Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (878)

Search Parameters:
Keywords = iba1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 807 KiB  
Article
Role of Plant Growth Regulators in Adventitious Populus Tremula Root Development In Vitro
by Miglė Vaičiukynė, Jonas Žiauka, Valentinas Černiauskas and Iveta Varnagirytė-Kabašinskienė
Plants 2025, 14(15), 2427; https://doi.org/10.3390/plants14152427 - 5 Aug 2025
Abstract
Eurasian aspen (Populus tremula L.) is a tree species with recognised ecological and economic importance for both natural and plantation forests. For the fast cloning of selected aspen genotypes, the method of plant propagation through in vitro culture (micropropagation) is often recommended. [...] Read more.
Eurasian aspen (Populus tremula L.) is a tree species with recognised ecological and economic importance for both natural and plantation forests. For the fast cloning of selected aspen genotypes, the method of plant propagation through in vitro culture (micropropagation) is often recommended. The efficiency of this method is related to the use of shoot-inducing chemical growth regulators, among which cytokinins, a type of plant hormone, dominate. Although cytokinins can inhibit rooting, this effect is avoided by using cytokinin-free media. This study sought to identify concentrations and combinations of growth regulators that would stimulate one type of P. tremula organogenesis (either shoot or root formation) without inhibiting the other. The investigated growth regulators included cytokinin 6-benzylaminopurine (BAP), auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), gibberellin biosynthesis inhibitor paclobutrazol (PBZ), and a gibberellin mixture (GA4/7). Both BAP and TIBA increased shoot number per P. tremula explant and decreased the number of adventitious roots, but TIBA, in contrast to BAP, did not inhibit lateral root formation. However, for the maintenance of both adventitious shoot and root formation above the control level, the combination of PBZ and GA4/7 was shown to be especially promising. Full article
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

21 pages, 6231 KiB  
Article
Integrating In Vitro Propagation and Machine Learning Modeling for Efficient Shoot and Root Development in Aronia melanocarpa
by Mehmet Yaman, Esra Bulunuz Palaz, Musab A. Isak, Serap Demirel, Tolga İzgü, Sümeyye Adalı, Fatih Demirel, Özhan Şimşek, Gheorghe Cristian Popescu and Monica Popescu
Horticulturae 2025, 11(8), 886; https://doi.org/10.3390/horticulturae11080886 (registering DOI) - 1 Aug 2025
Viewed by 198
Abstract
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L [...] Read more.
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L BAP in large 660 mL jars, which yielded up to 27 shoots per explant. Optimal rooting (100%) was achieved with 0.5 mg/L NAA + 0.25 mg/L IBA in half-strength SPM. In the second phase, supervised machine learning models, including Random Forest (RF), XGBoost, Gaussian Process (GP), and Multilayer Perceptron (MLP), were employed to predict morphogenic traits based on culture conditions. XGBoost and RF outperformed other models, achieving R2 values exceeding 0.95 for key variables such as shoot number and root length. These results demonstrate that data-driven modeling can enhance protocol precision and reduce experimental workload in plant tissue culture. The study also highlights the potential for combining physiological understanding with artificial intelligence to streamline future in vitro applications in woody species. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

11 pages, 855 KiB  
Article
A Water Solution from the Seeds, Seedlings and Young Plants of the Corn Cockle (Agrostemma githago) Showed Plant-Growth Regulator Efficiency
by Jana Ambrožič-Dolinšek, Vid Golič, Víctor Rouco Saco, Petra Peranić, Veno Jaša Grujić and Terezija Ciringer
Plants 2025, 14(15), 2349; https://doi.org/10.3390/plants14152349 - 30 Jul 2025
Viewed by 243
Abstract
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material [...] Read more.
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material of A. githago contained auxin-like and cytokinin-like growth regulators (PGRs). Cucumis and mung bean bioassays were used to determine the presence of auxin-like PGRs and Cucumis and Triticum bioassays were used to determine the presence of cytokinin-like PGRs. A water solution derived from the crushed, homogenized and extracted seeds, fresh and dry seedlings, and fresh and dry young plants showed auxin-like activity in both bioassays. The activity in the Cucumis bioassay corresponded to 0.5 to 2 mg L−1 of Indole-3-butyric acid (IBA), and in the mung bean bioassay, the activity corresponded to 0.5 to 4 mg L−1 of IBA. While the same water solutions showed weak or no cytokinin-like activity in the Cucumis cotyledon expansion bioassay, and they showed an activity of approximately 0.5 to 1 mg L−1 of 6-Benzylaminopurine (BAP) in the Triticum bioassay. An LC-MS analysis confirmed the presence of free auxins, low levels of or no auxin analogues, a small amount of free cytokinins and a higher level of their cytokinin analogues in the samples, seeds, dry seedlings and young plants of A. githago, which was likely related to the fine-tuning between the free and analogue forms of the PGRs in the water solutions used in the experiments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 244
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 399
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

16 pages, 4338 KiB  
Article
Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice
by Bao Le, Dong Gyun Kim, Hyun Song, Phan Duy Khanh Giang, Ho Tue Han and Seung Hwan Yang
Microorganisms 2025, 13(8), 1714; https://doi.org/10.3390/microorganisms13081714 - 22 Jul 2025
Viewed by 321
Abstract
This study aimed to evaluate whether probiotic administration could protect against cognitive impairments in a scopolamine-induced cognitive impairment mice model. Male C57BL/6 mice (8 weeks of age) were injected with scopolamine hydrobromide to induce memory impairments. The experimental groups were additionally supplemented with [...] Read more.
This study aimed to evaluate whether probiotic administration could protect against cognitive impairments in a scopolamine-induced cognitive impairment mice model. Male C57BL/6 mice (8 weeks of age) were injected with scopolamine hydrobromide to induce memory impairments. The experimental groups were additionally supplemented with 109 colony-forming units (CFU)/day probiotics containing Lactobacillus helveticus CNU395 or L. paracasei CNU396. Behavioral test results and histopathological evaluations showed that the spatial memory ability and pathological tissue abnormalities of the mice in the CNU395 and CNU396 groups significantly improved compared with those in the disease group. CNU395 and CNU396 mitigated scopolamine-induced neuroinflammation by reducing the expression of pro-inflammatory cytokines (IL-6, IL-8, IL-10, and TNF-α) and the NLRP3 inflammasome, through the inhibition of MAPK and NF-κB inflammatory pathways. Additionally, the CNU395 and CNU396 groups showed decreased levels of Iba-1 and Bax, alongside increased levels of BDNF and Bcl-2, relative to the disease group. Therefore, CNU395 or CNU396 supplementation might help prevent the onset of cognitive deficits and neuroinflammation. Full article
(This article belongs to the Special Issue Probiotics: Identification and Applications)
Show Figures

Figure 1

17 pages, 1772 KiB  
Article
Exploration of the Possible Relationships Between Gut and Hypothalamic Inflammation and Allopregnanolone: Preclinical Findings in a Post-Finasteride Rat Model
by Silvia Diviccaro, Roberto Oleari, Federica Amoruso, Fabrizio Fontana, Lucia Cioffi, Gabriela Chrostek, Vera Abenante, Jacopo Troisi, Anna Cariboni, Silvia Giatti and Roberto Cosimo Melcangi
Biomolecules 2025, 15(7), 1044; https://doi.org/10.3390/biom15071044 - 18 Jul 2025
Viewed by 1971
Abstract
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid [...] Read more.
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid homeostasis, neuroactive steroid deficiency (notably allopregnanolone, ALLO), and gut–brain axis alterations. Objective: This study aimed to investigate the effects of finasteride withdrawal (FW) in a rat model and evaluate the potential protective effects of ALLO on gut and hypothalamic inflammation. Methods: Adult male Sprague Dawley rats were treated with finasteride for 20 days, followed by one month of drug withdrawal. A subgroup received ALLO treatment during the withdrawal. Histological, molecular, and biochemical analyses were performed on the colon and hypothalamus. Gut microbiota-derived metabolites and markers of neuroinflammation and blood–brain barrier (BBB) integrity were also assessed. Results: At FW, rats exhibited significant colonic inflammation, including a 4.3-fold increase in Mφ1 levels (p < 0.001), a 2.31-fold decrease in butyrate concentration (p < 0.01), and elevated hypothalamic GFAP and Iba-1 protein expression (+360%, p < 0.01 and +100%, p < 0.01, respectively). ALLO treatment rescued these parameters in both the colon and hypothalamus but only partially restored mucosal and BBB structural integrity, as well as the NF-κB/PPARγ pathway. Conclusions: This preclinical study shows that FW causes inflammation in both the gut and hypothalamus in rats. ALLO treatment helped reduce several of these effects. These results suggest ALLO could have a protective role and have potential as a treatment for PFS patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 375
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 2186 KiB  
Article
Optimizing Rooting and Growth of Salvia rosmarinus Cuttings in Soilless Systems Affected by Growth Regulators
by Georgios Lykokanellos, Ioannis Lagogiannis, Aglaia Liopa-Tsakalidi, Sofia Anna Barla and Georgios Salachas
Plants 2025, 14(14), 2210; https://doi.org/10.3390/plants14142210 - 17 Jul 2025
Viewed by 330
Abstract
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating [...] Read more.
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating three soilless propagation systems (mist, float, aeroponics), two rooting hormone formulations (powder and gel-based IBA), and two growth regulators (paclobutrazol and daminozide) at three concentrations each. Significant differences (p < 0.001) were found in shoot height, root length, and number of lateral roots. The float system combined with powder hormone and no retardants achieved the highest shoot height (mean = 16.7 cm), while aeroponics with powder hormone and daminozide 1000 ppm promoted the greatest root branching (mean = 12.2 lateral roots per cutting). Root length was maximized (mean = 15.9 cm) under float systems with daminozide 1000 ppm. High doses of both growth regulators negatively affected all parameters across systems. Post-transplantation monitoring confirmed that cuttings from float and mist systems treated with powder hormone and low or no growth retardants exhibited superior establishment and net growth over 60 days. These findings demonstrate the critical importance of pairing hormone type, regulator concentration, and propagation system, providing actionable protocols for nursery managers aiming to enhance Salvia rosmarinus propagation in commercial practice. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

26 pages, 19416 KiB  
Article
Identification and Characterization of a Translational Mouse Model for Blood–Brain Barrier Leakage in Cerebral Small Vessel Disease
by Ruxue Jia, Gemma Solé-Guardia, Vivienne Verweij, Jessica M. Snabel, Bram Geenen, Anil Man Tuladhar, Robert Kleemann, Amanda J. Kiliaan and Maximilian Wiesmann
Int. J. Mol. Sci. 2025, 26(14), 6706; https://doi.org/10.3390/ijms26146706 - 12 Jul 2025
Viewed by 388
Abstract
Blood–brain barrier (BBB) dysfunction is a hallmark of cerebral small vessel disease (cSVD). This study aimed to identify a mouse model that replicates BBB impairment and shares key cSVD risk factors. Transgenic db/db and LDLr−/−.Leiden mice, both prone to obesity and [...] Read more.
Blood–brain barrier (BBB) dysfunction is a hallmark of cerebral small vessel disease (cSVD). This study aimed to identify a mouse model that replicates BBB impairment and shares key cSVD risk factors. Transgenic db/db and LDLr−/−.Leiden mice, both prone to obesity and hypertension, were compared to C57BL/6J controls. BBB leakage was assessed using DCE-MRI and sodium fluorescein (NaFl); cerebral blood flow (CBF) by MRI. Dyslipidemia and vascular inflammation were measured by plasma tests. Tight junction integrity, endothelial dysfunction (glucose transporter 1, GLUT-1) and neuroinflammation were evaluated with immunohistochemistry and PCR. Both transgenic models developed an obese phenotype with hyperinsulinemia, but only LDLr−/−.Leiden mice showed human-like dyslipidemia. When fed a high-fat diet (HFD) or HFD plus cholesterol, LDLr−/−.Leiden mice showed reduced CBF, endothelial dysfunction (lowered GLUT-1), elevated vascular inflammation (ICAM-1, VCAM-1, S-selectin), and BBB leakage, as evidenced by DCE-MRI and NaFl, together with reduced ZO-1 and claudin-5 expression. Contrastingly, db/db mice showed endothelial dysfunction without BBB leakage. Neuroinflammation (IBA-1, GFAP) was observed only in LDLr−/−.Leiden groups, consistent with BBB disruption. These findings indicate that LDLr−/−.Leiden mice, but not db/db mice, are a promising translational model for studying BBB dysfunction in cSVD, offering insights into disease mechanisms and a platform for therapeutic development. Full article
Show Figures

Figure 1

13 pages, 1784 KiB  
Article
Dark Rearing Does Not Alter Developmental Retinoschisis Cavity Formation in Rs1 Gene Knockout Rat Model of X-Linked Retinoschisis
by Zeljka Smit-McBride, In Hwan Cho, Ning Sun, Serafina Thomas and Paul A. Sieving
Genes 2025, 16(7), 815; https://doi.org/10.3390/genes16070815 - 11 Jul 2025
Viewed by 311
Abstract
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap [...] Read more.
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap with eye opening at P12–P15. We investigated whether new light-driven retinal activity could contribute to the appearance and progression of schisis cavities in this rat model of XLRS disease. Methods: For dark rearing (D/D), mating pairs of Rs1KO strain were raised in total darkness in a special vivarium at UC Davis. When pups were born, they were maintained in total darkness, and eyes were collected at P12, P15, and P30 (n = 3/group) for each of the D/D and cyclic light-reared 12 h light–12 h dark (L/D) Rs1KO and wild-type (WT) littermates. Eyes were fixed, paraffin-embedded, and sectioned. Tissue morphology was examined by H&E and marker expression of retinoschisin1 (Rs1), rhodopsin (Rho), and postsynaptic protein 95 (Psd95) by fluorescent immunohistochemistry. H&E-stained images were analyzed with ImageJ version 1.54h to quantify cavity size using the “Analyze Particles” function. Results: Small intra-retinal schisis cavities begin to form by P12 in the inner retina of both D/D and L/D animals. Cavity formation was equivalent or more pronounced in D/D animals than in L/D animals. We compared Iba1 (activation marker of immune cells) distribution and found that by P12, when schisis appeared, Iba1+ cells had accumulated in regions of schisis. Iba1+ cells were more abundant in Rs1KO animals than WT animals and appeared slightly more prevalent in D/D- than L/D-reared Rs1KO animals. We compared photoreceptor development using Rho, Rs1, and Psd95 expression, and these were similar; however, the outer segments (OSs) of D/D animals with Rho labeling at P12 were longer than L/D animals. Conclusions: The results showed that cavities formed at the same time in D/D and L/D XLRS rat pups, indicating that the timing of schisis formation is not light stimulus-driven but rather appears to be a result of developmental events. Cavity size tended to be larger under dark-rearing conditions in D/D animals, which could be due to the decreased rate of phagocytosis by the RPE in the dark, allowing for continued growth of the OSs without the usual shedding of the distal tip, a key mechanism behind dark adaptation in the retina. These results highlight the complexity of XLRS pathology; however, we found no evidence that light-driven metabolic activity accounted for schisis cavity formation. Full article
(This article belongs to the Special Issue Current Advances in Inherited Retinal Disease)
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 888
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

15 pages, 5226 KiB  
Article
Enhancing Conservation Efforts of Stephanopodium engleri Through Vegetative Propagation: Effects of IBA and Cutting Types
by Giselly Mota da Silva, Evandro Alves Vieira, Luiz Palhares Neto, Silvio Ramos, Markus Gastauer and Cecílio Frois Caldeira
Plants 2025, 14(14), 2116; https://doi.org/10.3390/plants14142116 - 9 Jul 2025
Cited by 1 | Viewed by 390
Abstract
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the [...] Read more.
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the rooting and sprouting potential of different cutting types (apical, middle, and basal segments from the main stem, as well as the tip and the herbaceous and woody segments from the lateral branches) treated with Indole-3-Butyric Acid (IBA) at varying concentrations (0, 1, 2, 3, and 4 g L−1) and immersion durations (5 s to 10 min). Cuttings were collected from 12-month-old plants grown under controlled conditions and planted in Carolina Soil® substrate after treatment. Sprouting and rooting rates varied significantly between cutting types, with basal main stem cuttings showing the highest rooting success, particularly at 3 g L−1 of IBA. These cuttings also exhibited more and longer roots and enhanced sprouting-related biometric traits. Shorter immersion times (15 s and 1 min) were the most effective, promoting root formation while avoiding the potential inhibitory effects of prolonged exposure. Our findings provide a practical protocol for large-scale seedling production of S. engleri while minimizing impacts on wild populations. The effective use of vegetative propagation could facilitate the expansion of S. engleri populations in their natural habitats, enhancing conservation efforts and ensuring sustainable species management. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

22 pages, 3719 KiB  
Article
Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas
by Labode Hospice Stevenson Naitchede, Onyinye C. Ihearahu, Kishan Saha, David O. Igwe, Supriyo Ray and George Ude
Plants 2025, 14(14), 2109; https://doi.org/10.3390/plants14142109 - 9 Jul 2025
Viewed by 920
Abstract
Bananas and plantains, belonging to the Musa genus, are important food crops that sustain the livelihoods of countless smallholder farmers globally. However, their production is hindered by various challenges, including abiotic and biotic stresses, climate change, and poor access to clean planting materials, [...] Read more.
Bananas and plantains, belonging to the Musa genus, are important food crops that sustain the livelihoods of countless smallholder farmers globally. However, their production is hindered by various challenges, including abiotic and biotic stresses, climate change, and poor access to clean planting materials, which negatively impact their yields. Addressing these constraints is essential for improving production and ensuring food security. This study investigated the influence of triploid genome background and exogenous growth regulators on the regeneration of Musa cultivars [Gros Michel (AAA genome), Obino l’Ewai and Silk (AAB genome), and Poteau Naine (ABB genome)]. Shoot tip explants of the AAA, AAB, and ABB triploid genomes were cultured in Murashige and Skoog (MS) media supplemented with varying 6-benzylaminopurine (BAP) and indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), or naphthaleneacetic acid (NAA) hormones. Shoot induction was successfully achieved within 21.50 ± 2.00 days, with AAA exhibiting the highest shoot induction frequencies ranging from 30.00 ± 1.57% to 100% and shoot numbers per explant ranging from 3.00 ± 0.50 to 8.80 ± 0.80, followed by the ABB genome ranging from 20.00 ± 3.45% to 100% and from 2.00 ± 0.55 to 5.60 ± 0.50 shoots, and the AAB genome ranging from 17.50 ± 5.01% to 100% and from 2.00 ± 0.04 to 6.60 ± 0.25 shoots, respectively, in media amended with 1.2 to 6.0 mg.L−1 BAP and 0.1 mg.L−1 IAA. The highest rooting rate of 100% was recorded in all three genomes in media containing 1.4 mg.L−1 IBA and 0.5 mg.L−1 IAA, with the AAA genome producing the maximum number of 14.8 roots per explant. The results indicate the positive influence of the AAA genome background on in vitro regeneration and its potential utilization for genomic editing transformation protocols Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

Back to TopTop