Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application
Abstract
:1. Introduction and Literature Review
2. Research Framework and Hypotheses
2.1. Construction of the Research Framework
2.2. Direct Impact Mechanism of AI Development Level on Carbon Emission Intensity
2.3. Indirect Impact Mechanism of AI Development Level on Carbon Emission Intensity
- Suppression of carbon emission intensity through technological innovation improvement
- 2.
- Suppression of carbon emission intensity through industrial structure upgrading
2.4. Spatial Spillover Effects of AI Development Level on Carbon Emission Intensity
3. Empirical Model Design
4. Measurement Methods for Key Variables
4.1. Measurement of Carbon Emission Intensity
4.2. Measurement of AI Development Level
5. Empirical Analysis Results
5.1. Data Source and Variable Descriptive Statistics
5.2. Spatial Correlation Test
5.3. Test Results of the Spatial Durbin Panel Model
5.4. Fixed Effects Test Results for Different Combinations of Variables
5.5. Results of Mediation Effect Test
6. Discussion of Research Results
6.1. Discussion on the Robustness Test Results
6.2. Discussion on Heterogeneity Testing
6.3. Discussion on Endogeneity Testing
7. Conclusions and Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIDL | Artificial Intelligence Development Level |
ICE | Carbon Emission Intensity |
References
- Sun, W.; Huang, C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency. J. Clean. Prod. 2022, 338, 130414. [Google Scholar] [CrossRef]
- Lo, K.; Broto, V.C. Co-Benefits, Contradictions, and Multi-Level Governance of Low-Carbon Experimentation: Leveraging Solar Energy for Sustainable Development in China. Glob. Environ. Change 2019, 59, 101993. [Google Scholar] [CrossRef]
- Sheng, P.; Lu, D. Low-carbon development and carbon reduction in China. Clim. Dev. 2015, 8, 472–479. [Google Scholar] [CrossRef]
- Kong, H.; Shi, L.; Da, D.; Li, Z.; Tang, D.; Xing, W. Simulation of China’s Carbon Emission based on Influencing Factors. Energies 2022, 15, 3272. [Google Scholar] [CrossRef]
- Shao, S.; Chen, Y.; Li, K.; Yang, L.L. Market Segmentation and Urban CO2 Emissions in China: Evidence from the Yangtze River Delta Region. J. Environ. Manag. 2019, 248, 109324. [Google Scholar] [CrossRef]
- He, A.P.; Xue, Q.H.; Zhao, R.J.; Wang, D.P. Renewable Energy Technological Innovation, Market Forces, and Carbon Emission Efficiency. Sci. Total Environ. 2021, 796, 148908. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, W.; Qin, G.; Yang, Y. Coordinated carbon reduction mechanism and policy design to achieve carbon peak and neutrality goals in the Yangtze River Delta. Sustain. Energy Technol. Assess. 2023, 56, 103113. [Google Scholar] [CrossRef]
- Shao, J.; Wang, L. The role of different paths of technological progress in improving China’s energy efficiency. Energy Environ. 2022, 35, 2008–2030. [Google Scholar] [CrossRef]
- Yang, Y.; Su, X. Spatial correlation network structure of carbon emission reduction capacity on urban agglomerations and its driving factors: A perspective of Sustainable Development Goals. Sustain. Cities Soc. 2024, 113, 105646. [Google Scholar] [CrossRef]
- Guo, X.D.; Xiao, B.W.; Song, L.F. Emission reduction and energy-intensity enhancement: The expected and unexpected consequences of China’s coal consumption constraint policy. J. Clean. Prod. 2020, 271, 122691. [Google Scholar] [CrossRef]
- Li, C.; Xia, W.; Wang, L. Synergies of green policies and their pollution reduction effects: Quantitative analysis of China’s green policy texts. J. Clean. Prod. 2023, 412, 137360. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Zhang, X.; Zhu, J.; Zheng, L. How does industrial convergence affect the energy efficiency of manufacturing in newly industrialized countries? Fresh evidence from China. J. Clean. Prod. 2021, 316, 128316. [Google Scholar] [CrossRef]
- Lv, H.; Shi, B.; Li, N.; Kang, R. Intelligent manufacturing and carbon emissions reduction: Evidence from the use of industrial robots in China. Int. J. Environ. Res. Public Health 2022, 19, 15538. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wei, X.; Zeng, C. Towards low-carbon development: The role of industrial robots in decarbonization in Chinese cities. J. Environ. Manag. 2023, 330, 117216. [Google Scholar] [CrossRef]
- Yan, P.; Abdulkadir, A.; Luley, P.P.; Rosenthal, M.; Schatte, G.A.; Grewe, B.F.; Stadelmann, T. A comprehensive survey of deep transfer learning for anomaly detection in industrial time series: Methods, applications, and directions. IEEE Access 2024, 12, 3768–3789. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Liu, X.; Li, H.; Ma, M.; Liu, P.; You, L. Residual squeeze-and-excitation convolutional auto-encoder for fault detection and diagnosis in complex industrial processes. Eng. Appl. Artif. Intell. 2024, 136, 108872. [Google Scholar] [CrossRef]
- Ning, J.; Pang, S.; Arifin, Z.; Zhang, Y.; Epa, U.P.K.; Qu, M.; Zhao, J.; Zhen, F.; Chowdhury, A.; Guo, R.; et al. The diversity of artificial intelligence applications in marine pollution: A systematic literature review. J. Mar. Sci. Eng. 2024, 12, 1181. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, J.; Du, L.; Padwal, H.H.; Vadivel, T. Intelligent comprehensive evaluation system using artificial intelligence for environmental evaluation. Environ. Impact Assess. Rev. 2021, 86, 106495. [Google Scholar] [CrossRef]
- Zhang, J. Optimization of the environmental protection tax system design based on artificial intelligence. Front. Environ. Sci. 2023, 10, 1076158. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Liu, Z.; Ma, X. Artificial intelligence and carbon emissions inequality: Evidence from industrial robot application. J. Clean. Prod. 2024, 438, 140817. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Q. Carbon emission performance of robot application: Influencing mechanisms and heterogeneity characteristics. Discret. Dyn. Nat. Soc. 2023, 2023, 4380575. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, S. Artificial intelligence and carbon emissions in manufacturing firms: The moderating role of green innovation. Processes 2023, 11, 2705. [Google Scholar] [CrossRef]
- Ding, C.; Ke, J.; Levine, M.; Zhou, N. Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale. Nat. Commun. 2024, 15, 5916. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y. Environmental regulation and green innovation: Evidence from China’s carbon emissions trading policy. Financ. Res. Lett. 2022, 48, 103051. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Liu, C. Robot adoption and employment adjustment: Firm-level evidence from China. China Econ. Rev. 2024, 84, 102137. [Google Scholar] [CrossRef]
- Ahmad, U.; Raza Naqvi, S.; Ali, I.; Saleem, F.; Taqi Mehran, M.; Sikandar, U.; Juchelková, D. Biolubricant production from castor oil using iron oxide nanoparticles as an additive: Experimental, modelling and tribological assessment. Fuel 2022, 324, 124565. [Google Scholar] [CrossRef]
- Huang, G.; He, L.Y.; Lin, X. Robot adoption and energy performance: Evidence from Chinese industrial firms. Energy Econ. 2022, 107, 105837. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Qian, Y.; Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan. Sci. 2022, 83, 101002. [Google Scholar] [CrossRef]
- Luccioni, A.; Lacoste, A.; Schmidt, V. Estimating Carbon Emissions of Artificial Intelligence. IEEE Technol. Soc. Mag. 2020, 39, 48–51. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, U.; Mahapatra, S.S. Prediction of cost and emission from Indian coal-fired power plants with CO2 capture and storage using artificial intelligence techniques. Front. Energy 2019, 13, 149–162. [Google Scholar] [CrossRef]
- Wu, L.; Sun, L.; Qi, P.; Ren, X.; Sun, X. Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions. Resour. Policy 2021, 74, 102329. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K.; Jiang, H. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Energy Econ. 2022, 105, 105704. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Z.; Liang, Y.; Zhao, W.; Liu, D.; Chen, Z. The impact of industrial structure upgrading and digital economy integration on China’s urban carbon emissions. Front. Ecol. Evol. 2023, 11, 1231855. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Yin, S.; Zhou, Y. Threshold effect of technological innovation on carbon emission intensity based on multi-source heterogeneous data. Sci. Rep. 2023, 13, 19054. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C. Regional disparity, spatial spillover effects of urbanisation and carbon emissions in China. J. Clean. Prod. 2019, 241, 118226. [Google Scholar] [CrossRef]
- Paul, D.; Dieudonné, T.; Guillaume, C. Method and evaluations of the effective gain of artificial intelligence models for reducing CO2 emissions. J. Environ. Manag. 2023, 331, 117261. [Google Scholar] [CrossRef]
- Marvin, M. A Selected Descriptor-Indexed Bibliography to the Literature on Artificial Intelligence. IRE Trans. Hum. Factors Electron. 1961, HFE-2, 39–55. [Google Scholar]
- House, R.W.; Rado, T. An approach to artificial intelligence. IEEE Trans. Commun. Electron. 1964, 83, 111–116. [Google Scholar] [CrossRef]
- Kezban, A.; Kubra, T.; Cagri, Q.; Boran, S.; Kirsal, E.Y. Design and simulation of global model for carbon emission reduction using IoT and artificial intelligence. Procedia Comput. Sci. 2022, 204, 627–634. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
Fuel Name | Coals | Coking Coal | Crude Oil | Feedstock Oil | Diesel | Gasoline | Diesel Fuel | Petroleum |
---|---|---|---|---|---|---|---|---|
0.7143 | 0.9714 | 1.4286 | 1.4286 | 1.4714 | 1.4714 | 1.4571 | 1.3300 | |
0.7559 | 0.8550 | 0.5538 | 0.5857 | 0.5921 | 0.5714 | 0.6185 | 0.4483 |
Categories | Variables | Variable Names | Sample Size | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|---|
Explanatory Variable | ICE | Carbon emission intensity | 3575 | 3.165 | 2.607 | 0.084 | 33.190 |
Explained Variable | AIDL | AI development level | 3575 | 1.824 | 0.901 | 0.000 | 3.994 |
Mediating Variables | TII | Technological innovation improvement | 3575 | 2.29 | 8.26 | 0.002 | 131 |
ISU | Industrial Structure Upgrading | 3575 | 82.334 | 41.454 | 8.612 | 451.278 | |
Control Variables | IEPG | Environmental pollution governance investment | 3575 | 0.017 | 0.026 | 0.000 | 0.347 |
IVAP | Per capita industrial added value | 3575 | 10.273 | 7.902 | 1.554 | 22.690 | |
UL | Urbanization Level | 3575 | 34.251 | 22.808 | 3.2041 | 100 | |
ERI | Environmental regulation intensity | 3575 | 0.008 | 0.012 | 0.003 | 0.160 | |
IECI | Industrial energy consumption intensity | 3575 | 3.034 | 2.85 | 1.742 | 6.155 |
Year | ICE | AIDL | ||||
---|---|---|---|---|---|---|
Moran’s I | Z Value | p Value | Moran’s I | Z Value | p Value | |
2007 | 0.333 | 8.877 | 0.002 | 0.313 | 5.545 | 0.002 |
2008 | 0.374 | 8.814 | 0.001 | 0.395 | 5.851 | 0.000 |
2009 | 0.401 | 9.152 | 0.000 | 0.352 | 5.642 | 0.000 |
2010 | 0.425 | 9.136 | 0.000 | 0.352 | 5.642 | 0.000 |
2011 | 0.413 | 9.844 | 0.004 | 0.344 | 5.631 | 0.001 |
2012 | 0.427 | 9.501 | 0.002 | 0.320 | 5.511 | 0.002 |
2013 | 0.448 | 9.522 | 0.003 | 0.309 | 5.483 | 0.001 |
2014 | 0.404 | 9.211 | 0.000 | 0.333 | 5.637 | 0.000 |
2015 | 0.429 | 9.674 | 0.000 | 0.338 | 5.635 | 0.000 |
2016 | 0.435 | 9.771 | 0.000 | 0.346 | 5.644 | 0.002 |
2017 | 0.411 | 9.248 | 0.000 | 0.358 | 5.655 | 0.000 |
2018 | 0.420 | 9.354 | 0.002 | 0.377 | 5.748 | 0.000 |
2019 | 0.409 | 9.265 | 0.001 | 0.361 | 5.680 | 0.000 |
Method | Test Statistics | p Value | |
---|---|---|---|
Lagrange Multiplier test | LM (error) test | 167.256 | 0.001 |
Robust LM(error)test | 159.316 | 0.002 | |
LM (lag) test | 19.315 | 0.006 | |
Robust LM (lag) test | 11.516 | 0.007 | |
Likelihood Ratio test | SDM and SAR | 46.414 | 0.003 |
SDM and SEM | 66.542 | 0.001 | |
Hausman test | 17.526 | 0.003 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
AIDL | −0.5228 *** (−4.8326) | −0.1741 *** (−4.6741) | −0.6969 *** (−4.2153) |
IEPG | −0.4627 *** (−4.426) | −0.1632 *** (−4.2521) | −0.6259 *** (−4.0527) |
IVAP | 0.3815 *** (4. 6372) | 0.2257 ** (4.4527) | 0.6072 *** (4.2537) |
UL | 0.3617 ** (4.4172) | 0.2338 ** (4.2516) | 0.5955 ** (4.2325) |
ERI | −0.3328 *** (−4.4624) | −0.1662 *** (−4.2841) | −0.4722 *** (−4.0527) |
IECI | 0.3979 *** (4.4235) | 0.2647 ** (2.2162) | 0.6626 *** (4.2625) |
W·AIDL | −0.5516 *** (−4.6157) | −0.1765 *** (−4.4631) | −0.7281 *** (−0.4217) |
W·IEPG | −0.4337 *** (−4.6521) | −0.1626 *** (−4.4173) | −0.5983 *** (−4.2174) |
W·IVAP | 0.3576 *** (4427) | 0.2327 ** (4.2641) | 0.5903 *** (4.0427) |
W·UL | 0.3464 ** (4.8952) | 0.1807 ** (4.6527) | 0.5271 ** (4.4372) |
W·ERI | −0.3271 *** (−4.8726) | −0.1652 *** (−4.6736) | −0.4923 *** (−4.4027) |
W·IECI | 0.4256 ** (4.4226) | 0.2352 ** (4.2618) | 0.6408 ** (4.0316) |
0.2317 *** (4.6263) | 0.1764 *** (4.4527) | 0.4032 *** (4.2751) | |
0.4517 | 0.4327 | 0.4236 | |
0.0683 | 0.0685 | 0.0573 | |
−11.2651 | −51.8164 | −48.8352 |
Variables | M (1) | M (2) | M (3) | M (4) | M (5) | M (6) |
---|---|---|---|---|---|---|
AIDL | −0.5016 *** (−4.8625) | −0.5054 *** (−4.6536) | −0.5126 *** (−4.4526) | −0.5317 *** (−4.3652) | −0.5375 *** (−4.2651) | −0.5563 *** (−4.1657) |
IEPG | −0.5013 *** (−4.5628) | −0.5156 *** (−4.4672) | −0.5208 *** (−4.3761) | −0.5308 *** (−4.2167) | −0.5387 *** (−4.0862) | |
IVAP | 0.5009 *** (4.4851) | 0.5083 *** (4.3725) | 0.5235 *** (4.2763) | 0.5237 *** (4.1875) | ||
UL | 0.5026 ** (2.8634) | 0.5156 ** (2.6372) | 0.5186 ** (2.4664) | |||
ERI | −0.5014 *** (−4.8173) | −0.5076 *** (−4.6856) | ||||
IECI | 0.4986 *** (4.5482) |
Variables | ISU | TII | ||
---|---|---|---|---|
ISU | ICE | TII | ICE | |
AIDL | 0.786 ** (4.8741) | −0.748 *** (−4.6514) | 0.6157 *** (4.4231) | −0.725 *** (4.2165) |
ISU | −0.6216 *** (−4.6264) | |||
TII | −0.5682 *** (−4.4261) | |||
Constant term | 3.215 *** (4.8616) | 2.352 *** (4.6841) | 1.895 *** (4.4652) | 1.962 *** (4.2164) |
Control variables | Control | Control | Control | Control |
City fixed | Control | Control | Control | Control |
Year fixed | Control | Control | Control | Control |
N | 3575 | 3575 | 3575 | 3575 |
R2 | 0.421 | 0.287 | 0.432 | 0.316 |
Variables | Instrumental Variable Method | Lag Period Testing Method | Data Period Shortening Method (2015–2019) | ||
---|---|---|---|---|---|
Dependent Variable Replacement | Sample Correction Method for Explanatory Variables | One-Period Lag | Two-Period Lag | ||
AIDL | −0.503 ** (−4.847) | −0.641 *** (−4.6731) | 0.368 *** (4.4352) | 0.387 *** (4.2651) | 0.509 *** (4.0316) |
Control variables | Yes | Yes | Yes | Yes | Yes |
City effect fixed | Control | Control | Control | Control | Control |
Year effect fixed | Control | Control | Control | Control | Control |
City fixed | Control | Control | Control | Control | Control |
Year fixed | Control | Control | Control | Control | Control |
N | 3575 | 3575 | 3575 | 3575 | 1375 |
R2 | 0.432 | 0.425 | 0.328 | 0.423 | 0.436 |
Variables | By GDP | By Geography | ||
---|---|---|---|---|
High-Tier City ICE | Low-Tier City ICE | Coastal City ICE | Inland City ICE | |
AIDL | −0.734 *** (−4.6516) | −0.526 ** (−4.4621) | −0.683 *** (−4.2531) | −0.516 * (−4.0521) |
Constant term | 1.075 *** (3842) | 1.657 ** (2.326) | 0.936 *** (3.264) | 1.583 ** (2.157) |
Control variables | Control | Control | Control | Control |
City fixed | Control | Control | Control | Control |
Year fixed | Control | Control | Control | Control |
N | 1365 | 2210 | 455 | 3120 |
R2 | 0.178 | 0.216 | 0.327 | 0.231 |
Variables | (1) AIDL | (2) ICE |
---|---|---|
LR | −0.4171 *** (−6.4263) | |
LR2 | −0.4616 ** (−5.2643) | |
Control variables | Yes | Yes |
City fixed | Control | Control |
Year fixed | Control | Control |
F test | 41.37 | |
Cragg-Donald Wald F | 974.412 | |
Kleibergen-Paap rk LM | 285.637 *** | |
N | 3575 | 3575 |
R2 | 0.427 | 0.326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Sun, T. Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application. Sustainability 2025, 17, 3867. https://doi.org/10.3390/su17093867
Yan X, Sun T. Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application. Sustainability. 2025; 17(9):3867. https://doi.org/10.3390/su17093867
Chicago/Turabian StyleYan, Xinlin, and Tao Sun. 2025. "Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application" Sustainability 17, no. 9: 3867. https://doi.org/10.3390/su17093867
APA StyleYan, X., & Sun, T. (2025). Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application. Sustainability, 17(9), 3867. https://doi.org/10.3390/su17093867