Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Screening of Callus-Induction Media
2.3. Screening of Callus-Differentiation Media
2.4. Screening of Adventitious Bud Proliferation Media
2.5. Screening of Adventitious Bud Rooting Medium
2.6. Determination of Plant Hormone Content
2.7. Data Analysis
3. Results
3.1. Impact of Various Combinations of PGRs on the Induction of Callus Tissue
3.2. Effects of Different Combinations of PGRs on Callus Differentiation
3.3. Effects of Different Combinations of PGRs on Adventitious Bud Proliferation
3.4. Effects of Different Combinations of PGRs on Adventitious Bud Rooting
3.5. Changes of Endogenous Hormones on Callus Induction
3.6. Changes of Endogenous Hormones on Callus Differentiation
3.7. Changes of Endogenous Hormones on Adventitious Bud Proliferation
3.8. Changes of Endogenous Hormones on the Rooting of Adventitious Buds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cong, L.; Han, D. Ecological characteristics of high quality wild ornamental plants in South China. Isr. J. Ecol. Evol. 2020, 67, 98–105. [Google Scholar] [CrossRef]
- Lai, W.; Wang, Y.; Huang, C.; Xu, H.; Zheng, X.; Li, K.; Wang, J.; Lou, Z. DIREN mitigates DSS-induced colitis in mice and attenuates collagen deposition via inhibiting the Wnt/β-catenin and focal adhesion pathways. Biomed. Pharmacother. 2024, 175, 116671. [Google Scholar] [CrossRef]
- García-Chacón, J.M.; Rodríguez-Pulido, F.J.; Heredia, F.J.; González-Miret, M.L.; Osorio, C. Characterization and bioaccessibility assessment of bioactive compounds from camu-camu (Myrciaria dubia) powders and their food applications. Food Res. Int. 2024, 176, 113820. [Google Scholar] [CrossRef]
- Qian, S.; Wang, Z.; Ma, X.; Ming, H.; Liu, J.; Yang, J.; Chen, T.; Liu, L.; Ban, J.; Cuo, J.; et al. Study on the Active Components and Inhibiting Effect of Melastoma dodecandrum Lour. on Human Cervical Cancer Cells Based on Spectrum–Effect Relationship Analysis. Nat. Prod. Commun. 2024, 19, 1934578X231222096. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Liu, Y.; Paul, B.; Xu, Y.; Chen, W. Physicochemical and antioxidant properties of set-type yogurt supplemented by lyophilized water-soluble Melastoma dodecandrum extract-bearded chitosan-coated nutriosomes. Food Hydrocoll. 2024, 146 Pt B, 109311. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, J.; Shao, L.; Liu, S.; Zhou, J.; Mei, M.; Zhang, Z. Screening of active components of Melastoma dodecandrum Lour. against diabetic osteoporosis using cell membrane chromatography-mass spectrometry. Front. Pharmacol. 2024, 15, 1450154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, Y.; Liang, J.; Sun, D.; Li, H.; Chen, L. Polyphenolics and triterpenoids from the whole herbs of Melastoma dodecandrum Lour. and their anti-inflammatory activity. Fitoterapia 2025, 180, 106337. [Google Scholar] [CrossRef]
- Huang, R.; Chen, C.; Ye, M.; Ning, D.; Zhang, S.; Chen, H.; Dong, Q. Research Progress on Cultivation Techniques of Melastoma dodecandrum Lour. Pop. Sci. Technol. 2021, 23, 95–98. [Google Scholar]
- Chen, Y.Y.; Li, D.; Xu, S.P.; Yu, J.Y.; Hu, X.; Long, Y.X.; Zhang, H.Z. Effects of Different Substrates on Rooting of Melastoma dodecandrum Cuttings. Shelter For. Sci. Technol. 2024, 3, 60–63. [Google Scholar] [CrossRef]
- Tong, J.; Fang, L.; Mao, J.; Xu, D.Y.; Dong, Y.F.; Peng, Y.; Zhou, Y. Establishment of a regeneration system for Rhododendron ‘Yanzhimi’. Mol. Plant Breed. 2024, 9, 1–9. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20241118.1934.017.html (accessed on 25 February 2025).
- Hu, X.; Li, D.; Chen, Y.; Pi, H.L.; Yan, S.Z.; Zhang, H.Z. Study on Morphological Differences and Biomass Statistics of Melastoma dodecandrum Under Different Cultivation Substrates. J. Anhui Agric. Sci. 2025, 4, 1–4. Available online: http://kns.cnki.net/kcms/detail/34.1076.S.20250512.1011.002.html (accessed on 12 July 2025).
- He, X.; Yu, Z.; Lin, X.; Huang, C.Y.; Chen, Z.D. Research Progress of Reproduction, Breeding of Common Melastoma. Fujian Sci. Technol. Trop. Crops 2019, 44, 53–57. [Google Scholar]
- Tang, S.; Xu, J.; Jiang, M.; Lin, X.; Zhuo, X.K.; Peng, D.H. Plant regeneration in vitro from leaves of Melastoma sanguineum. J. For. Environ. 2016, 36, 67–72. [Google Scholar]
- Zhang, C.; Xu, G. Tissu Culture and Rapid Propagation of Melastoma dodecandrum. J. Northwest For. Univ. 2004, 3, 75–76. [Google Scholar]
- Wang, J.L.; Yue, K.J.; Liu, H.X.; Tian, X.P. Regeneration of in vitro plants through direct and indirect organogenesis from Dracocephalum rupestre leaf explants. Plant Cell Tissue Organ Cult. (PCTOC) 2025, 161, 7. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, Y.; Huang, K.; Wan, X.; Zhang, Z.; Zhu, M.; Wei, C. An Efficient System for Regenerating Adventitious Buds in Stem Segments of Tea Plants. Chin. Bull. Bot. 2023, 58, 308–315. [Google Scholar]
- Yang, S.; Zheng, Z.; Duan, G.; Li, J.L.; Fan, G.H. Screening of Regeneration Medium for Explant of Qingqi No.1. Sci. Technol. Qinghai Agric. For. 2025, 1, 107–112. [Google Scholar] [CrossRef]
- Miao, S.; Wang, L. Establishment of ‘Poinsettia’ Strawberry Regeneration System and Tissue Culture Rapid Propagation System. North. Hortic. 2025, 7, 9–17. [Google Scholar]
- Tian, Y.; Ma, S.; Yang, A.; Han, X.M.; Zhang, C.X. Establishment and Optimization of Regeneration System for Apple Rootstock B9. Acta Hortic. Sin. 2025, 52, 947–958. [Google Scholar] [CrossRef]
- Wu, S.R.; Chen, W.F.; Zhou, X. Enzyme Linked Immunosorbent Assay for Endogenous Plant Hormones. Plant Physiol. Commun. 1988, 5, 53–57. [Google Scholar]
- Li, B. Different Kind and Ratio of Hormones Impact on the Pyrus betulaefolia Bunge Seedlings Callus Production and State. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2010. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Fang, Z.; Li, J.; Ma, J.; Zhang, K.; Ye, C.X. Screening of plant hormone-associated genes during seed dormancy release in Malus sieversii based on transcriptome sequencing. J. Fruit Sci. 2024, 41, 1961–1978. [Google Scholar] [CrossRef]
- Yang, W.; Liu, X.; Zeng, J.; Wu, K.L.; Fang, L.; Wu, S.S.; Zhai, J.W.; Zeng, S.J. Establishment of Callus Regeneration System of Hippeastrum ‘Bangkok Rose’. Chin. J. Trop. Crops 2023, 44, 977–985. [Google Scholar]
- Wang, H.; Xiao, X.; Tang, C.; Ke, X.M.; Zhao, S.S. Establishment of Efficient Regeneration System of Polygonatum cyrtonema Hua. Mol. Plant Breed. 2022, 20, 5386–5393. [Google Scholar]
- Wang, J.; Wang, Q.; Wang, J.; Lu, Y.; Xiao, X.; Gong, W.; Liu, J. Effect of different plant growth regulators on micro-tuber induction and plant regeneration of Pinellia ternate (Thunb) Briet. Physiol. Mol. Biol. Plants 2009, 15, 359–365. [Google Scholar] [CrossRef]
- Song, L.; Gao, F. Changes of Endogenous Hormones in Momordica charantia During in vitro Culture. Chin. Bull. Bot. 2006, 2, 192–196. [Google Scholar]
- Centeno, M.L.; Rodríguez, A.; Feito, I.; Fernández, B. Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinidia deliciosa tissue cultures. Plant Cell Rep. 1996, 16, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, T.; Yang, Q.; Jiang, Y.; Shao, X. Callus induction and proliferation of wild Vaccinium bracteatum leaves. Anhui Agric. Sci. Bull. 2023, 29, 83–87. [Google Scholar]
- Tian, X.; Yue, K.; Wang, J.; Liu, H.; Shi, Z.; Kang, H. Callus Induction and Plant Regeneration of Dracocephalum rupestre. Chin. Bull. Bot. 2024, 59, 613–625. [Google Scholar]
- Huang, H. Plant Regeneration and Rapid Propagation of Melastoma intermedium Linn. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2012. [Google Scholar]
- Ai, Y. Effect of Plant Growth Regulator on the Construction of Efficient Regeneration System of Gardenia jasminoides Ellis. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2024. [Google Scholar] [CrossRef]
- Su, H.; Xu, K.; Liu, W. Changes of Endogenous Hormones During the Process of Flower Bud Differentiation of Welsh Onion. Acta Hortic. Sin. 2007, 3, 671–676. [Google Scholar]
- Du, J.; Ruan, M.; Wang, W.; Wang, R.; Huang, S.; Zhang, H.; Zeng, Q. Dynamic changes of endogenous hormones during callus induction and differentiation of Moringa oleifera. Non-Wood For. Res. 2021, 39, 158–167. [Google Scholar] [CrossRef]
- Jia, W.; Yong, J.; Li, A.; Li, C.; Ma, C.; Hu, H. Indigofera bungeana walp: Callus Induction and Adventitious Bud Differentiation Culture. Chin. Agric. Sci. Bull. 2023, 39, 109–117. [Google Scholar]
- Lu, J.; Cao, L.; Tong, G.; Wang, X.; Zhang, L.; Yu, X.; Li, H.; Li, Y. Establishment of a callus induction and regeneration system for Anemone coronaria L. Bull. Bot. 2022, 57, 217–226. [Google Scholar]
- Zhang, Q.; Wang, X.; Chen, L.; Wang, X.; Cai, N. Changes in endogenous hormone contents during tissue culture and proliferation of Lagerstroemia indica ‘Ziqi’. J. Cent. South Univ. For. Technol. 2023, 43, 101–108. [Google Scholar]
- Wang, X.; Zeng, H.; Li, Y.; Wang, X.; Qiao, Z.; Cai, N. Research on changes of endogenous hormone content in the process of subculture of tissue culture of Lonicera macranthoides. Hunan For. Sci. Technol. 2019, 46, 39–43. [Google Scholar]
- Wang, J.; Gao, Y.; Dao, M.; Zhang, H.; Yang, Z.; Chen, L.; Wu, T. Establishment of Regeneration in Vitro System of Camellia japonica and Relationship Between Endogenous Hormones and Adventitious Bud Differentiation. Acta Hortic. Sin. 2024, 51, 1891–1905. [Google Scholar]
- Reshi, Z.A.; Husain, F.M.; Khanam, M.N.; Javed, S.B. Effect of meta-Topolin on morphological, physiochemical, and molecular dynamics during in vitro regeneration of Salix tetrasperma Roxb. BMC Plant Biol. 2025, 25, 121. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, H.; Qin, M.; He, Y.; Zhang, J.; Gong, W.; Xiao, X.; Li, P.; Zhou, W. Establishment of in vitro efficient regeneration system for leaves and hypocotyls of Toona sinensis, a multifunctional woody plants. Ind. Crops Prod. 2025, 224, 120328. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Jin, H. Tissue Culture and Plant Regeneration of Melastoma candidum var. albiflorum. North. Hortic. 2017, 11, 119–124. [Google Scholar]
- Huang, F. Study on Tissue Culture and Changes of Endogenous Hormone Content of Lagerstroemia indica ‘Zijingling’. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2022. [Google Scholar] [CrossRef]
- He, C.; Yao, R.; Huang, R.; Mi, X.; Zhang, C.; Tan, Y.; Wang, Y. Effects of K-IBA treatments on adventitious rooting and endogenous hormones contents of shoot cuttings of Thuja occidentals L. J. Cent. South Univ. For. Technol. 2017, 37, 7–12. [Google Scholar]
- Gianinetti, A.; Vernieri, P. On the role of abscisic acid in seed dormancy of red rice. J. Exp. Bot. 2007, 58, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.Z.; Xu, M.L.; Wang, H.J.; Wang, E.; Li, Y.; Wang, L.; Gao, J.; Zhang, J.; Yuan, X.; Zhang, H. Analysis of the transcriptome and related physiological indicators of tree peony (Paeonia suffruticosa Andr.) plantlets before and after rooting in vitro. Plant Cell Tissue Organ Cult. 2021, 147, 529–543. [Google Scholar] [CrossRef]
Treatment Number | Concentration of 6-BA/mg·L−1 | Concentration of 2,4-D/mg·L−1 | Induction Rate/% | Callus Growth |
---|---|---|---|---|
CK | 0.0 | 0.0 | 0.00 ± 0.00 c | Browning, death |
Y1 | 0.1 | 1.0 | 73.33 ± 3.35 b | Callus appeared on Day 12, reddish-brown, loose |
Y2 | 0.5 | 1.0 | 94.43 ± 5.10 a | Callus appeared on Day 14, reddish-brown, loose |
Y3 | 1.0 | 1.0 | 85.57 ± 5.10 ab | Callus appeared on Day 14, reddish-brown, loose |
Y4 | 0.1 | 1.5 | 91.10 ± 1.90 a | Callus appeared on Day 12, yellowish-white with red granules, loose |
Y5 | 0.5 | 1.5 | 76.70 ± 10.00 b | Callus appeared on Day 13, yellowish-white, red granules, loose |
Y6 | 1.0 | 1.5 | 95.53 ± 3.87 a | Callus appeared on Day 10,yellow-green whitish, compact |
Y7 | 0.1 | 2.0 | 82.23 ± 6.93 ab | Callus appeared on Day 13, yellow-green, compact |
Y8 | 0.5 | 2.0 | 96.67 ± 3.35 a | Callus appeared on Day 11, yellow-green, compact |
Y9 | 1.0 | 2.0 | 66.67 ± 12.05 b | Callus appeared on Day 13, yellow-green, compact |
Treatment Number | Concentration of 6-BA/mg·L−1 | Concentration of NAA/mg·L−1 | Differentiation Rate/% |
---|---|---|---|
CK | 0.0 | 0.0 | 0.00 ± 0.00 e |
F1 | 1.0 | 0.3 | 42.23 ± 3.85 cd |
F2 | 1.5 | 0.3 | 33.33 ± 3.34 d |
F3 | 2.0 | 0.3 | 51.11 ± 8.39 c |
F4 | 2.5 | 0.3 | 65.56 ± 5.09 bc |
F5 | 1.0 | 0.5 | 73.22 ± 9.01 ab |
F6 | 1.5 | 0.5 | 76.67 ± 3.34 ab |
F7 | 2.0 | 0.5 | 83.33 ± 3.34 a |
F8 | 2.5 | 0.5 | 67.78 ± 5.09 b |
Treatment Number | Concentration of 6-BA/mg·L−1 | Concentration of NAA/mg·L−1 | Initial Weight/g | Final Weight/g | Adventitious Bud Proliferation Coefficient |
---|---|---|---|---|---|
CK | 0.0 | 0.0 | 2.68 ± 0.48 a | 10.02 ± 2.42 b | 3.98 ± 0.73 c |
Z1 | 0.5 | 0.1 | 1.16 ± 0.41 b | 12.73 ± 2.73 ab | 11.92 ± 2.24 b |
Z2 | 1.0 | 0.1 | 1.17 ± 0.19 b | 15.45 ± 2.95 a | 15.44 ± 1.33 b |
Z3 | 1.5 | 0.1 | 1.05 ± 0.25 b | 19.78 ± 3.64 a | 20.44 ± 2.51 a |
Z4 | 2.0 | 0.1 | 1.25 ± 0.44 b | 14.72 ± 4.51 ab | 13.07 ± 0.89 b |
Z5 | 0.5 | 0.2 | 1.14 ± 0.04 b | 17.36 ± 0.02 a | 16.45 ± 1.67 a |
Z6 | 1.0 | 0.2 | 1.57 ± 0.81 ab | 16.62 ± 2.26 a | 13.44 ± 3.70 ab |
Z7 | 1.5 | 0.2 | 1.64 ± 0.44 ab | 15.98 ± 2.99 a | 10.12 ± 0.93 b |
Z8 | 2.0 | 0.2 | 2.14 ± 0.53 a | 17.44 ± 1.88 a | 8.69 ± 1.16 bc |
Treatment Number | Basic Medium | Concentration of IBA/mg·L−1 | Number of Roots/Strip | Root Length/cm | Rooting Rate/% |
---|---|---|---|---|---|
CK1 | MS | 0.0 | 3.27 ± 0.49 b | 1.11 ± 0.13 b | 87.41 ± 6.58 b |
S1 | 0.1 | 5.91 ± 0.41 a | 2.11 ± 0.15 a | 98.15 ± 3.21 a | |
S2 | 0.2 | 6.76 ± 0.97 a | 2.18 ± 0.32 a | 100.00 ± 0.00 a | |
S3 | 0.5 | 6.97 ± 0.23 a | 2.39 ± 0.11 a | 100.00 ± 0.00 a | |
CK2 | 1/2MS | 0.0 | 2.73 ± 0.89 b | 1.91 ± 0.37 b | 80.99 ± 18.37 b |
S4 | 0.1 | 5.14 ± 0.49 a | 2.97 ± 0.52 a | 100.00 ± 0.00 a | |
S5 | 0.2 | 5.45 ± 0.69 a | 2.43 ± 0.46 ab | 100.00 ± 0.00 a | |
S6 | 0.5 | 7.35 ± 1.36 a | 2.37 ± 0.16 ab | 100.00 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tang, R.; Wang, F.; Pan, Y.; Duan, Y.; Xue, L.; Zeng, D.; Chen, J.; Peng, D. Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum. Horticulturae 2025, 11, 875. https://doi.org/10.3390/horticulturae11080875
Wang S, Tang R, Wang F, Pan Y, Duan Y, Xue L, Zeng D, Chen J, Peng D. Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum. Horticulturae. 2025; 11(8):875. https://doi.org/10.3390/horticulturae11080875
Chicago/Turabian StyleWang, Shunshun, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen, and Donghui Peng. 2025. "Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum" Horticulturae 11, no. 8: 875. https://doi.org/10.3390/horticulturae11080875
APA StyleWang, S., Tang, R., Wang, F., Pan, Y., Duan, Y., Xue, L., Zeng, D., Chen, J., & Peng, D. (2025). Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum. Horticulturae, 11(8), 875. https://doi.org/10.3390/horticulturae11080875