Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change
Abstract
:1. Introduction
1.1. Heatwaves
1.2. Extreme Precipitation Events
1.3. Organization of the Item
2. Materials and Methods
2.1. Data
2.2. The Approach According to Different Case Studies
2.3. Evolution of the Frequency of Heatwaves and EPEs on a Global Scale
3. Results
3.1. Heatwaves
3.1.1. Heatwave in China (August 2022)
3.1.2. Heatwave in Europe (July–August 2015)
3.1.3. Heatwave in Europe and Indo-Pakistan (June 2019)
3.1.4. Heatwave in Japan (June–July 2022)
3.1.5. Heatwaves in North America
- Heatwave in the middle plains of Canada and the USA (July 1980)
- Heatwave in Western North America (March 2012)
3.1.6. Heatwave in Australia
- Heatwave in Australia (January 2009)
- Heatwave in Australia (February 2017)
3.1.7. Heatwave in South Africa (January 1993)
3.2. EPEs Occurring in Boreal/Austral Summer
3.2.1. Floods in Asia
- Flood in Japan (July 2012)
- Floods in China (July 2021).
3.2.2. Flood in Europe (May–June 2016)
3.2.3. Floods in North America
- Flood in Alberta, Canada (June 2005)
- Flood in Louisiana, USA (August 2005)
3.2.4. Flood in Mozambique (February 2007)
3.2.5. Flood in Victoria, Australia (January 2011)
3.3. EPEs Occurring in Boreal/Austral Winter
3.3.1. Flood in Kentucky, USA (February 2004)
3.3.2. Flood in Argentina (August 2015)
3.3.3. A Mediterranean Episode (November 2013)
4. Discussion
4.1. The Various MA Patterns Capable of Producing a Heatwave
4.2. The Various MA Patterns Capable of Producing an EPE
4.3. Projected Amplitude of Variation of the Wind Speed at the Tropopause, the Geopotential Height, the Ground Air Temperature, and the Precipitation Rate
4.3.1. Projected Amplitude of the Variations in Wind Speed at 250 mb
- The coldest half-year referring to extratropical latitudes
- The warmest half-year referring to extratropical latitudes
4.3.2. Projected Amplitude of the Variations in the Geopotential Height at 500 mb
- The coldest half-year referring to extratropical latitudes
- The warmest half-year referring to extratropical latitudes
4.3.3. Projected Amplitude of the Variations in Ground Air Temperature
- The coldest half-year referring to extratropical latitudes
- The warmest half-year referring to extratropical latitudes
4.3.4. Projected Amplitude of the Variations in Precipitation Rate
- The coldest half-year referring to extratropical latitudes
- The warmest half-year referring to extratropical latitudes
4.4. Increase in the Amplitude of Ground Air Temperature Variation in Certain Period Ranges and Climate Change
4.4.1. Coldest Half-Year Referring to Extratropical Latitudes
4.4.2. Warmest Half-Year Referring to Extratropical Latitudes
4.4.3. The Link with Climate Change
4.5. Increase in the Amplitude of Precipitation Rate Variation and Climate Change
5. Conclusions
- The case studies clearly demonstrate that heatwaves only form under specific patterns of the MAs at the tropopause. This may result in the formation of a quasi-resonant dual cyclone-anticyclone system when a phase inversion of the MAs occurs, as evidenced in six case studies. Another process highlighted in three case studies involves surface turbulent fluxes in response to the emergence of a warm MA above the impacted region when it is located near an ocean.
- Apart from a very exceptional transient reorganization of polar, Ferrel, and Hadley cells at high altitudes that anticipated Hurricane Katrina, the exceptional EPEs mainly occur, again, concomitantly with the formation of a dual cyclone-anticyclone system above an ocean, which favors moisture-laden winds. Regarding the tropical-like Mediterranean cyclones, they generally occur at the end of autumn when the semi-closed Mediterranean Sea is warm. They result from the cold subtropical MA over western and central Europe, which is why this pattern is called a “cold drop”.
- The amplitudes of variation, projected over the next two decades, of the wind speed at the tropopause, the geopotential height, the air temperature at ground level, or the precipitation rate highlight a great disparity between the different regions of the globe. They show a more or less significant increase or decrease in the intervals of periods 17.1–34.2 days and 8.56–17.1 days. A strong increase/decrease indicates that the amplitude of variation has reached a minimum/maximum during the observation period (01/1979–03/2024).
- Whether heat waves or extreme precipitation, the increase in their amplitude and frequency in impacted regions is attributed to the latitudinal extension of polar vortices, a consequence of the change in the Earth’s albedo at high latitudes. This has the effect of strengthening tropospheric polar vortices, increasing the efficiency of the resonant forcing of Rossby waves from solar declination.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United States Environmental Protection Agency (EPA). Climate Change Indicators: Heatwaves. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-heat-waves (accessed on 24 January 2024).
- Christidis, N.; Stott, P.A. Change in the Odds of Warm Years and Seasons Due to Anthropogenic Influence on the Climate. J. Clim. 2014, 27, 2607–2621. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 2015, 5, 46. [Google Scholar] [CrossRef]
- Kam, J.; Knutson, T.R.; Zeng, F.; Wittenberg, A.T. Multimodel Assessment of Anthropogenic Influence on Record Global and Regional Warmth During 2015. Bull. Am. Meteorol. Soc. 2016, 97, S4–S8. [Google Scholar] [CrossRef]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A Review of Recent Advances in Research on Extreme Heat Events. Curr. Clim. Change Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- Imada, Y.; Shiogama, H.; Takahashi, C.; Watanabe, M.; Mori, M.; Kamae, Y.; Shuhei, M. Climate Change Increased the Likelihood of the 2016 Heat Extremes in Asia. Bull. Am. Meteorol. Soc. 2018, 99, S97–S101. [Google Scholar] [CrossRef]
- Vogel, M.M.; Zscheischler, J.; Wartenburger, R.; Dee, D.; Seneviratne, S.I. Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced Climate Change. Earth’s Future 2019, 7, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Ciavarella, A.; Cotterill, D.; Stott, P.; Kew, S.; Philip, S.; Oldenborgh, G.J.V.; Skålevåg, A.; Lorenz, P.; Robin, Y.; Otto, F.; et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 2021, 166, 9. [Google Scholar] [CrossRef] [PubMed]
- Yiou, P.; Cattiaux, J.; Faranda, D.; Kadygrov, N.; Jézéquel, A.; Naveau, P.; Ribes, A.; Robin, Y.; Thao, S.; van Oldenborgh, G.J.; et al. Analyses of the Northern European Summer Heatwave of 2018. Bull. Am. Meteorol. Soc. 2020, 101, S35–S40. [Google Scholar] [CrossRef]
- Vautard, R.; van Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; van Oldenborgh, G.J.; Otto, F.E.L.; Ribes, A.; Robin, Y.; et al. Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 2020, 15, 094077. [Google Scholar] [CrossRef]
- Coumou, D.; Lehmann, J.; Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 2015, 348, 324–327. [Google Scholar] [CrossRef]
- Petoukhov, V.; Rahmstorf, S.; Petri, S.; Schellnhuber, H.J. Quasi-resonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA 2013, 110, 5336–5341. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Blackport, R. Is sea-ice-driven Eurasian cooling too weak in models? Nat. Clim. Change 2019, 9, 934–936. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Clim. Change 2020, 10, 1065–1066. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 2020, 6, eaay2880. [Google Scholar] [CrossRef]
- White, R.H.; Kornhuber, K.; Martius, O.; Wirth, V. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bull. Am. Meteorol. Soc. 2022, 103, E923–E935. [Google Scholar] [CrossRef]
- USGCRP (U.S. Global Change Research Program). Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12256. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mukherjee, S.; Mishra, A.K.; Mann, M.E.; Williams, A.P. Climate change will accelerate the high-end risk of compound drought and heatwave events. Proc. Natl. Acad. Sci. USA 2023, 120, e2219825120. [Google Scholar] [CrossRef] [PubMed]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef]
- Lojko, A.; Payne, A.; Jablonowski, C. The Remote Role of North-American Mesoscale Convective Systems on the Forecast of a Rossby Wave Packet: A Multi-Model Ensemble Case-Study. J. Geophys. Res. Atmos. 2022, 127, 24. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Resonant Waves Play an Important Role in the Increasing Heatwaves in Northern Hemisphere Mid-Latitudes Under Global Warming. Geophys. Res. Lett. 2023, 50, 14. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J. Enhanced Influence of Tropical Pacific Sea Surface Temperature Anomalies on Spring Extreme Heat Events over Mid-High Latitude Eurasia. J. Geophys. Res. Atmos. 2023, 128, 12. [Google Scholar] [CrossRef]
- Huang, H.; Winter, J.M.; Osterberg, E.C. Mechanisms of abrupt extreme precipitation change over the northeastern United States. J. Geophys. Res. Atmos. 2018, 123, 7179–7192. [Google Scholar] [CrossRef]
- Frei, A.; Kunkel, K.E.; Matonse, A. The seasonal nature of extreme hydrological events in the northeastern United States. J. Hydrometeorol. 2015, 16, 2065–2085. [Google Scholar] [CrossRef]
- Huang, H.; Winter, J.M.; Osterberg, E.C.; Horton, R.M.; Beckage, B. Total and extreme precipitation changes over the northeastern United States. J. Hydrometeorol. 2017, 18, 1783–1798. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N.; et al. Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Am. Meteorol. Soc. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M.; Qian, J.-H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of daily precipitation and EPEs in the northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Kristovich, D.A.R.; Gleason, B.; Stoecker, L.; Smith, R. Meteorological causes of the secular variations in observed EPEs for the conterminous United States. J. Hydrometeorol. 2012, 13, 1131–1141. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Wolter, K.; Cheng, L. Characterizing recent trends in U.S. heavy precipitation. J. Clim. 2016, 29, 2313–2332. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, T.; Yang, Z.; Lin, D.; Wright, J.S.; Wang, B.; He, X. On the formation mechanism for wintertime EPEs over the southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 12692–12714. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W.; He, X.; Wang, Y.; Qiu, T.; Wright, J.S.; Wang, B. Synoptic conditions and moisture sources for extreme snowfall events over East China. J. Geophys. Res. Atmos. 2019, 124, 601–623. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Z.; He, X.; Lin, D.; Wang, B.; Wright, J.S.; Chen, R.; Ma, W.; Li, F. A possible mechanism for the occurrence of wintertime EPEs over south China. Clim. Dyn. 2018, 52, 2367–2384. [Google Scholar] [CrossRef]
- Zong, H.; Bueh, C.; Ji, L. Wintertime EPE over southern China and its typical circulation features. Chin. Sci. Bull. 2014, 59, 1036–1044. [Google Scholar] [CrossRef]
- Lou, M.; Li, C.; Hao, S.; Liu, J. Variations of winter precipitation over southeastern China in association with the North Atlantic Oscillation. J. Meteorol. Res. 2017, 31, 476. [Google Scholar] [CrossRef]
- Ding, F.; Li, C. Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China. J. Geophys. Res. Atmos. 2017, 122, 7385–7400. [Google Scholar] [CrossRef]
- Barton, Y.; Rivoire, P.; Koh, J.; Ali, M.S.; Kopp, J.; Martius, O. On the temporal clustering of European EPEs and its relationship to persistent and transient large-scale atmospheric drivers. Weather Clim. Extrem. 2022, 38, 100518. [Google Scholar] [CrossRef]
- Röthlisberger, M.; Frossard, L.; Bosart, L.F.; Keyser, D.; Martius, O. Recurrent synoptic-scale Rossby wave patterns and their effect on the persistence of cold and hot spells. J. Clim. 2019, 32, 3207–3226. [Google Scholar] [CrossRef]
- Ali, S.M.; Martius, O.; Röthlisberger, M. Recurrent rossby wave packets modulate the persistence of dry and wet spells across the globe. Geophys. Res. Lett. 2021, 48, e2020GL091452. [Google Scholar] [CrossRef]
- Kornhuber, K.; Messori, G. Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes. Bull. Am. Meteorol. Soc. 2023, 104, E1694–E1708. [Google Scholar] [CrossRef]
- Barton, Y.; Giannakaki, P.; Von Waldow, H.; Chevalier, C.; Pfahl, S.; Martius, O. Clustering of regional-scale EPEs in southern Switzerland. Mon. Weather Rev. 2016, 144, 347–369. [Google Scholar] [CrossRef]
- Lenggenhager, S.; Martius, O. Atmospheric blocks modulate the odds of heavy precipitation events in Europe. Clim. Dyn. 2019, 53, 4155–4171. [Google Scholar] [CrossRef]
- Tuel, A.; Martius, O. Subseasonal temporal clustering of extreme precipitation in the northern hemisphere: Regionalization and physical drivers. J. Clim. 2022, 35, 3537–3555. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Orsi, A.J.; Kawamura, K.; Masson-Delmotte, V.; Fettweis, X.; Box, J.E.; Dahl-Jensen, D.; Clow, G.D.; Landais, A.; Severinghaus, J.P. The recent warming trend in North Greenland. Geophys. Res. Lett. 2017, 44, 6235–6243. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef]
- Barnes, E.A.; Screen, J.A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Clim. Change 2015, 6, 277–286. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; Jones, J. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Cohen, J.; Pfeiffer, K.; Francis, J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun. 2018, 9, 869. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 14005. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Events, Precipitation, and Heat Waves—Part 1: Theory. Atmosphere 2024, 15, 608. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Pinault, J.-L. Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events. Math. Comput. Appl. 2022, 27, 50. [Google Scholar] [CrossRef]
- Tropical Cyclone Yasi, Queensland, Australia. 2011. Available online: https://knowledge.aidr.org.au/resources/cyclone-cyclone-yasi-queensland-2011/ (accessed on 13 October 2024).
- Torrence, C.; Compo, G. A Practical Guide to Wavelet Analysis; American Meteorological Society: Boston, MA, USA, 1998. [Google Scholar]
- Zhou, B.; Hu, S.; Peng, J.; Li, D.; Ma, L.; Zheng, Z.; Feng, G. The extreme heatwave in China in August 2022 related to extreme northward movement of the eastern center of SAH. Atmos. Res. 2023, 293, 106918. [Google Scholar] [CrossRef]
- Muthers, S.; Gudrun Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heatwaves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef]
- Chauhan, C. India Staring at Longest Heatwave in 3 Decades. MSN. 12 June 2019. Available online: https://www.hindustantimes.com/india-news/india-staring-at-longest-heatwave-in-3-decades/story-zM1sSWQ3p63smxTErFVClJ.html (accessed on 24 December 2023).
- Xu, P.; Wang, L.; Liu, Y.; Chen, W.; Huang, P. The record-breaking heatwave of June 2019 in Central Europe. Atmos. Sci. Lett. 2020, 21, e964. [Google Scholar] [CrossRef]
- Woodcock, J. Weather Tracker: Japan Swelters as ‘Heat Dome’ Pushes Up Temperatures. The Guardian. 27 June 2022. Available online: https://www.theguardian.com/weather/2022/jun/27/japan-heatwave-heat-dome-record-temperatures#:~:text=There%20were%20scorching%20conditions%20across,39.8C%20set%20in%202011 (accessed on 24 December 2023).
- Ross, T.; Lott, N. A Climatology of 1980–2003 Extreme Weather and Climate Events; Technical Report 2003-01; National Climatic Data Center, National Oceanic and Atmospheric Administration (NOAA). Available online: https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi2kbGmnI2JAxXWBfsDHUR4AhsQFnoECBYQAQ&url=https%3A%2F%2Frepository.library.noaa.gov%2Fview%2Fnoaa%2F13831%2Fnoaa_13831_DS1.pdf&usg=AOvVaw0b9XoZsvo9RwKsbZ-j5RWM&opi=89978449 (accessed on 13 October 2024).
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA). Meteorological March Madness. 2 April 2012. Available online: https://psl.noaa.gov/csi/events/2012/marchheatwave/anticipation.html (accessed on 1 October 2024).
- Australian Disaster Resilience, South Australia & Victoria, January 2009. Available online: https://knowledge.aidr.org.au/resources/health-heatwave-south-eastern-australia-2009/ (accessed on 24 December 2023).
- World Weather Attribution. Extreme Heat in Southeast Australia, February 2017. Available online: https://www.worldweatherattribution.org/extreme-heat-australia-february-2017/ (accessed on 24 December 2023).
- Climate Council. 2017: Another Record-Breaking Year for Heat and Extreme Event. Available online: https://www.climatecouncil.org.au/uploads/8e9c2b91ce3c3ebb7d97e403a6fdf38e.pdf (accessed on 24 December 2023).
- The Outlier. Extreme Temperatures in South Africa. Available online: https://www.theoutlier.co.za/news/2023-07-25/83662-/extreme-temperatures-in-south-africa (accessed on 24 December 2023).
- Pinault, J.-L. Extreme Heavy Rainfall Events at Mid-Latitudes as the Outcome of a Slow Quasi-Resonant Ocean—Atmosphere Interaction: 10 Case Studies. J. Mar. Sci. Eng. 2023, 11, 359. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Yamashiki, Y.; Huang, W. Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012. Nat. Hazards 2014, 73, 1255–1267. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Xie, J.; Lee, J.-Y.; Zhu, Z.; Li, Y.; Chen, B.; Zhang, S. Multiscale interactions driving the devastating floods in Henan Province, China during July 2021. Weather Clim. Extrem. 2023, 39, 100541. [Google Scholar] [CrossRef]
- Rainstorms in France and Germany, May 2016. Available online: https://www.worldweatherattribution.org/european-rainstorms-may-2016/ (accessed on 24 December 2023).
- Ou, A.; Reuter, G. Meteorological Analysis of the Storms that Caused Severe Flooding in Alberta during June 2005. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 11–15 December 2006. [Google Scholar]
- Rykhus, R. Satellite Imagery Maps Hurricane Katrina Induced Flooding and Oil Slicks. Eos 2005, 86, 381–382. [Google Scholar] [CrossRef]
- WHO. Mozambique Cyclone and Floods Report #2–22 February 2007. Available online: https://reliefweb.int/report/mozambique/mozambique-cyclone-and-floods-report-2-22-feb-2007 (accessed on 24 December 2023).
- Nakamura, J.; Lall, U.; Kushnir, Y.; Robertson, A.W.; Seager, R. Dynamical Structure of Extreme Floods in the U.S. Midwest and the United Kingdom. J. Hydrometeorol. 2013, 14, 485–504. [Google Scholar] [CrossRef]
- Argentina: Floods-Aug 2015. Available online: https://reliefweb.int/disaster/fl-2015-000110-arg (accessed on 24 December 2023).
- Borga, M.; Marchi, L.; Nikolopoulos, E.I.; Marra, F.; Crema, S.; Niedda, M.; Pirastru, M.; Amponsah, W. The flash-flood of November 2013 in NE Sardinia (Italy): Post-event documentation and hydrological modeling. In Proceedings of the 8th International HyMeX Workshop, Valetta, Malta, 15–18 September 2014. [Google Scholar]
- Pinault, J.-L. Western Mediterranean Precipitation Extremes, the Result of Quasi-Resonant Sea–Atmosphere Feedbacks. Remote Sens. 2023, 15, 2711. [Google Scholar] [CrossRef]
- Pinault, J.-L. Weakening of the Geostrophic Component of the Gulf Stream: A Positive Feedback Loop on the Melting of the Arctic Ice Sheet. J. Mar. Sci. Eng. 2023, 11, 1689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinault, J.-L. Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change. Atmosphere 2024, 15, 1226. https://doi.org/10.3390/atmos15101226
Pinault J-L. Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change. Atmosphere. 2024; 15(10):1226. https://doi.org/10.3390/atmos15101226
Chicago/Turabian StylePinault, Jean-Louis. 2024. "Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change" Atmosphere 15, no. 10: 1226. https://doi.org/10.3390/atmos15101226
APA StylePinault, J. -L. (2024). Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change. Atmosphere, 15(10), 1226. https://doi.org/10.3390/atmos15101226