Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Cutting Preparation
2.2. Hormone Treatments
2.3. Rooting Medium and Experimental Setup
2.4. Data Collection
- Rooting percentage (%): Calculated as the number of rooted cuttings divided by the total number of cuttings per treatment, multiplied by 100.
- Average number of roots per rooted cutting: All primary roots were counted.
- Average root length (cm): The longest root of each cutting was measured using a precision ruler with 1 mm accuracy.
- Callus formation rate (%): Visual observation of undifferentiated tissue development at the basal end of the cuttings.
- Mortality rate (%): The proportion of cuttings that showed no root or callus formation and were classified as decayed or desiccated.
2.5. Statistical Analysis
2.6. Data Recording, Preliminary Analysis, and Model Design
3. Results
3.1. Effect of Auxin Type and Concentration on Rooting Percentage
3.2. Effect on Root Number and Root Length
3.3. Callus Formation and Mortality Rates
3.4. Overall Performance Ranking of Treatments
3.5. RSM-Based Optimization and Model Validation
3.5.1. Rooting Percentage (R)
3.5.2. Callus Formation (K)
3.5.3. Root Length (RM)
3.5.4. Diagnostic Plots and Model Assumptions
4. Discussion
Comparative Evaluation of the Three RSM Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCD | Central Composite Design |
df | Degrees of Freedom |
H | Hormone Type |
IAA | Indole-3-Acetic Acid |
IBA | Indole-3-Butyric Acid |
K | Callus Formation |
NAA | Naphthaleneacetic Acid |
ppm | Parts Per Million |
R | Rooting Percentage |
RM | Root Length |
RSM | Response Surface Methodology |
SD | Standard Deviation |
T | Temperature |
References
- Pulatkan, M.; Oğuztürk, G.E. Investigate of landscape design use possibilities of some native Ericaceae family plants in Turkey. Düzce Univ. Fac. For. J. For. 2024, 20, 139–154. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J.; McConnell, D.B. Development of new foliage plant cultivars. Trends New Crops New Uses 2002, 5, 466–472. [Google Scholar]
- Davis, T.D.; Potter, J.R. High CO2 applied to cuttings: Effects on rooting and subsequent growth in ornamental species. HortScience 1983, 18, 194–196. [Google Scholar] [CrossRef]
- Dirr, M.A. Effects of selected pruning methods on subsequent growth of Photinia × fraseri. J. Environ. Hortic. 1984, 2, 81–83. [Google Scholar] [CrossRef]
- Özel, H.B.; Yücedağ, C.; Ayan, S. Growth Performances of Photinia× fraseri Dress. Seedlings from Cuttings of Five Ortets in Different Districts. SilvaWorld 2023, 2, 60–65. [Google Scholar]
- Land, S.B., Jr.; Cunningham, M. Rooted Cutting Macropropagation of Hardwoods. Gen. Tech. Rep. SO 1977, 108–120. [Google Scholar]
- Qadir, M.M.A.; Hawramee, O.K.A. The rooting capacity of red tip photinia; Photinia× fraseri hardwood cuttings under the effects of cutting time and IBA concentration. J. Kerbala Agric. Sci. 2022, 9, 118–133. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Khan, N.A. (Eds.) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation Under Abiotic Stress; Springer: Singapore, 2017. [Google Scholar]
- Ma, B.; Hu, H.; Liu, X.; Wang, Q.; Zhou, H.; Chen, S.; Liu, J.; Li, Y. Response of Four Shrubs to Drought Stress and Comprehensive Evaluation of Their Drought Resistance. Agriculture 2025, 15, 1211. [Google Scholar] [CrossRef]
- Liu, K.; Deng, F.; Zeng, F.; Chen, Z.H.; Qin, Y.; Chen, G. Plant growth-promoting rhizobacteria improve drought tolerance of crops: A review. Plant Growth Regul. 2025, 105, 567–581. [Google Scholar] [CrossRef]
- Kurniawan, A.; Maghfoer, M.D.; Rahmandhias, D.T.; Maulidah, N.I. Optimization of Ornamental Plant Production through the Application of PGPR in Gunungsari Village, Bumiaji District. Teumulong J. Community Serv. 2025, 3, 43–51. [Google Scholar] [CrossRef]
- Goodman, E.A.; Anderson, N.O. Vegetative propagation of Linum spp. HortScience 2025, 60, 317–324. HortScience 2025, 60, 317–324. [Google Scholar] [CrossRef]
- Bowden, A.T.; Knight, P.R.; Ryals, J.B.; Coker, C.E.H.; Langlois, S.A.; Broderick, S.R.; Blythe, E.K.; Sakhanokho, H.F. Evaluation of honey as a rooting adjuvant for Cutting Propagation of Three Common Nursery Crops. Agriculture 2025, 15, 256. [Google Scholar] [CrossRef]
- Kaushik, S.; Shukla, N. A review on effect of IBA and NAA and their combination on the rooting of stem cuttings of different ornamental crops. J. Pharmacogn. Phytochem. 2020, 9, 1881–1885. [Google Scholar] [CrossRef]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Auxin application to stem cuttings of selected woody landscape plants by incorporation into a stabilized organic rooting substrate. J. Environ. Hortic. 2004, 22, 63–70. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.; Nam, S.Y. Optimized concentrations of auxinic rooting promoters improve stem cutting propagation efficiency and morphophysiological characteristics in Hedera algeriensis cv. Gloire de Marengo. Hortic. Sci. Technol. 2025, 43, 357–372. [Google Scholar] [CrossRef]
- Limbu, A.S.; Tripathi, B.; Bhattarai, P.; Dahal, J. Response of rooting hormone on rooting and media shooting capacity of Chrysanthemum cuttings at Tehrathum, Nepal. Asian J. Agric. Hortic. Res. 2025, 12, 95–103. [Google Scholar] [CrossRef]
- Sultana, Z. Rooting Performance of Stem Cuttings of Three Ornamental Plants as Influenced by Growth Regulators. Ph.D. Thesis, Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, 2006. [Google Scholar]
- Sarr, D.; Coly, A.; Douabalé, S.E.; Tine, A.; Traoré, S.; Diallo, N. Photodegradation kinetics of some indolecarboxylic acids and their regulation effects on plant growth (groundnut and haricot bean). Talanta 2003, 60, 571–579. [Google Scholar] [CrossRef]
- Zhu, C.; Li, R.; Wu, S.; Miao, C.; Zhang, Y.; Cui, J.; Jiang, Y.; Ding, X. Construction of a tomato seedling growth model and economic benefit analysis under different photoperiod strategies in plant factories. Hortic. Plant J. 2025, in press. [Google Scholar] [CrossRef]
- Aighewi, B.A.; Kumar, P.L.; Aihebhoria, D.; Amah, D.; Maroya, N.G.; Asiedu, R.; Balogun, M.O.; Mignouna, D.B. Rapid Propagation of Yam Using Leaf-Bud Cuttings: A Manual; IITA: Ibadan, Nigeria, 2025. [Google Scholar]
- Venegas Tarancón, S.G.; Usandivaras, M.V.; Mamani de Marchese, A.I.; Filippone, M.P. Effect of Phytohormones and a Plant Extract on In Vitro Culture of Fragaria × ananassa Duch; Universidad Nacional de Colombia—Sede Palmira: Palmira, Colombia, 2025. [Google Scholar]
- Chang, J.; Tian, L.; Leite, M.F.; Sun, Y.; Shi, S.; Xu, S.; Wu, L.; He, D.; Li, W.; Zhang, J.; et al. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome 2022, 10, 196. [Google Scholar] [CrossRef]
- Verma, S.; Varma, A.; Rexer, K.H.; Hassel, A.; Kost, G.; Sarbhoy, A.; Bisen, P.; Bütehorn, B.; Franken, P. Piriformospora indica gen. et sp. nov., a new root-colonizing fungus. Mycologia 1998, 90, 896–903. [Google Scholar] [CrossRef]
- El-Banna, H.Y. Micropropagation of thyme plant (Thymus vulgaris). J. Plant Prod. 2017, 8, 1221–1227. [Google Scholar] [CrossRef]
- Katsanou, C.E.; Kostas, S.; Bantis, F.; Bertsouklis, K.; Hatzilazarou, S. Optimizing in vitro propagation of “Ladania” (Cistus creticus L.) through interaction of light spectra and plant growth regulators. Agronomy 2025, 15, 774. [Google Scholar] [CrossRef]
- Lal, M.K.; Kumar, R.; Tiwari, R.K.; Kumar, A.; Ghorbani, A.; Pehlivan, N.; Zargar, M. Mechanisms of stress tolerance in horticultural crops: Physiological and molecular insights. Front. Plant Sci. 2023, 16, 1664603. [Google Scholar]
- Sahoo, T.T.; Maharana, K.; Beura, S.; Jena, S.S. Effect of Indole-3-butyric Acid, Aspirin and Natural Plant Extracts on Rooting of Chrysanthemum (Dendranthema grandiflora L.) cv. Flirt. Asian J. Res. Biochem. 2025, 15, 30–50. [Google Scholar] [CrossRef]
- Breig, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Li, Z.; Lu, D.; Gao, X. Optimization of mixture proportions by statistical experimental design using response surface method—A review. J. Build. Eng. 2021, 36, 102101. [Google Scholar] [CrossRef]
- Bayraktar, Ş.; Alparslan, C.; Salihoğlu, N.; Sarıkaya, M. A holistic research based on RSM and ANN for improving drilling outcomes in Al–Si–Cu–Mg (C355) alloy. J. Mater. Res. Technol. 2025, 35, 1596–1607. [Google Scholar] [CrossRef]
- Ercan Oğuztürk, G.; Sünbül, S.; Alparslan, C. The effect of green areas on urban microclimate: A university campus model case. Appl. Sci. 2025, 15, 4358. [Google Scholar] [CrossRef]
- Tan, U. Application of indole-3-butyric acid enhances agronomic, physiological and antioxidant traits of Salvia fruticosa under saline conditions. PeerJ 2025, 13, e18846. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.M.D.; Vieira, E.A.; Palhares Neto, L.; Ramos, S.; Gastauer, M.; Caldeira, C.F. Enhancing conservation efforts of Stephanopodium engleri through vegetative propagation: Effects of IBA and cutting types. Plants 2025, 14, 2116. [Google Scholar] [CrossRef]
- Thapa, A.; Hasan, M.R.; Kabir, A.H. Trichoderma afroharzianum induces rhizobia–flavonoid symbiosis to promote iron deficiency tolerance in plants. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gabre, V.V.; Patil, C.P.; Banakar, S.P.; Mesta, R.K.; Gadakh, S.R. Multiple effect of different plant growth promoting microorganisms on beans (Phaseolus vulgaris L.) crop. Braz. Arch. Biol. Technol. 2020, 63, e20190493. [Google Scholar] [CrossRef]
- Rudresh, D.L.; Shivaprakasha, M.K.; Prasad, R.D. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on chickpea. Appl. Soil Ecol. 2005, 28, 139–146. [Google Scholar] [CrossRef]
- Alparslan, C.; Bayraktar, Ş. Experimental research and optimization based on response surface methodology on machining characteristics of cast Al-7Si-0.6Mg alloy: Effects of cutting parameters and heat treatment. Measurement 2024, 236, 115111. [Google Scholar] [CrossRef]
- Aizaz, M.; Lubna; Hashmi, S.S.; Khan, M.A.; Jan, R.; Bilal, S.; Kim, K.-M.; Al-Harrasi, A.; Asaf, S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. Plants 2025, 14, 1131. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, K.; Hao, X.; Wang, L.; Li, N.; Zhang, W.; Tang, S.; Li, D.; Zhang, W. Differential Rooting Efficacy of Growth Regulators in Camellia sinensis Cuttings: A Physiological and Biochemical Analysis. Horticulturae 2025, 11, 289. [Google Scholar] [CrossRef]
- Li, Y.; Lin, W.; Huang, J.; Ding, J.; Li, J.; He, B.; Yang, C.; Wu, Y.; Huang, Q.; Yan, J.; et al. Optimization of Bougainvillea tissue culture system by response surface methodology. Ind. Crops Prod. 2025, 226, 120667. [Google Scholar] [CrossRef]
- Chachar, S.; Ahmed, N.; Hu, X. Future-proofing ornamental plants: Cutting-edge strategies for drought resistance and sustainability. Physiol. Plant. 2025, 177, e70255. [Google Scholar] [CrossRef] [PubMed]
- Ghale-shahi, Z.G.; Zarei, H.; Alizadeh, M.; Babarabie, M. Evaluation of Rooting of Stem Cuttings of Magnolia soulangeana Under Influence of Time and IBA Treatment. J. Chem. Health Risks 2017, 7, 259–272. [Google Scholar]
- Sahoo, T.T. Effect of IBA, Aspirin and Natural Plant Extracts on Rooting of Chrysanthemum (Dendranthema grandiflora L.) cv. Flirt. Ph.D. Thesis, Department of Floriculture and Landscaping, Orissa University of Agriculture and Technology (OUAT), Bhubaneswar, India, 2021. [Google Scholar]
- Eisa, E.A.; Tilly-Mándy, A.; Honfi, P.; Shala, A.Y.; Gururani, M.A. Chrysanthemum: A comprehensive review on recent developments on in vitro regeneration. Biology 2022, 11, 1774. [Google Scholar] [CrossRef]
- Ahmed, Z.S.; Salim, A.M.; Al-Dur, E.T.H.; Al-Chalabi, A.T.M.; Sanam, M.A.; Dargiri, S.A.; Meftahizade, H. Optimizing micropropagation and microcorm induction in saffron (Crocus sativus L.) using PGRs (NAA and BAP) and elicitor salicylic acid. BMC Plant Biol. 2025, 25, 877. [Google Scholar] [CrossRef]
- Ercan Oğuztürk, G.; Murat, C.; Yurtseven, M.; Oğuztürk, T. The Effects of AI-Supported Autonomous Irrigation Systems on Water Efficiency and Plant Quality: A Case Study of Geranium psilostemon Ledeb. Plants 2025, 14, 770. [Google Scholar] [CrossRef]
- Chai, L.C.; Alderson, P.G.; Chin, C.F. Exogenous Cytokinin Induces Callus and Protocorm-Like-Bodies Formation in In Vitro Root Tips of Vanilla planifolia Andrews. Trop. Life Sci. Res. 2024, 35, 235–258. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, B.; Boubakri, H.; Farooq, M.; Mur, L.A.J.; Urano, D.; Teo, C.H.; Tan, B.C.; Hasan, M.D.M.; Aslam, M.M.; et al. The regulatory role of phytohormones in plant drought tolerance. Planta 2025, 261, 98. [Google Scholar] [CrossRef] [PubMed]
- Oğuztürk, T.; Alparslan, C.; Aydın, Y.; Öztatar, U.; Ercan Oğuztürk, G. Effect of Different Indole Butyric Acid (IBA) Concentrations in Various Rooting Media on the Rooting Success of Loropetalum chinense var. rubrum Yieh Cuttings and Its Modeling with Artificial Neural Networks. Horticulturae 2025, 11, 564. [Google Scholar] [CrossRef]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic. 2007, 25, 166–185. [Google Scholar] [CrossRef]
- Yıldırım, N.; Pulatkan, M.; Ercan Oğuztürk, G. GA3 treatments on seed germination in Rhodothamnus sessilifolius, an endangered species in Turkey. Caldasia 2022, 44, 241–247. [Google Scholar] [CrossRef]
- Oğuztürk, T.; Acar, C. Effects of Soil–Sand Mixtures on Alchemilla mollis and Geranium psilostemon: A Multi-Criteria Performance Analysis Under Low-Altitude Conditions Using PROMETHEE. Horticulturae 2025, 11, 653. [Google Scholar] [CrossRef]
- Loconsole, D.; Sdao, A.E.; Cristiano, G.; De Lucia, B. Different Responses to Adventitious Rhizogenesis under Indole-3-Butyric Acid and Seaweed Extracts in Ornamental’s Cuttings: First Results in Photinia x fraseri ‘Red Robin’. Agriculture 2023, 13, 513. [Google Scholar] [CrossRef]
- Dasila, H.; Joshi, S.; Sahgal, M. Dissecting structure and function of plant rhizomicrobiome: A genomic approach. In Rhizosphere Microbes: Soil and Plant Functions; Meena, V.S., Ed.; Springer: Singapore, 2021; pp. 73–103. [Google Scholar]
Source | DF | Seq. SS | Contribution | Adj. SS | Adj. MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 8 | 705.15 | 92.79% | 705.146 | 88.143 | 93.01 | 0.120 |
Linear | 5 | 586.15 | 68.82% | 659.102 | 131.820 | 44.50 | 0.062 |
T | 1 | 235.52 | 27.65% | 119.722 | 119.722 | 24.08 | 0.099 |
ppm | 1 | 220.43 | 25.88% | 91.469 | 91.469 | 33.12 | 0.138 |
H | 3 | 130.20 | 15.29% | 41.354 | 13.785 | 20.47 | 0.416 |
Square | 2 | 105.05 | 12.33% | 83.445 | 41.722 | 1.42 | 0.324 |
T×T | 1 | 77.63 | 9.11% | 4.660 | 4.660 | 0.16 | 0.507 |
ppm×ppm | 1 | 27.42 | 3.22% | 33.619 | 33.619 | 11.15 | 0.333 |
2-Way Interaction | 1 | 13.94 | 1.64% | 13.944 | 13.944 | 0.48 | 0.421 |
T×ppm | 1 | 13.94 | 1.64% | 13.944 | 13.944 | 0.48 | 0.421 |
Error | 5 | 146.57 | 17.21% | 146.568 | 29.314 | ||
Total | 13 | 851.71 | 100.00% | ||||
Regression Equation in Uncoded Units | |||||||
H | |||||||
C | R | = | −419,732 + 38,014 T + 0.227 ppm − 861 T×T − 0.000000 ppm×ppm − 0.0101 T×ppm | ||||
IAA | R | = | −419,722 + 38,014 T + 0.227 ppm − 861 T×T − 0.000000 ppm×ppm − 0.0101 T×ppm | ||||
IBA | R | = | −419,726 + 38,014 T + 0.227 ppm − 861 T×T − 0.000000 ppm×ppm − 0.0101 T×ppm | ||||
NAA | R | = | −419,725 + 38,014 T + 0.227 ppm − 861 T×T − 0.000000 ppm×ppm − 0.0101 T×ppm |
Source | DF | Seq. SS | Contribution | Adj. SS | Adj. MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 8 | 203.237 | 89.57% | 203.237 | 25.4047 | 2.43 | 0.171 |
Linear | 5 | 154.976 | 60.67% | 146.665 | 29.3330 | 2.81 | 0.141 |
T | 1 | 51.429 | 20.13% | 14.203 | 14.2032 | 1.36 | 0.296 |
ppm | 1 | 9.669 | 3.79% | 0.261 | 0.2615 | 0.03 | 0.480 |
H | 3 | 93.878 | 36.75% | 38.130 | 12.7100 | 1.22 | 0.394 |
Square | 2 | 44.032 | 17.24% | 48.262 | 24.1308 | 2.31 | 0.195 |
T×T | 1 | 36.342 | 14.23% | 14.342 | 14.3416 | 1.37 | 0.294 |
ppm×ppm | 1 | 7.690 | 3.01% | 5.665 | 5.6651 | 0.54 | 0.494 |
2-Way Interaction | 1 | 4.230 | 1.66% | 4.230 | 4.2300 | 0.41 | 0.452 |
T×ppm | 1 | 4.230 | 1.66% | 4.230 | 4.2300 | 0.41 | 0.452 |
Error | 5 | 52.191 | 20.43% | 52.191 | 10.4382 | ||
Total | 13 | 255.429 | 100.00% | ||||
Regression Equation in Uncoded Units | |||||||
H | |||||||
C | K | = | 731,080 − 66,446 T + 0.121 ppm + 1510 T×T + 0.000000 ppm×ppm − 0.00558 T×ppm | ||||
IAA | K | = | 731,069 − 66,446 T + 0.121 ppm + 1510 T×T + 0.000000 ppm×ppm − 0.00558 T×ppm | ||||
IBA | K | = | 731,070 − 66,446 T + 0.121 ppm + 1510 T×T + 0.000000 ppm×ppm − 0.00558 T×ppm | ||||
NAA | K | = | 731,066 − 66,446 T + 0.121 ppm + 1510 T×T + 0.000000 ppm×ppm − 0.00558 T×ppm |
Source | DF | Seq. SS | Contribution | Adj. SS | Adj. MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 8 | 51.1782 | 80.37% | 51.1782 | 6.3973 | 2.56 | 0.158 |
Linear | 5 | 15.2312 | 23.92% | 24.4079 | 4.8816 | 1.95 | 0.240 |
T | 1 | 7.0482 | 11.07% | 0.0039 | 0.0039 | 0.00 | 0.470 |
ppm | 1 | 1.6829 | 2.64% | 5.4907 | 5.4907 | 2.20 | 0.198 |
H | 3 | 6.5001 | 10.21% | 9.7321 | 3.2440 | 1.30 | 0.372 |
Square | 2 | 20.7719 | 32.62% | 9.4434 | 4.7217 | 1.89 | 0.245 |
T×T | 1 | 20.1617 | 31.66% | 1.7125 | 1.7125 | 0.69 | 0.446 |
ppm×ppm | 1 | 0.6102 | 0.96% | 2.0630 | 2.0630 | 0.83 | 0.405 |
2-Way Interaction | 1 | 15.1751 | 23.83% | 15.1751 | 15.1751 | 6.07 | 0.057 |
T×ppm | 1 | 15.1751 | 23.83% | 15.1751 | 15.1751 | 6.07 | 0.057 |
Error | 5 | 12.4983 | 19.63% | 12.4983 | 2.4997 | ||
Total | 13 | 63.6765 | 100.00% | ||||
Regression Equation in Uncoded Units | |||||||
H | |||||||
C | RM | = | −253,417 + 22,998 T + 0.2335 ppm − 522 T×T − 0.000000 ppm×ppm − 0.01056 T×ppm | ||||
IAA | RM | = | −253,419 + 22,998 T + 0.2335 ppm − 522 T×T − 0.000000 ppm×ppm − 0.01056 T×ppm | ||||
IBA | RM | = | −253,419 + 22,998 T + 0.2335 ppm − 522 T×T − 0.000000 ppm×ppm − 0.01056 T×ppm | ||||
NAA | RM | = | −253,416 + 22,998 T + 0.2335 ppm − 522 T×T − 0.000000 ppm×ppm − 0.01056 T×ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercan Oğuztürk, G.; Pulatkan, M.; Alparslan, C.; Oğuztürk, T. Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology. Plants 2025, 14, 2420. https://doi.org/10.3390/plants14152420
Ercan Oğuztürk G, Pulatkan M, Alparslan C, Oğuztürk T. Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology. Plants. 2025; 14(15):2420. https://doi.org/10.3390/plants14152420
Chicago/Turabian StyleErcan Oğuztürk, Gülcay, Müberra Pulatkan, Cem Alparslan, and Türker Oğuztürk. 2025. "Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology" Plants 14, no. 15: 2420. https://doi.org/10.3390/plants14152420
APA StyleErcan Oğuztürk, G., Pulatkan, M., Alparslan, C., & Oğuztürk, T. (2025). Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology. Plants, 14(15), 2420. https://doi.org/10.3390/plants14152420