The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions
Abstract
:1. Introduction
1.1. The Mid-Pleistocene Transition (MPT)
1.1.1. The Observations
1.1.2. Hypotheses Are Based on the Coevolution of Climate and Ice Sheets
- One or two thresholds control ice-sheet stability.
- Long-term changes in atmospheric CO2.
- Gradual erosion of high-latitude Northern Hemisphere regolith.
- Certain insolation peaks are ‘skipped’.
- Most recent research
1.2. In Search of a Unified Explanation of Climate Transitions
1.3. The Milankovitch Theory Revisited
1.4. Dynamics of Oceanic Subtropical Gyres
2. Method
2.1. The Annular Representation of Long-Period Rossby Waves
2.1.1. Observation of a 64-Year Period Rossby Wave Around the North Atlantic Gyre
2.1.2. Theoretical Justification of the Gyral Rossby Waves (GRWs)
2.2. Subharmonic Modes
2.2.1. Coupling of Caldirola-Kanai (CK) Oscillators
2.2.2. Exchange Zones
2.2.3. Solar Forcing
2.2.4. Orbital Forcing
2.3. Resonance of Gyral Rossby Waves (GRWs)
3. Results and Discussion
3.1. In Search of a Unified Theory of Orbital Forcing
3.2. What Happened During the MPT?
3.3. Another Transition Occurred 2.38 Ma Ago
3.4. Forcing Efficiency
3.5. The Last Glaciation
3.6. Open Issues Fixed
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, W.H. Milankovitch Theory—Hits and Misses; UC San Diego: Scripps Institution of Oceanography: La Jolla, CA, USA, 2012; Available online: https://escholarship.org/uc/item/95m6h5b9 (accessed on 7 July 2023).
- Raymo, M.E.; Nisancioglu, K.H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 2003, 18, 1011. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. LR04 Global Pliocene-Pleistocene Benthic d18O Stack; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2005-008; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 2005. [Google Scholar]
- Hays, J.D.; Imbrie, J.; Shackleton, N.J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science 1976, 194, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Parrenin, F.D.R.; Lisiecki, L.; Uemura, R.; Vimeux, F.O.; Severinghaus, J.P.; Hutterli, M.A.; Nakazawa, T.; Aoki, S.; Jouzel, J.; et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 2007, 448, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Berger, A. Orbital Variations and Insolation Database; IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 92-007; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 1992. [Google Scholar]
- Ghil, M. Cryothermodynamics: The chaotic dynamics of paleoclimate. Phys. D Nonlinear Phenom. 1994, 77, 130–159. [Google Scholar] [CrossRef]
- Gildor, H.; Tziperman, E. Sea ice as the glacial cycles’ climate switch: Role of seasonal and orbital forcing. Paleoceanography 2000, 15, 605–615. [Google Scholar] [CrossRef]
- Rial, J.A.; Oh, J.; Reischmann, E. Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci. 2013, 6, 289–293. [Google Scholar] [CrossRef]
- Takahashi, K.; Raymo, M.E.; Blatter, H.; Saito, F.; Abe-Ouchi, A.; Kawamura, K.; Okuno, J. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 2013, 500, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Bintanja, R.; van de Wal, R.S.W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 2008, 454, 869–872. [Google Scholar] [CrossRef]
- Clark, P.U.; Pollard, D. Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith. Paleoceanography 1998, 13, 1–9. [Google Scholar] [CrossRef]
- Oerlemans, J. Model experiments on the 100,000-yr glacial cycle. Nature 1980, 287, 430–432. [Google Scholar] [CrossRef]
- Pollard, D. A coupled Climate-Ice Sheet model applied to the Quaternary Ice Ages. J. Geophys. Res. 1983, 88, 7705–7718. [Google Scholar] [CrossRef]
- Raymo, M.E. The timing of major climate terminations. Paleoceanography 1997, 12, 577–585. [Google Scholar] [CrossRef]
- Berends, C.J.; Köhler, P.; Lourens, L.J.; van de Wal, R.S.W. On the Cause of the Mid-Pleistocene Transition. Rev. Geophys. 2021, 59, 2. [Google Scholar] [CrossRef]
- Köhler, P.; van de Wal, R.S.W. Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nat. Commun. 2020, 11, 5124. [Google Scholar] [CrossRef]
- Berends, C.J.; de Boer, B.; van de Wal, R.S.W. Application of HadCM3@Bristolv1.0 simulations of paleoclimate as forcing for an ice-sheet model, ANICE2.1: Set-up and benchmark experiments. Geosci. Model Dev. 2018, 11, 4657–4675. [Google Scholar] [CrossRef]
- Weertman, J. Stability of Ice-Age Ice Sheets. J. Geophys. Res. 1961, 66, 3783–3792. [Google Scholar] [CrossRef]
- Ou, H.-W. A Theory of Orbital-Forced Glacial Cycles: Resolving Pleistocene Puzzles. J. Mar. Sci. Eng. 2023, 11, 564. [Google Scholar] [CrossRef]
- Chalk, T.B.; Hain, M.P.; Foster, G.L.; Rohling, E.J.; Sexton, P.F.; Badger, M.P.S.; Cherry, S.G.; Hasenfratz, A.P.; Haug, G.H.; Jaccard, S.L.; et al. Causes of ice age intensification across the Mid-Pleistocene Transition. Proc. Natl. Acad. Sci. USA 2017, 114, 13114–13119. [Google Scholar] [CrossRef]
- Quinn, C.; Sieber, J.; Von Der Heydt, A.S.; Lenton, T.M. The Mid-Pleistocene Transition induced by delayed feedback and bistability. Dyn. Stat. Clim. Syst. 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Clark, P.U.; Archer, D.W.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef]
- Hönisch, B.; Hemming, N.G.; Archer, D.; Siddall, M.; McManus, J.F. Atmospheric Carbon Dioxide Concentration across the Mid-Pleistocene Transition. Science 2009, 324, 1551–1554. [Google Scholar] [CrossRef] [PubMed]
- Herbert, T. The Mid-Pleistocene climate transition. Annu. Rev. Earth Planet. Sci. 2023, 51, 389–418. [Google Scholar] [CrossRef]
- Ganopolski, A. Toward generalized Milankovitch theory (GMT). Clim. Past 2024, 20, 151–185. [Google Scholar] [CrossRef]
- Willeit, M.; Ganopolski, A.; Calov, R.; Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 2019, 5, eaav7337. [Google Scholar] [CrossRef]
- Tziperman, E.; Gildor, H. On the mid-Pleistocene transition to 100-ka glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography 2003, 18, 1-1–1-8. [Google Scholar] [CrossRef]
- Ganopolski, A.; Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 ka glacial cycles. Clim. Past 2011, 7, 1415–1425. [Google Scholar] [CrossRef]
- Tabor, C.R.; Poulsen, C.J. Simulating the mid-Pleistocene transition through regolith removal. Earth Planet. Sci. Lett. 2016, 434, 231–240. [Google Scholar]
- Saltzman, B.; Hansen Anthony, R.; Maasch Kirk, A. The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing. J. Atmos. Sci. 1984, 41, 3380–3389. [Google Scholar] [CrossRef]
- Maslin, M.A.; Brierley, C.M. The role of orbital forcing in the Early Middle Pleistocene Transition. Quat. Int. 2015, 389, 47–55. [Google Scholar] [CrossRef]
- Crucifix, M.; Wolff, E.W.; Tzedakis, P.C.; Mitsui, T. A simple rule to determine which insolation cycles lead to interglacials. Nature 2017, 542, 427–432. [Google Scholar] [CrossRef]
- Barker, S.; Starr, A.; van der Lubbe, J.; Doughty, A.; Knorr, G.; Conn, S.; Lordsmith, S.; Owen, L.; Nederbragt, A.; Hemming, S.; et al. Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science 2022, 376, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Ershkov, S.; Leshchenko, D.; Prosviryakov, E.Y. A novel type of ER3BP introducing Milankovitch cycles or seasonal irradiation processes influencing onto orbit of planet. Arch. Appl. Mech. 2023, 93, 813–822. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Prosviryakov, E. Revisiting Long-Time Dynamics of Earth’s Angular Rotation Depending on Quasiperiodic Solar Activity. Mathematics 2023, 11, 2117. [Google Scholar] [CrossRef]
- Mukhin, D.; Gavrilov, A.; Loskutov, E.; Kurths, J.; Feigin, A. Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition. Sci. Rep. 2019, 9, 7328. [Google Scholar] [CrossRef]
- Nyman, K.H.M.; Ditlevsen, P.D. The middle Pleistocene transition by frequency locking and slow ramping of internal period. Clim. Dyn. 2019, 53, 3023–3038. [Google Scholar] [CrossRef]
- Follows, M.J.; Thomas, P.J.; Shackleton, J.D.; Omta, A.W. The Mid-Pleistocene Transition: A delayed response to an increasing positive feedback? Clim. Dyn. 2022, 60, 4083–4098. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Juselius, K. Testing competing forms of the Milankovitch hypothesis: A multivariate approach. Paleoceanography 2016, 31, 2. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonant Forcing of the Climate System in Subharmonic Modes. J. Mar. Sci. Eng. 2020, 8, 60. [Google Scholar] [CrossRef]
- Pinault, J.-L. Modulated Response of Subtropical Gyres: Positive Feedback Loop, Subharmonic Modes, Resonant Solar and Orbital Forcing. J. Mar. Sci. Eng. 2018, 6, 107. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonantly Forced Baroclinic Waves in the Oceans: Subharmonic Modes. J. Mar. Sci. Eng. 2018, 6, 78. [Google Scholar] [CrossRef]
- Sasaki, Y.N.; Minobe, S.; Schneider, N. Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. J. Phys. Oceanogr. 2013, 43, 442–456. [Google Scholar] [CrossRef]
- Sasaki, Y.N.; Schneider, N. Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr. 2011, 41, 979–993. [Google Scholar] [CrossRef]
- Taguchi, B.; Xie, S.-P.; Schneider, N.; Nonaka, M.; Sasaki, H.; Sasai, Y. Decadal variability of the Kuroshio Extension: Observations an eddy-resolving model hindcast. J. Clim. 2007, 20, 2357–2377. [Google Scholar] [CrossRef]
- Tiéfolo Diabaté, S.; Swingedouw, D.; Hirschi, J.J.-M.; Duchez, A.; Leadbitter, P.J.; Haigh, I.D.; McCarthy, G.D. Western boundary circulation and coastal sea-level variability in Northern Hemisphere oceans. Ocean Sci. 2021, 17, 1449–1471. [Google Scholar] [CrossRef]
- Nilsson, C.S.; Cresswell, G.R. The formation and evolution of East Australian Current warm-core eddies. Prog. Oceanogr. 1980, 9, 133–183. [Google Scholar] [CrossRef]
- Marchesiello, P.; Middleton, J.H. Modeling the East Australian Current in the western Tasman Sea. J. Phys. Oceanogr. 2000, 30, 2956–2971. [Google Scholar] [CrossRef]
- Li, J.; Roughan, M.; Kerry, C. Variability and Drivers of Ocean Temperature Extremes in a Warming Western Boundary Current. J. Clim. 2022, 35, 1097–1111. [Google Scholar] [CrossRef]
- Florian, S.; Thierry, H. Theoretical Investigation of the Atlantic Multidecadal Oscillation. J. Phys. Oceanogr. 2015, 45, 2189–2208. [Google Scholar] [CrossRef]
- Qiao, L.; Yang, H.; Zhang, R.; You, Q.; Peng, L.; Xiao, D.; Lin, Z.; Wang, H.; Chen, D.; Zhang, R.; et al. Thermodynamic effect dictates influence of the Atlantic Multidecadal Oscillation on Eurasia winter temperature. npj Clim. Atmos. Sci. 2024, 7, 151. [Google Scholar] [CrossRef]
- Lin, J.; Qian, T. The Atlantic Multi-Decadal Oscillation. Atmosphere-Ocean 2022, 60, 307–337. [Google Scholar] [CrossRef]
- Pinault, J.-L. Long Wave Resonance in Tropical Oceans and Implications on Climate: The Atlantic Ocean. Pure Appl. Geophys. 2013, 170, 1913–1930. [Google Scholar] [CrossRef]
- Smith, T.M.; Banzon, V.F.; Vose, R.S.; Thorne, P.W.; Boyer, T.; Menne, M.J.; Zhang, H.-M.; Lawrimore, J.H.; Huang, B.; Chepurin, G. Extended Reconstructed Sea Surface Temperatures Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- NOAA Extended Reconstructed SST V5. A global Monthly SST Analysis from 1854 to the Present Derived from ICOADS Data with Missing Data Filled in by Statistical Methods. Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html (accessed on 7 June 2025).
- Torrence, C.; Compo, G.P. A practical guide for wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Met. Soc. 1980, 106, 447–462. [Google Scholar]
- Pinault, J.-L. A Review of the Role of the Oceanic Rossby Waves in Climate Variability. J. Mar. Sci. Eng. 2022, 10, 493. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonantly Forced Baroclinic Waves in the Oceans: A New Approach to Climate Variability. J. Mar. Sci. Eng. 2021, 9, 13. [Google Scholar] [CrossRef]
- Choi, M.Y.; Thouless, D.J. Topological interpretation of subharmonic mode locking in coupled oscillators with inertia. Phys. Rev. B 2001, 64, 014305. [Google Scholar] [CrossRef]
- Lihua Ma, M.; Vaquero, J.M. New evidence of the Suess/de Vries cycle existing in historical naked-eye observations of sunspots. Open Astron. 2020, 29, 28–31. [Google Scholar]
- Ogurtsov, M.G.; Nagovitsyn, Y.A.; Kocharov, G.E.; Jungner, H. Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Solar Phys. 2002, 211, 371–394. [Google Scholar] [CrossRef]
- Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys. 2017, 14, 3. [Google Scholar] [CrossRef]
- Vaquero, J.M.; Gallego, M.C.; García, J.A. A 250-year cycle in naked-eye observations of sunspots. Geophys. Res. Lett. 2002, 29, 58-1–58-4. [Google Scholar] [CrossRef]
- Pinault, J.-L. Long Wave Resonance in Tropical Oceans and Implications on Climate: The Pacific Ocean. Pure Appl. Geophys. 2015, 173, 2119–2145. [Google Scholar] [CrossRef]
- Pinault, J.-L. Weakening of the Geostrophic Component of the Gulf Stream: APositive Feedback Loop on the Melting of the Arctic Ice Sheet. J. Mar. Sci. Eng. 2023, 11, 1689. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Events, Precipitation, and Heat Waves—Part 1: Theory. Atmosphere 2024, 15, 608. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change. Atmosphere 2024, 15, 1226. [Google Scholar] [CrossRef]
- Pinault, J.-L. Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene. J. Mar. Sci. Eng. 2021, 9, 832. [Google Scholar] [CrossRef]
- Pinault, J.-L.; Pereira, L. What Speleothems Tell Us about Long-Term Rainfall Oscillation throughout the Holocene on a Planetary Scale. J. Mar. Sci. Eng. 2021, 9, 853. [Google Scholar] [CrossRef]
- Puetz, A.; Prokoph, G.; Borchardt, E. Mason, Evidence of synchronous, decadal to billion-year cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 2014, 62–63, 55–75. [Google Scholar] [CrossRef]
- Puetz, S.J.; Prokoph, A.; Borchardt, G. Evaluating alternatives to the Milankovitch Theory. J. Stat. Plan. Inference 2016, 170, 158–165. [Google Scholar] [CrossRef]
- Prokoph, A.; Puetz, S.J. Period-tripling and fractal features in multi-billion-year geological records. Math. Geosci. 2015, 47, 501–520. [Google Scholar] [CrossRef]
- Huggett Richard, J. The Natural History of the Earth: Debating Long-Term Change in the Geosphere and Biosphere; Routledge: London, UK, 2006; ISBN 0-203-00407-8. [Google Scholar]
- Zeebe, R.E.; Lourens, L. Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science 2019, 365, 926–929. [Google Scholar] [CrossRef] [PubMed]
Rank | Band Width (yr) | Natural Periods of GRWs (yr) | Subharmonic Mode | Forcing Mode |
---|---|---|---|---|
1 | 48–96 | 64 | Solar forcing (Gleissberg cycle) | |
2 | 96–192 | 128 | Solar forcing (Gleissberg cycle) | |
3 | 192–576 | 256 | Solar forcing (de Vries/Suess cycle) | |
4 | 576–1152 | 768 | No external forcing | |
5 | 1152–2304 | 1536 | Solar forcing (Hallstatt cycle) | |
6 | 2304–4608 | 3072 | No external forcing | |
7 | 4608–9216 | 6144 | No external forcing | |
8 | 9216–18,432 | 12,288 | No external forcing | |
9 | 18,432–36,864 | 24,576 | Orbital forcing (precession) | |
10 | 36,864–73,728 | 49,152 | Orbital forcing (obliquity) | |
11 | 73,728–147,456 | 98,304 | Orbital forcing (eccentricity) | |
12 | 147,456–294,912 | 196,608 | No external forcing | |
13 | 294,912–589,824 | 393,216 | Orbital forcing (eccentricity) | |
14 | 589,824–1,179,648 | 786,432 | Orbital forcing (eccentricity) | |
15 | 1,179,648–2,359,296 | 1,572,864 | No external forcing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinault, J.-L. The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions. Atmosphere 2025, 16, 702. https://doi.org/10.3390/atmos16060702
Pinault J-L. The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions. Atmosphere. 2025; 16(6):702. https://doi.org/10.3390/atmos16060702
Chicago/Turabian StylePinault, Jean-Louis. 2025. "The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions" Atmosphere 16, no. 6: 702. https://doi.org/10.3390/atmos16060702
APA StylePinault, J.-L. (2025). The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions. Atmosphere, 16(6), 702. https://doi.org/10.3390/atmos16060702