and Glacio-Fluivial Processes. LPI Contrib. 2024, 3007, 3384. [Google Scholar]
- Zhang, M.; Zhao, J.; Xiao, L.; Xu, Y.; Bugiolacchi, R.; Wang, J. Fan-shaped deposits in the northern Hellas region, Mars: Implications for the evolution of water reservoir and climate. Icarus 2023, 395, 115470. [Google Scholar] [CrossRef]
- Galofre, A.G.; Howard, A.D.; Morgan, A.M.; Wilson, S.A.; Moore, J.M. Glacial sculpting of a martian cratered landscape on the northeastern flank of the Hellas basin. Icarus 2024, 420, 116211. [Google Scholar] [CrossRef]
- Wilson, S.A.; Howard, A.D.; Moore, J.M.; Grant, J.A. Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. Planets 2007, 112, E08009. [Google Scholar] [CrossRef]
- Moore, J.M. Nature of the mantling deposit in the heavily cratered terrain of northeastern Arabia, Mars. J. Geophys. Res. Solid Earth 1990, 95, 14279–14289. [Google Scholar] [CrossRef]
- Squyres, S.W.; Carr, M.H. Geomorphic evidence for the distribution of ground ice on Mars. Science 1986, 231, 249–252. [Google Scholar] [CrossRef]
- Fassett, C.I.; Levy, J.S.; Dickson, J.L.; Head, J.W. An extended period of episodic northern mid-latitude glaciation on Mars during the Middle to Late Amazonian: Implications for long-term obliquity history. Geology 2014, 42, 763–766. [Google Scholar] [CrossRef]
- Fastook, J.L.; Head, J.W. Amazonian mid-to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration. Planet. Space Sci. 2014, 91, 60–76. [Google Scholar] [CrossRef]
- Michael, G. Planetary surface dating from crater size–frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting. Icarus 2013, 226, 885–890. [Google Scholar] [CrossRef]
- Vincendon, M.; Forget, F.; Mustard, J. Water ice at low to midlatitudes on Mars. J. Geophys. Res. Planets 2010, 115, E10001. [Google Scholar] [CrossRef]
- Levrard, B.; Forget, F.; Montmessin, F.; Laskar, J. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 2004, 431, 1072–1075. [Google Scholar] [CrossRef]
- Montmessin, F.; Bertaux, J.-L.; Quémerais, E.; Korablev, O.; Rannou, P.; Forget, F.; Perrier, S.; Fussen, D.; Lebonnois, S.; Rébérac, A. Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus 2006, 183, 403–410. [Google Scholar] [CrossRef]
- Mischna, M.A.; Richardson, M.I.; Wilson, R.J.; McCleese, D.J. On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. J. Geophys. Res. Planets 2003, 108, 5062. [Google Scholar] [CrossRef]
- Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent ice ages on Mars. Nature 2003, 426, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.C.; Chuang, F.C.; Smith, I.B.; Crown, D.A. Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes. Icarus 2021, 355, 114170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhao, Y.-Y.S.; Xu, X.; Wang, Y. Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars. Remote Sens. 2025, 17, 1939. https://doi.org/10.3390/rs17111939
Zhou Y, Zhao Y-YS, Xu X, Wang Y. Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars. Remote Sensing. 2025; 17(11):1939. https://doi.org/10.3390/rs17111939
Chicago/Turabian StyleZhou, Yan, Yu-Yan Sara Zhao, Xiaoting Xu, and Yiran Wang. 2025. "Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars" Remote Sensing 17, no. 11: 1939. https://doi.org/10.3390/rs17111939
APA StyleZhou, Y., Zhao, Y.-Y. S., Xu, X., & Wang, Y. (2025). Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars. Remote Sensing, 17(11), 1939. https://doi.org/10.3390/rs17111939