Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Probiotics
2.2. Animals, Diets, and Experimental Design
2.3. Morris Water Maze (MWM)
2.4. Open Field (OF)
2.5. Novel Object Recognition (NOR)
2.6. Y-Maze
2.7. T-Maze
2.8. Rota-Rod
2.9. Tissue Collection and Hematoxylin and Eosin (H&E) Staining
2.10. Immunohistochemical Assay
2.11. RNA Extraction and RT-qPCR
2.12. Statistical Analysis
3. Results and Discussion
3.1. Morphological Features
3.2. Effect of Probiotics on Behavior Changes
3.3. Effect of Probiotics on Morphological Changes
3.4. Regulatory Effects of Probiotics on Neuroinflammation
3.5. Regulatory Effects of Probiotics on MAPK and NF-κB Signaling Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Ach | Acetylcholine |
AChE | Acetylcholinesterase |
Aβ | Amyloid beta |
Bax | B-cell lymphoma protein 2-associated X |
Bcl-2 | B-cell lymphoma protein 2 |
BDNF | Brain-derived neurotrophic factor |
H&E | Hematoxylin and Eosin |
Iba-1 | Ionized calcium-binding adaptor molecule 1 |
IL | Interleukin |
MAPK | Mitogen-activated protein kinase |
MRS | de Man, Rogosa, and Sharpe |
MWM | Morris water maze |
NF-κB | Nuclear factor-kappa B |
NOR | Novel object recognition |
OF | Open field |
TNF-α | Tumor necrosis factor-alpha |
References
- Carr, C.; Kahn, L.; Mathkour, M.; Biro, E.; Bui, C.J.; Dumont, A.S. The shifting burden of neurosurgical disease: Vietnam and the middle-income nations. Neurosurg. Focus. 2018, 45, E12. [Google Scholar] [CrossRef]
- Silva, M.V.F.; Loures, C.d.M.G.; Alves, L.C.V.; De Souza, L.C.; Borges, K.B.G.; Carvalho, M.d.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Mayeux, R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004, 3, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-J.; Chen, D.-Y.; Lee, C.-H.; Wu, C.-L.; Chen, Y.-J.; Huang, Y.-T.; Chang, S.-H. Association between cholinesterase inhibitors and new-onset heart failure in patients with Alzheimer’s Disease: A nationwide propensity score matching study. Front. Cardiovasc. Med. 2022, 9, 831730. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef]
- Ji, H.-F.; Shen, L. Probiotics as potential therapeutic options for Alzheimer’s disease. Appl. Microbiol. Biotechnol. 2021, 105, 7721–7730. [Google Scholar] [CrossRef]
- Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef]
- Athari Nik Azm, S.; Djazayeri, A.; Safa, M.; Azami, K.; Ahmadvand, B.; Sabbaghziarani, F.; Sharifzadeh, M.; Vafa, M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl. Physiol. Nutr. Metab. 2018, 43, 718–726. [Google Scholar] [CrossRef]
- Messaoudi, M.; Violle, N.; Bisson, J.-F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011, 2, 256–261. [Google Scholar] [CrossRef]
- Maftoon, H.; Siadat, S.D.; Tarashi, S.; Soroush, E.; Asefi, M.B.; Foroushani, A.R.; Dallal, M.M.S. Ameliorative effects of Akkermansia muciniphila on anxiety-like behavior and cognitive deficits in a rat model of Alzheimer’s disease. Brain Res. 2024, 1845, 149280. [Google Scholar] [CrossRef]
- Wei, C.-L.; Wang, S.; Yen, J.-T.; Cheng, Y.-F.; Liao, C.-L.; Hsu, C.-C.; Wu, C.-C.; Tsai, Y.-C. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res. 2019, 1711, 202–213. [Google Scholar] [CrossRef]
- San Tang, K. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers. Life Sci. 2019, 233, 116695. [Google Scholar] [CrossRef]
- Pham, T.N.A.; Kim, H.L.; Lee, D.-R.; Choi, B.-K.; Yang, S.H. Anti-inflammatory effects of Scrophularia buergeriana extract mixture fermented with lactic acid bacteria. Biotechnol. Bioprocess. Eng. 2022, 27, 370–378. [Google Scholar] [CrossRef]
- Choi, G.-Y.; Kim, H.-B.; Cho, J.-M.; Sreelatha, I.; Lee, I.-S.; Kweon, H.-S.; Sul, S.; Kim, S.A.; Maeng, S.; Park, J.-H. Umbelliferone ameliorates memory impairment and enhances hippocampal synaptic plasticity in scopolamine-induced rat model. Nutrients 2023, 15, 2351. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-Y.; Kim, J.; Ko, Y.-H.; Lee, B.-R.; Hur, K.-H.; Jung, Y.H.; Park, H.-J.; Lee, S.-Y.; Jang, C.-G. A novel histone deacetylase 6 inhibitor, 4-FHA, improves scopolamine-induced cognitive and memory impairment in mice. Biomol. Ther. 2025, 33, 268. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.G. Spatial localization does not require the presence of local cues. Learn. Motiv. 1981, 12, 239–260. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. JoVE 2015, 52434. [Google Scholar] [CrossRef]
- Leger, M.; Quiedeville, A.; Bouet, V.; Haelewyn, B.; Boulouard, M.; Schumann-Bard, P.; Freret, T. Object recognition test in mice. Nat. Protoc. 2013, 8, 2531–2537. [Google Scholar] [CrossRef]
- Kraeuter, A.-K.; Guest, P.C.; Sarnyai, Z. The Y-maze for assessment of spatial working and reference memory in mice. In Pre-Clinical Models: Techniques and Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 105–111. [Google Scholar]
- Deacon, R.M.; Rawlins, J.N.P. T-maze alternation in the rodent. Nat. Protoc. 2006, 1, 7–12. [Google Scholar] [CrossRef]
- Luyten, L.; Nuyts, S.; Beckers, T. Low-dose systemic scopolamine disrupts context conditioning in rats. J. Psychopharm. 2017, 31, 667–673. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bromley-Brits, K.; Deng, Y.; Song, W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J. Vis. Exp. JoVE 2011, 2920. [Google Scholar] [CrossRef] [PubMed]
- Okaichi, Y.; Okaichi, H. Effects of glucose on scopolamine-induced learning deficits in rats performing the Morris water maze task. Neurobiol. Learn. Mem. 2000, 74, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Janas, A.M.; Cunningham, S.C.; Duffy, K.B.; Devan, B.D.; Greig, N.H.; Holloway, H.W.; Yu, Q.-S.; Markowska, A.L.; Ingram, D.K.; Spangler, E.L. The cholinesterase inhibitor, phenserine, improves Morris water maze performance of scopolamine-treated rats. Life Sci. 2005, 76, 1073–1081. [Google Scholar] [CrossRef]
- Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Wang, H.; Lee, I.-S.; Braun, C.; Enck, P. Effect of probiotics on central nervous system functions in animals and humans: A systematic review. J. Neurogastroenterol. Motil. 2016, 22, 589. [Google Scholar] [CrossRef]
- Yun, S.-W.; Park, H.-S.; Shin, Y.-J.; Ma, X.; Han, M.J.; Kim, D.-H. Lactobacillus gasseri NK109 and its supplement alleviate cognitive impairment in mice by modulating NF-κB activation, BDNF expression, and gut microbiota composition. Nutrients 2023, 15, 790. [Google Scholar] [CrossRef]
- Yin, D.; Zhao, L.; Deng, S.; Xie, Y.; Ro, K.-S.; Yang, Z.; Du, L.; Xie, J.; Wei, D. Lactiplantibacillus plantarum X7022 plays roles on aging mice with memory impairment induced by D-galactose through restoring neuronal damage, relieving inflammation and oxidative stress. Probiotics Antimicrob. Proteins 2025, 17, 1–14. [Google Scholar] [CrossRef]
- Hol, E.; Roelofs, R.; Moraal, E.; Sonnemans, M.; Sluijs, J.; Proper, E.; De Graan, P.; Fischer, D.; Van Leeuwen, F. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol. Psychiatry 2003, 8, 786–796. [Google Scholar] [CrossRef]
- Mehlhorn, G.; Hollborn, M.; Schliebs, R. Induction of cytokines in glial cells surrounding cortical β-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int. J. Dev. Neurosci. 2000, 18, 423–431. [Google Scholar] [CrossRef]
- Kamphuis, W.; Mamber, C.; Moeton, M.; Kooijman, L.; Sluijs, J.A.; Jansen, A.H.; Verveer, M.; De Groot, L.R.; Smith, V.D.; Rangarajan, S. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE 2012, 7, e42823. [Google Scholar] [CrossRef]
- Dai, X.; Lin, A.; Zhuang, L.; Zeng, Q.; Cai, L.; Wei, Y.; Liang, H.; Gao, W.; Zhang, J.; Chen, X. Targeting SIK3 to modulate hippocampal synaptic plasticity and cognitive function by regulating the transcription of HDAC4 in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2024, 49, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Magadmi, R.; Nassibi, S.; Kamel, F.; Al-Rafiah, A.R.; Bakhshwin, D.; Jamal, M.; Alsieni, M.; Burzangi, A.S.; Zaher, M.F.; Bendary, M. The protective effect of Astaxanthin on scopolamine-induced Alzheimer’s model in mice. Neurosci. J. 2024, 29, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M. Role of GFAP in CNS injuries. Neurosci. Lett. 2014, 565, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, A.F.; Erickson, M.A.; Rhea, E.M.; Salameh, T.S.; Banks, W.A. Gut reactions: How the blood–brain barrier connects the microbiome and the brain. Exp. Biol. Med. 2018, 243, 159–165. [Google Scholar] [CrossRef]
- Radford-Smith, D.E.; Oke, K.; Costa, C.F.; Anthony, D.C. Systematic review and meta-analysis of microbiota-gut-astrocyte axis perturbation in neurodegeneration, brain injury, and mood disorders. Brain Behav. Immun.-Health 2025, 46, 101013. [Google Scholar] [CrossRef]
- Xin, Z.; Xin, C.; Huo, J.; Liu, Q.; Dong, H.; Li, R.; Liu, Y. Neuroprotective effect of a multistrain probiotic mixture in SOD1G93A mice by reducing SOD1 aggregation and targeting the microbiota-gut-brain axis. Mol. Neurobiol. 2024, 61, 10051–10071. [Google Scholar] [CrossRef]
- Mandrekar, S.; Jiang, Q.; Lee, C.D.; Koenigsknecht-Talboo, J.; Holtzman, D.M.; Landreth, G.E. Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J. Neurosci. 2009, 29, 4252–4262. [Google Scholar] [CrossRef]
- Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Investig. 2017, 127, 3240–3249. [Google Scholar] [CrossRef]
- Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef]
- Patterson, S.L. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 2015, 96, 11–18. [Google Scholar] [CrossRef]
- Rani, V.; Verma, R.; Kumar, K.; Chawla, R. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. Curr. Res. Pharmacol. Drug Discov. 2023, 4, 100149. [Google Scholar] [CrossRef]
- Thakur, S.; Dhapola, R.; Sarma, P.; Medhi, B.; Reddy, D.H. Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation 2023, 46, 1–17. [Google Scholar] [CrossRef]
- Fung, T.C. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis. 2020, 136, 104714. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020, 11, 508738. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jeong, J.-W.; Kim, J.-Y.; Shim, J.-J.; Lee, J.-H. Lactobacillus helveticus HY7801 Improves Premenstrual Syndrome Symptoms by Regulating Sex Hormones and Inflammatory Cytokines in a Mouse Model of Metoclopramide-Induced Hyperprolactinemia. Nutrients 2024, 16, 3889. [Google Scholar] [CrossRef] [PubMed]
- Righi, D.; Manco, C.; Pardini, M.; Stufano, A.; Schino, V.; Pelagotti, V.; Massa, F.; Stefano, N.D.; Plantone, D. Investigating interleukin-8 in Alzheimer’s disease: A comprehensive review. J. Alzheimer’s Dis. 2024, 103, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.Y.; Koo, B.-N.; Kim, S.Y.; Kam, E.H.; Nam, J.; Kim, E.J. Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci. Rep. 2021, 11, 8376. [Google Scholar] [CrossRef] [PubMed]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.-K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Ma, F.; Sheng, X.; Chen, K.; Zhuo, R.; Wang, C.; Zheng, H.; Zhang, Y.-w.; Bu, G. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer’s disease model by restoring BDNF signaling. Brain Behav. Immun. 2023, 113, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Donovan, K.M.; Leidinger, M.R.; McQuillen, L.P.; Goeken, J.A.; Hogan, C.M.; Harwani, S.C.; Flaherty, H.A.; Meyerholz, D.K. Allograft inflammatory factor 1 as an immunohistochemical marker for macrophages in multiple tissues and laboratory animal species. Comp. Med. 2018, 68, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Su, L.-Y.; Li, G.; Yang, J.; Liu, Q.; Yang, L.-X.; Zhang, D.-F.; Zhou, H.; Xu, M.; Fan, Y. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 2020, 16, 52–69. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, W.; Jiang, Y.; Lu, K.; Wei, W.; Huo, Q.; Cui, S.; Yang, X.; Li, M.; Xu, N. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 2021, 17, 3833–3847. [Google Scholar] [CrossRef]
- Kitamura, Y.; Shimohama, S.; Kamoshima, W.; Ota, T.; Matsuoka, Y.; Nomura, Y.; Smith, M.A.; Perry, G.; Whitehouse, P.J.; Taniguchi, T. Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res. 1998, 780, 260–269. [Google Scholar] [CrossRef]
- Tamatani, M.; Ogawa, S.; Nuñez, G.; Tohyama, M. Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide. Cell Death Differ. 1998, 5, 911–919. [Google Scholar] [CrossRef]
- Tripathi, S.; Kaushik, M.; Dwivedi, R.; Tiwari, P.; Tripathi, M.; Dada, R. The effect of probiotics on select cognitive domains in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. Rep. 2024, 8, 1422–1433. [Google Scholar] [CrossRef]
- Si, Y.; Liu, L.; Fan, Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov. 2024, 10, 10. [Google Scholar] [CrossRef]
- Singh, S.; Singh, T.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Curr. Neuropharmacol. 2020, 18, 918–935. [Google Scholar] [CrossRef]
- Carlson, N.G.; Wieggel, W.A.; Chen, J.; Bacchi, A.; Rogers, S.W.; Gahring, L.C. Inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α impart neuroprotection to an excitotoxin through distinct pathways. J. Immunol. 1999, 163, 3963–3968. [Google Scholar] [CrossRef]
- Shahini, A.; Shahini, A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: Focus on the available therapeutic approaches and gut microbiome. J. Cell Commun. Signal. 2023, 17, 55–74. [Google Scholar] [CrossRef]
- Li, B.; Evivie, S.E.; Lu, J.; Jiao, Y.; Wang, C.; Li, Z.; Liu, F.; Huo, G. Lactobacillus helveticus KLDS1. 8701 alleviates d-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food Funct. 2018, 9, 6586–6598. [Google Scholar] [CrossRef]
- Hsu, T.-C.; Huang, C.-Y.; Liu, C.-H.; Hsu, K.-C.; Chen, Y.-H.; Tzang, B.-S. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice. Br. J. Nutr. 2017, 117, 1066–1074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, B.; Kim, D.G.; Song, H.; Giang, P.D.K.; Han, H.T.; Yang, S.H. Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice. Microorganisms 2025, 13, 1714. https://doi.org/10.3390/microorganisms13081714
Le B, Kim DG, Song H, Giang PDK, Han HT, Yang SH. Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice. Microorganisms. 2025; 13(8):1714. https://doi.org/10.3390/microorganisms13081714
Chicago/Turabian StyleLe, Bao, Dong Gyun Kim, Hyun Song, Phan Duy Khanh Giang, Ho Tue Han, and Seung Hwan Yang. 2025. "Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice" Microorganisms 13, no. 8: 1714. https://doi.org/10.3390/microorganisms13081714
APA StyleLe, B., Kim, D. G., Song, H., Giang, P. D. K., Han, H. T., & Yang, S. H. (2025). Lactobacillus helveticus CNU395 and L. paracasei CNU396 Alleviate Cognition in Scopolamine-Induced Cognitive Impairment Mice. Microorganisms, 13(8), 1714. https://doi.org/10.3390/microorganisms13081714