Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas
Abstract
1. Introduction
2. Results
2.1. Effect of Exogenous Plant Growth Regulators Alone on Days to Shoot Induction
2.2. Effect of Varying Plant Growth Regulators on Adventitious Shoot Formation, Multiplication, and Elongation Irrespective of the Genomes
2.3. Effect of Triploid Musa spp. Genomes on Adventitious Shoot Proliferation, Multiplication, and Elongation
2.4. Effect of Exogenous Auxins Alone on De Novo Root Formation of Regenerated Plantlets
2.5. Influence of Triploid Musa spp. Genome Background on Root Formation in MS Media, and Plantlets’ Acclimatization
2.6. Correlation of Plant Growth Regulator Concentration with Shoot Induction and Root Formation
3. Discussion
4. Materials and Methods
4.1. Plantain and Banana Varieties
4.2. Explant Preparation
4.3. Shoot Bud Formation, Multiplication, and Elongation
4.4. Root Formation
4.5. Plantlet Acclimatization
4.6. Experimental Setup and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Element | Concentration | |
---|---|---|
Mg.L−1 | µM | |
Microelements | ||
CoCl2.6H2O | 0.025 | 0.11 |
CuSO4.5H2O | 0.025 | 0.10 |
FeNaEDTA | 36.70 | 100.00 |
H3BO3 | 6.20 | 100.27 |
KI | 0.83 | 5.00 |
MnSO4.H2O | 16.90 | 100.00 |
Na2MoO4.2H2O | 0.25 | 1.03 |
ZnSO4.7H2O | 8.60 | 29.91 |
Macroelements | ||
CaCl2 | 332.02 | 2.99 |
KH2PO4 | 170.00 | 1.25 |
KNO3 | 1900.00 | 18.79 |
MgSO4 | 180.54 | 1.50 |
NH4NO3 | 1650.00 | 20.61 |
Vitamins | ||
Gly | 2.00 | 26.64 |
C6H12O6 | 100.00 | 554.94 |
C6H5NO2 | 0.50 | 4.06 |
C8H12ClNO3 | 0.50 | 2.43 |
References
- Häkkinen, M. Reappraisal of Sectional Taxonomy in Musa (Musaceae). TAXON 2013, 62, 809–813. [Google Scholar] [CrossRef]
- Brown, A.; Tumuhimbise, R.; Amah, D.; Uwimana, B.; Nyine, M.; Mduma, H.; Talengera, D.; Karamura, D.; Kuriba, J.; Swennen, R. Bananas and Plantains (Musa Spp.). In Genetic Improvement of Tropical Crops; Springer International Publisher (CH): Cham, Switzerland, 2017; pp. 219–240. ISBN 978-3-319-59817-8. [Google Scholar]
- Kaushal, M.; Kolombia, Y.; Alakonya, A.E.; Kuate, A.F.; Ortega-Beltran, A.; Amah, D.; Masso, C. Subterranean Microbiome Affiliations of Plantain (Musa Spp.) Under Diverse Agroecologies of Western and Central Africa. Microb. Ecol. 2022, 84, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Olumba, C.C.; Onunka, C.N. Banana and Plantain in West Africa: Production and Marketing. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 15474–15489. [Google Scholar] [CrossRef]
- Platonovskiy, N.G.; Ibrasheva, L.R.; Obukhova, N.I.; Puchkova, O.S.; Babkina, A.V. International Banana Trade: Volumes, Countries, and Trends. In Sustainable Development of the Agrarian Economy Based on Digital Technologies and Smart Innovations; Springer International Publisher (CH): Cham, Switzerland, 2024; pp. 25–30. ISBN 978-3-031-51271-1. [Google Scholar]
- Su, C.-H.; Ishdorj, A.; Leatham, D.J. An Analysis of the Banana Import Market in the U.S. AgEcon 2011, 1–14. [Google Scholar] [CrossRef]
- Keats, E.C.; Rappaport, A.I.; Shah, S.; Oh, C.; Jain, R.; Bhutta, Z.A. The Dietary Intake and Practices of Adolescent Girls in Low- and Middle-Income Countries: A Systematic Review. Nutrients 2018, 10, 1978. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Rind, F.; Irfan, O.; Hadi, R.; Das, J.K.; Bhutta, Z.A. Impact of Infant and Young Child Feeding (IYCF) Nutrition Interventions on Breastfeeding Practices, Growth and Mortality in Low- and Middle-Income Countries: Systematic Review. Nutrients 2020, 12, 722. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.D.; Ejeta, G. A New Global Agenda for Nutrition and Health: The Importance of Agriculture and Food Systems. Bull. World Health Organ. 2015, 94, 228–229. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-Based Interventions for Improvement of Maternal and Child Nutrition: What Can Be Done and at What Cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer Statistics, 2014. CA Cancer J Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef]
- Adero, M.; Tripathi, J.N.; Tripathi, L. Advances in Somatic Embryogenesis of Banana. Int. J. Mol. Sci. 2023, 24, 10999. [Google Scholar] [CrossRef]
- Nansamba, M.; Sibiya, J.; Tumuhimbise, R.; Karamura, D.; Kubiriba, J.; Karamura, E. Breeding Banana (Musa Spp.) for Drought Tolerance: A Review. Plant Breed. 2020, 139, 685–696. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Evans, E.A. The Future of Global Banana Production. Hortic. Rev. 2015, 43, 311–352. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 Editing of Endogenous Banana Streak Virus in the B Genome of Musa Spp. Overcomes a Major Challenge in Banana Breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Hiti-Bandaralage, J. Tissue Culture—A Sustainable Approach to Explore Plant Stresses. Life 2023, 13, 780. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.G.; Cellini, F.; Fotopoulos, V.; Balestrini, R.; Arbona, V. New Approaches to Improve Crop Tolerance to Biotic and Abiotic Stresses. Physiol. Plant. 2022, 174, e13547. [Google Scholar] [CrossRef]
- Davies, K.M.; Deroles, S.C. Prospects for the Use of Plant Cell Cultures in Food Biotechnology. Curr. Opin. Biotechnol. 2014, 26, 133–140. [Google Scholar] [CrossRef]
- Kidasi, P.C.; Kilalo, D.C.; Mwang’ombe, A.W. Effect of Sterilants and Plant Growth Regulators in Regenerating Commonly Used Cassava Cultivars at the Kenyan Coast. Heliyon 2023, 9, e17263. [Google Scholar] [CrossRef]
- Sessou, A.F.; Kahia, J.W.; Houngue, J.A.; Ateka, E.M.; Dadjo, C.; Ahanhanzo, C. In Vitro Propagation of Three Mosaic Disease Resistant Cassava Cultivars. BMC Biotechnol. 2020, 20, 51. [Google Scholar] [CrossRef]
- Gebeyehu, A. Effect of Different Concentrations of IAA (Indole Acetic Acid) and IBA (Indole Butyric Acid) on Multiple Root Regeneration of Banana (Musa Spp.) Cv. Giant Cavendish from Meristem Derived Explants. J. Exp. Agric. Int. 2018, 27, 1–6. [Google Scholar] [CrossRef]
- Bohra, P.; Waman, A.A.; Sathyanarayana, B.N.; Umesha, K.; Gowda, B. Influence of Different Growth Regulators on In Vitro Multiplication of Mixed Diploid Banana (Musa AB). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 179–185. [Google Scholar] [CrossRef]
- Sharde, R.; Tripathi, M.K.; Bhatt, D.; Tiwari, S.; Sharma, M.; Tomar, Y.S.; Tripathi, N. Influence of Plant Growth Regulators on In Vitro Morphogenesis in Sprout Culture of Potato (Solanum tuberosum L.). Potato Res. 2024, 67, 399–420. [Google Scholar] [CrossRef]
- Khatun, F.; Hoque, M.; Huq, H.; Adil, M.; Ashraf-Uz-Zaman, K.; Rabin, M. Effect of BAP and IBA on in Vitro Regeneration of Local Banana Variety of Sabri. Biotechnol. J. Int. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Roels, S.; Escalona, M.; Cejas, I.; Noceda, C.; Rodriguez, R.; Canal, M.J.; Sandoval, J.; Debergh, P. Optimization of Plantain (Musa AAB) Micropropagation by Temporary Immersion System. Plant Cell Tissue Organ Cult. 2005, 82, 57–66. [Google Scholar] [CrossRef]
- Talukdar, M.; Swain, D.K.; Bhadoria, P.B.S. Effect of IAA and BAP Application in Varying Concentration on Seed Yield and Oil Quality of Guizotia abyssinica (L.f.). Ann. Agric. Sci. 2022, 67, 15–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, W.; Li, H. The Role of GA, IAA and BAP in the Regulation of in Vitro Shoot Growth and Microtuberization in Potato. Acta Physiol. Plant. 2005, 27, 363–369. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. The Effect of Cytokinins on Shoot Proliferation, Secondary Metabolite Production and Antioxidant Potential in Shoot Cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2015, 122, 699–708. [Google Scholar] [CrossRef]
- Leto, L.; Guarrasi, V.; Agosti, A.; Nironi, M.; Chiancone, B.; Juan Vicedo, J. Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, Cvs. Cascade and Columbus. Plants 2025, 14, 418. [Google Scholar] [CrossRef]
- Das, A.; Kumar, S.; Nandeesha, P.; Yadav, I.S.; Saini, J.; Chaturvedi, S.K.; Datta, S. An Efficient in Vitro Regeneration System of Fieldpea (Pisum sativum L.) via. Shoot Organogenesis. J. Plant Biochem. Biotechnol. 2014, 23, 184–189. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M.P. Plant Regeneration through the Direct Induction of Shoot Buds from Petiole Explants of Jatropha Curcas: A Biofuel Plant. Ann. Appl. Biol. 2010, 156, 367–375. [Google Scholar] [CrossRef]
- Hasan, S.A.; Khasim, S.M.; Ramudu, J. Development of Standard Protocols for In Vitro Regeneration of Some Selected Banana Cultivars (Musa Spp.) from India. In Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation; Springer: Singapore, 2020; pp. 743–759. ISBN 978-981-15-1635-1. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Galmarini, C.; Tognetti, J. Effects of Combined or Single Exogenous Auxin and/or Cytokinin Applications on Growth and Leaf Area Development in Epipremnum Aureum. J. Hortic. Sci. Biotechnol. 2015, 90, 643–654. [Google Scholar] [CrossRef]
- Khaskheli, A.J.; Ali, M.; Shah, S.Z.H.; Memon, Z.F.; Awan, S.; Khaskheli, M.I.; Khaskheli, M.A.; Magsi, B.; Qambrani, Z.; Khaskheli, A.A. Initiation, Proliferation, and Improvement of a Micropropagation System for Mass Clonal Production of Banana through Shoot-Tip Culture. J. Plant Biotechnol. 2021, 48, 86–92. [Google Scholar] [CrossRef]
- Al-Amin, M.; Karim, M.; Amin, M.; Rahman, S.; Mamun, A. In Vitro Micropropagation of Banana. Bangladesh J. Agric. Res. 1970, 34, 645–659. [Google Scholar] [CrossRef]
- Prabowo, H.; Yuniastuti, E.; Yunus, A. Effects of Media Combination with Concentration of AB-Mix Nutrient on Growth of Banana Shoots on in Vitro. Bulg. J. Agric. Sci. 2018, 24, 404–410. [Google Scholar]
- Zhao, X.; Zhuang, Y.; Xie, W.; Yang, Y.; Pu, J.; Fan, Z.; Chen, Y.; Lin, Y.; Lai, Z. Allelic Expression Dynamics of Regulatory Factors During Embryogenic Callus Induction in ABB Banana (Musa Spp. Cv. Bengal, ABB Group). Plants 2025, 14, 761. [Google Scholar] [CrossRef]
- Schween, G.; Schwenkel, H.-G. Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula spp. Plant Cell Tissue Organ Cult. 2003, 72, 53–61. [Google Scholar] [CrossRef]
- Mishutkina, Y.V.; Gaponenko, A.K. Sugar Beet (Beta vulgaris L.) Morphogenesis in Vitro: Effects of Phytohormone Type and Concentration in the Culture Medium, Type of Explants, and Plant Genotype on Shoot Regeneration Frequency. Russ. J. Genet. 2006, 42, 150–157. [Google Scholar] [CrossRef]
- Khaliluev, M.R.; Bogoutdinova, L.R.; Baranova, G.B.; Baranova, E.N.; Kharchenko, P.N.; Dolgov, S.V. Influence of Genotype, Explant Type, and Component of Culture Medium on in Vitro Callus Induction and Shoot Organogenesis of Tomato (Solanum lycopersicum L.). Biol. Bull. Russ. Acad. Sci. 2014, 41, 512–521. [Google Scholar] [CrossRef]
- Justine, A.K.; Kaur, N.; Savita; Pati, P.K. Biotechnological Interventions in Banana: Current Knowledge and Future Prospects. Heliyon 2022, 8, e11636. [Google Scholar] [CrossRef]
- Nazihah, S.P.; Rahayu, M.S.; Wiendi, N.M.A. Regeneration of Raja (Musa AAB Group) and Kepok (Musa ABB Group) Bananas on Various Stages of in Vitro Culture. Indones. J. Agron. 2023, 51, 64–71. [Google Scholar] [CrossRef]
- Ngomuo, M.; Mneney, E.; Ndakidemi, P. The Effects of Auxins and Cytokinin on Growth and Development of (Musa Sp.) Var. “Yangambi” Explants in Tissue Culture. Am. J. Plant Sci. 2013, 4, 2174–2180. [Google Scholar] [CrossRef]
- Vuylsteke, D.R. Shoot-Tip Culture for the Propagation, Conservation and Exchange of Musa Germplasm; Practical Manuals for Handling Crop Germplasm In Vitro; IBPGR: Rome, Italy, 1989; ISBN 978-92-9043-140-4. [Google Scholar]
- Alrazn, S.M.; Alkhalifa, A.A.; Al-Sereh, E.A. Effect of Cytokinin TDZ and Auxin IBA on the Succession of Plants of the Banana Plant (Musa acumanata), the Grand-Nain Hybrid Cultivar, Using Tissue Culture Technology. J. Wildl. Biodivers. 2023, 7, 277–290. [Google Scholar] [CrossRef]
- Yu, J.; Liu, W.; Liu, J.; Qin, P.; Xu, L. Auxin Control of Root Organogenesis from Callus in Tissue Culture. Front. Plant Sci. 2017, 8, 1385. [Google Scholar] [CrossRef]
- Kollárová, K.; Lišková, D.; Kákoniová, D.; Lux, A. Effect of Auxins on Karwinskia Humboldtiana Root Cultures. Plant Cell Tissue Organ Cult. 2004, 79, 213–221. [Google Scholar] [CrossRef]
- Elmongy, M.S.; Cao, Y.; Zhou, H.; Xia, Y. Root Development Enhanced by Using Indole-3-Butyric Acid and Naphthalene Acetic Acid and Associated Biochemical Changes of In Vitro Azalea Microshoots. J. Plant Growth Regul. 2018, 37, 813–825. [Google Scholar] [CrossRef]
- Arinaitwe, G.; Rubaihayo, P.R.; Magambo, M.J.S. Proliferation Rate Effects of Cytokinins on Banana (Musa Spp.) Cultivars. Sci. Hortic. 2000, 86, 13–21. [Google Scholar] [CrossRef]
- Mekonen, G.; Egigu, M.C.; Muthsuwamy, M. In Vitro Propagation of Banana (Musa paradisiaca L.) Plant Using Shoot Tip Explant. Turk. J. Agric. Food Sci. Tech. 2021, 9, 2339–2346. [Google Scholar] [CrossRef]
- Aremu, A.O.; Bairu, M.W.; Szüčová, L.; Doležal, K.; Finnie, J.F.; Van Staden, J. Shoot and Root Proliferation in ‘Williams’ Banana: Are the Topolins Better Cytokinins? Plant Cell Tissue Organ Cult. 2012, 111, 209–218. [Google Scholar] [CrossRef]
- Waman, A.A.; Bohra, P.; Sathyanarayana, B.N.; Umesha, K.; Mukunda, G.K.; Ashok, T.H.; Gowda, B. Optimization of Factors Affecting In Vitro Establishment, Ex Vitro Rooting and Hardening for Commercial Scale Multiplication of Silk Banana (Musa AAB). Erwerbs-Obstbau 2015, 57, 153–164. [Google Scholar] [CrossRef]
- Simplice, P.Y.; Christophe, B.G.; Semballa, S.; Innocent, Z.; Fatiou, T. Response of Four Cultivars of Cassava (Manihot Esculenta Crantz) Plantlets Free of Cassava Mosaic Virus to Micropropagation in Different Media. Afr. J. Biotechnol. 2018, 17, 9–16. [Google Scholar] [CrossRef]
- Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Noga, A.; Skrzypek, E. The Effect of Genotype, Media Composition, pH and Sugar Concentrations on Oat (Avena sativa L.) Doubled Haploid Production through Oat × Maize Crosses. Acta Physiol. Plant. 2018, 40, 93. [Google Scholar] [CrossRef]
- Yegizbayeva, T.K.; García-García, S.; Yausheva, T.V.; Kairova, M.; Apushev, A.K.; Oleichenko, S.N.; Licea-Moreno, R.J. Unraveling Factors Affecting Micropropagation of Four Persian Walnut Varieties. Agronomy 2021, 11, 1417. [Google Scholar] [CrossRef]
- Bairu, M.W.; Fennell, C.W.; Van Staden, J. The Effect of Plant Growth Regulators on Somaclonal Variation in Cavendish Banana (Musa AAA Cv. ‘Zelig’). Sci. Hortic. 2006, 108, 347–351. [Google Scholar] [CrossRef]
- Waman, A.A.; Bohra, P.; Sathyanarayana, B.N. Not All Sugars Are Sweet for Banana Multiplication. In Vitro Multiplication, Rooting, and Acclimatization of Banana as Influenced by Carbon Source-Concentration Interactions. In Vitro Cell. Dev. Biol. Plant. 2014, 50, 552–560. [Google Scholar] [CrossRef]
- Hrahsel, L.; Basu, A.; Sahoo, L.; Thangjam, R. In Vitro Propagation and Assessment of the Genetic Fidelity of Musa Acuminata (AAA) Cv. Vaibalhla Derived from Immature Male Flowers. Appl. Biochem. Biotechnol. 2014, 172, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Utomo, A.R.; Nandariyah; Yunus, A. The Effect of Murashige and Skoog (MS) and Growmore Fertilizer Media Composition on Growth of Ambon Banana Plants In Vitro. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012013. [Google Scholar] [CrossRef]
- Naïtchédé, L.H.S.; Nyende, A.B.; Runo, S.; Borlay, A.J. Plant Regeneration from Embryogenic Callus-Derived from Immature Leaves of Momordica charantia L. Heliyon 2023, 9, e22122. [Google Scholar] [CrossRef]
- Naitchede, L.H.; Runo, S.; Nyende, A.B. In Vitro Rapid Regeneration of Bitter Melon (Momordica charantia L.) Using Direct Organogenesis in Kenya. Univers. J. Agric. Res. 2022, 10, 514–525. [Google Scholar] [CrossRef]
- Naitchede, L.H.; Nyende, A.B.; Runo, S. Transcript Expression Level Analysis of Phytoene Synthase and Phytoene Desaturase Associated with β-Carotene Content in Selected Kenyan Bitter Melon. Mol. Biol. Rep. 2022, 49, 12029–12037. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Percentage (%) of Shoot Formation ± S.E. | Shoot Number Per Explant ± S.E. |
---|---|---|---|---|
0 | MS basal | 0 | 22.50 ± 1.76 j | 2.33 ± 0.13 hg |
1 | BAP + IBA | 1.2 + 0.1 | 31.00 ± 2.87 i | 4.33 ± 0.56 de |
2 | 2.4 + 0.1 | 32 ± 2.58 i | 3.25 ± 0.26 efg | |
3 | 3.6 + 0.1 | 37.50 ± 2.31 h | 3.67 ± 0.33 ef | |
4 | 4.8 + 0.1 | 50.00 ± 1.76 g | 2.67 ± 0.36 fgh | |
5 | 6.0 + 0.1 | 25.00 ± 3.15 j | 2.00 ± 0.17 h | |
6 | BAP + IAA | 1.2 + 0.1 | 83.25 ± 2.27 b | 5.33 ± 0.06 cd |
7 | 2.4 + 0.1 | 85.66 ± 2.46 b | 5.67 ± 0.21 bc | |
8 | 3.6 + 0.1 | 100.00 ± 00 a | 7.00 ± 0.08 a | |
9 | 4.8 + 0.1 | 66.27 ± 2.83 d | 6.67 ± 0.22 ab | |
10 | 6.0 + 0.1 | 60.33 ± 4.91 e | 3.00 ± 0.00 fgh | |
11 | BAP + NAA | 1.2 + 0.1 | 37.50 ± 2.38 h | 2.00 ± 0.80 h |
12 | 2.4 + 0.1 | 62.75 ± 3.27 de | 2.67 ± 0.66 fgh | |
13 | 3.6 + 0.1 | 75.00 ± 2.24 c | 4.33 ± 1.04 de | |
14 | 4.8 + 0.1 | 77.66 ± 2.06 c | 3.33 ± 0.08 efg | |
15 | 6.0 + 0.1 | 55.33 ± 3.82 f | 3.67 ± 0.60 ef | |
Mean | - | 56.36 ± 13.8 | 3.87 ± 1.57 | |
F Value | - | 271.08 | 16.95 | |
p-value | - | <0.05 | <0.05 | |
LSD (0.05) | - | 4.16 | 1.10 | |
CV, % | - | 4.45 | 17.06 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Genome | Percentage (%) of Shoot Formation ± S.E. | Shoot Number Per Explant ± S.E. |
---|---|---|---|---|---|
0 | MS basal | 0.00 | AAA | 30.00 ± 1.57 g | 3.00 ± 0.50 g |
1 | AAB | 17.50 ± 5.01 h | 2.00 ± 0.40 h | ||
2 | ABB | 20.00 ± 3.45 h | 2.00 ± 0.55 h | ||
3 | BAP + IAA | 1.2 + 0.1 | AAA | 94.00 ± 8.12 a | 7.00 ± 0.45 bc |
4 | AAB | 80.00 ± 4.17 bc | 5.00 ± 0.15 e | ||
5 | ABB | 75.00 ± 6.51 cd | 4.00 ± 0.33 f | ||
6 | 2.4 + 0.1 | AAA | 100.00 ± 0.00 a | 7.50 ± 0.28 b | |
7 | AAB | 80.00 ± 1.75 bc | 5.30 ± 0.66 e | ||
8 | ABB | 75.00 ± 7.25 cd | 4.20 ± 0.75 f | ||
9 | 3.6 + 0.1 | AAA | 100.00 ± 0.00 a | 8.80 ± 0.80 a | |
10 | AAB | 100.00 ± 0.00 a | 6.60 ± 0.25 cd | ||
11 | ABB | 100.00 ± 0.00 a | 5.60 ± 0.50 e | ||
12 | 4.8 + 0.1 | AAA | 83.00 ± 8.61 b | 8.50 ± 0.74 a | |
13 | AAB | 55.00 ± 5.25 ef | 6.30 ± 0.90 d | ||
14 | ABB | 75.00 ± 4.30 cd | 5.20 ± 0.38 e | ||
15 | 6.0 + 0.1 | AAA | 70.00 ± 7.08 d | 5.00 ± 0.51 e | |
16 | AAB | 50.00 ± 10.13 f | 3.00 ± 0.35 g | ||
17 | ABB | 60.00 ± 6.50 e | 1.00 ± 0.25 i | ||
Mean | - | - | 70.25 ± 8.23 | 5.00 ± 1.51 | |
F Value | - | - | 136.37 | 104.74 | |
p-value | - | - | <0.05 | <0.05 | |
LSD (0.05) | - | - | 6.57 | 0.62 | |
CV, % | - | - | 5.66 | 7.58 | |
R2 | - | - | 0.09 | 0.04 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Genome | Percentage (%) of Shoot Formation ± S.E. | Shoot Number Per Explant ± S.E. |
---|---|---|---|---|---|
0 | MS basal | 0.00 | AAA | 30.00 ± 6.00 h | 3.00 ± 0.25 e |
1 | AAB | 17.50 ± 1.89 i | 2.00 ± 0.13 f | ||
2 | ABB | 20.00 ± 3.25 i | 2.00 ± 0.22 f | ||
3 | BAP + NAA | 1.2 + 0.1 | AAA | 45.00 ± 4.11 f | 2.00 ± 0.25 f |
4 | AAB | 32.50 ± 2.08 gh | 2.00 ± 0.46 f | ||
5 | ABB | 35.00 ± 3.27 gh | 2.00 ± 0.22 f | ||
6 | 2.4 + 0.1 | AAA | 72.50 ± 3.86 bc | 3.00 ± 0.14 e | |
7 | AAB | 55.00 ± 3.45 e | 2.00 ± 0.35 f | ||
8 | ABB | 60.00 ± 3.57 de | 3.00 ± 0.42 e | ||
9 | 3.6 + 0.1 | AAA | 100.00 ± 0.00 a | 5.00 ± 0.41 a | |
10 | AAB | 57.50 ± 6.25 e | 3.50 ± 0.50 d | ||
11 | ABB | 67.50 ± 5.16 cd | 4.50 ± 0.33 b | ||
12 | 4.8 + 0.1 | AAA | 100.00 ± 0.00 a | 4.00 ± 0.16 c | |
13 | AAB | 60.00 ± 4.61 de | 4.00 ± 0.44 c | ||
14 | ABB | 72.50 ± 5.52 bc | 2.00 ± 0.08 f | ||
15 | 6.0 + 0.1 | AAA | 80.00 ± 4.63 b | 4.00 ± 0.37 c | |
16 | AAB | 40.00 ± 5.06 fg | 4.00 ± 0.18 c | ||
17 | ABB | 45.00 ± 3.35 f | 3.00 ± 0.28 e | ||
Mean | - | - | 55.00 ± 14.42 | 3.06 ± 0.39 | |
F Value | - | - | 58.35 | 49.25 | |
p-value | - | - | <0.05 | <0.05 | |
LSD (0.05) | - | - | 9.14 | 0.41 | |
CV, % | - | - | 10.04 | 8.18 | |
R2 | - | - | 0.35 | 0.36 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Genome | Percentage (%) of Shoot Formation ± S.E. | Shoot Number Per Explant ± S.E. |
---|---|---|---|---|---|
0 | MS basal | 0.00 | AAA | 30.00 ± 1.75 f | 3.00 ± 0.25 d |
1 | AAB | 17.50 ± 3.88 h | 2.00 ± 0.50 e | ||
2 | ABB | 20.00 ± 2.23 h | 2.00 ± 0.25 e | ||
3 | BAP + IBA | 1.2 + 0.1 | AAA | 37.50 ± 4.33 c | 5.00 ± 0.75 b |
4 | AAB | 25.50 ± 1.74 g | 3.00 ± 0.33 d | ||
5 | ABB | 30.00 ± 5.16 f | 5.00 ± 0.66 b | ||
6 | 2.4 + 0.1 | AAA | 38.50 ± 6.45 c | 5.00 ± 0.21 b | |
7 | AAB | 26.00 ± 5.25 g | 2.00 ± 0.44 e | ||
8 | ABB | 31.50 ± 4.26 ef | 3.00 ± 0.12 d | ||
9 | 3.6 + 0.1 | AAA | 45.00 ± 5.00 b | 5.50 ± 0.25 a | |
10 | AAB | 33.00 ± 9.16d e | 2.25 ± 0.78 e | ||
11 | ABB | 34.50 ± 2.84 d | 3.25 ± 0.55 d | ||
12 | 4.8 + 0.1 | AAA | 57.50 ± 1.55 a | 4.00 ± 0.37 c | |
13 | AAB | 37.50 ± 4.85 c | 2.00 ± 0.38 e | ||
14 | ABB | 55.00 ± 6.12 a | 2.00 ± 0.75 e | ||
15 | 6.0 + 0.1 | AAA | 33.00 ± 3.93 de | 2.00 ± 0.50 e | |
16 | AAB | 17.50 ± 4.25 h | 2.00 ± 0.29 e | ||
17 | ABB | 24.50 ± 5.02 g | 2.00 ± 0.70 e | ||
Mean | - | - | 33.00 ± 7.05 | 3.06 ± 0.95 | |
F Value | - | - | 123.80 | 78.55 | |
p-value | - | - | <0.05 | <0.05 | |
LSD (0.05) | - | - | 2.89 | 0.41 | |
CV, % | - | - | 5.30 | 8.18 | |
R2 | - | - | 0.11 | 0.06 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Percentage (%) of Root Induction ± S.E. | Root Length (cm) ± S.E. |
---|---|---|---|---|
0 | MS basal | 0 | 75.00 ± 2.00 d | 8.50 ± 0.75 b |
1 | IBA + IAA | 0.7 + 0.5 | 87.50 ± 1.00 b | 8.13 ± 0.55 bc |
2 | 1.4 + 0.5 | 100.00 ± 0.00 a | 11.50 ± 0.51 a | |
3 | 2.1 + 0.5 | 65.00 ± 0.20 ef | 7.10 ± 0.13 cd | |
1 | IBA + NAA | 0.7 + 0.5 | 62.50 ± 1.66 f | 6.13 ± 0.95 de |
2 | 1.4 + 0.5 | 80.00 ± 1.27 c | 7.25 ± 1.67 bcd | |
3 | 2.1 + 0.5 | 67.55 ± 2.53 e | 5.38 ± 0.36 e | |
Mean | - | 76.78 ± 13.52 | 7.71 ± 1.99 | |
F Value | - | 106.80 | 19.82 | |
p-value | - | <0.05 | <0.05 | |
LSD (0.05) | - | 3.97 | 1.35 | |
CV, % | - | 2.95 | 10.03 | |
R2 | 0.02 | 0.05 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Genome | Percentage (%) of Root Formation ± S.E. | Root Length (cm) ± S.E. |
---|---|---|---|---|---|
0 | MS basal | 0.00 | AAA | 80.00 ± 1.57 bcd | 10.70 ± 1.70 bc |
1 | AAB | 75.00 ± 5.01 cd | 6.60 ± 0.24 gh | ||
2 | ABB | 70.00 ± 3.45 d | 8.20 ± 0.18 ef | ||
3 | IBA + IAA | 0.7 + 0.5 | AAA | 90.00 ± 8.12 ab | 11.15 ± 1.61 b |
4 | AAB | 87.50 ± 4.17 abc | 6.10 ± 0.42 gh | ||
5 | ABB | 85.00 ± 6.51 bc | 7.10 ± 0.32 fg | ||
6 | 1.4 + 0.5 | AAA | 100.00 ± 0.00 a | 12.90 ± 1.53 a | |
7 | AAB | 100.00 ± 0.00 a | 9.80 ± 0.35 cd | ||
8 | ABB | 100.00 ± 0.00 a | 11.80 ± 0.47 ab | ||
9 | 2.1 + 0.1 | AAA | 100.00 ± 0.00 a | 9.30 ± 1.10 de | |
10 | AAB | 50.00 ± 2.75 e | 5.70 ± 0.36 h | ||
11 | ABB | 45.00 ± 2.84 e | 6.30 ± 0.23 gh | ||
Mean | - | - | 81.88 ± 9.33 | 8.80 ± 2.02 | |
F Value | - | - | 17.00 | 37.53 | |
p-value | - | - | <0.05 | <0.05 | |
LSD (0.05) | - | - | 13.48 | 1.18 | |
CV, % | - | - | 9.77 | 7.95 | |
R2 | - | - | 0.01 | 0.05 |
Sr. No | Plant Growth Regulators | Concentration (mg.L−1) | Genome | Percentage (%) of Root Formation ± S.E. | Root Length (cm) ± S.E. |
---|---|---|---|---|---|
0 | MS basal | 0.00 | AAA | 80.00 ± 8.75 ab | 10.70 ± 0.55 a |
1 | AAB | 75.00 ± 10.13 abc | 6.60 ± 1.35 cde | ||
2 | ABB | 70.00 ± 9.31 bcde | 8.20 ± 1.43 b | ||
3 | IBA + NAA | 0.7 + 0.5 | AAA | 75.00 ± 5.16 abc | 7.80 ± 0.77 bc |
4 | AAB | 55.00 ± 6.50 f | 4.10 ± 0.64 fg | ||
5 | ABB | 57.50 ± 2.75 ef | 6.45 ± 1.18 cde | ||
6 | 1.4 + 0.5 | AAA | 87.50 ± 11.02 a | 8.25 ± 0.41 b | |
7 | AAB | 72.50 ± 8.45 bcd | 6.30 ± 1.33 de | ||
8 | ABB | 80.00 ± 7.26 ab | 7.20 ± 0.67 bcd | ||
9 | 2.1 + 0.1 | AAA | 77.50 ± 5.67 abc | 7.20 ± 1.24 bcd | |
10 | AAB | 60.00 ± 3.45 def | 3.40 ± 0.51 g | ||
11 | ABB | 65.00 ± 2.33 cdef | 5.50 ± 1.22 ef | ||
Mean | - | - | 71.25 ± 7.68 | 6.81 ± 1.69 | |
F Value | - | - | 5.19 | 15.52 | |
p-value | - | - | <0.05 | <0.05 | |
LSD (0.05) | - | - | 12.86 | 1.44 | |
CV, % | - | - | 10.70 | 12.55 | |
R2 | - | - | 0.002 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naitchede, L.H.S.; Ihearahu, O.C.; Saha, K.; Igwe, D.O.; Ray, S.; Ude, G. Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas. Plants 2025, 14, 2109. https://doi.org/10.3390/plants14142109
Naitchede LHS, Ihearahu OC, Saha K, Igwe DO, Ray S, Ude G. Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas. Plants. 2025; 14(14):2109. https://doi.org/10.3390/plants14142109
Chicago/Turabian StyleNaitchede, Labode Hospice Stevenson, Onyinye C. Ihearahu, Kishan Saha, David O. Igwe, Supriyo Ray, and George Ude. 2025. "Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas" Plants 14, no. 14: 2109. https://doi.org/10.3390/plants14142109
APA StyleNaitchede, L. H. S., Ihearahu, O. C., Saha, K., Igwe, D. O., Ray, S., & Ude, G. (2025). Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas. Plants, 14(14), 2109. https://doi.org/10.3390/plants14142109