Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Surface Sterilization of Capsules
2.2. Effect of Light Quality on the Germination and Development of E. bicallosa Seeds
2.3. Effect of Different Culture Media on the Growth and Development of Protocorms
2.4. Effect of Coconut Water and Potato Extract on the Growth and Development of Protocorms
2.5. Effect of Cytokinins on the Growth and Development of Protocorms
2.6. Effect of Auxins on the Growth and Development of Protocorms
2.7. Greenhouse Acclimatization
2.8. Experimental Design and Data Analysis
3. Results
3.1. Effect of Light Quality on Seed Germination and Development
3.2. Effect of Culture Media on Survival and Morphological Responses of E. bicallosa Protocorms
3.3. Effect of Culture Media on the Number of Shoots, Leaves, Roots, and Rhizomes in E. bicallosa Protocorms
3.4. Effect of Coconut Water and Potato Extract on Survival, Shoot Formation, Root Formation, and Rhizome Development in Protocorms
3.5. Effect of Coconut Water and Potato Extract on Shoots, Leaves, Roots, and Rhizomes Induction in Protocorms
3.6. Effect of Cytokinins on Survival Rate, Callus Induction, Shoot and Root Formation, and Rhizome Development in Protocorms
3.7. Effect of Cytokinins on the Number of Shoots, Leaves, Roots, and Rhizomes
3.8. Effect of Auxins on Survival Rate, Callus Induction, Shoot and Root Formation, and Rhizome Development in Protocorms
3.9. Effect of Auxins on the Number of Shoots, Roots, and Rhizomes of Protocorms
3.10. Greenhouse Acclimatization of Plantlets
4. Discussion
4.1. Impact of Light Quality on Seed Germination and Development
4.2. Effect of Culture Media on Survival and Morphological Responses of Protocorms
4.3. Influence of Coconut Water and Potato Extract on Protocorm Growth
4.4. Effect of Cytokinins on Survival Rate, Callus Induction, Shoot and Root Formation, and Rhizome Development
4.5. Effect of Auxins on Survival Rate, Callus Induction, Shoot and Root Formation, and Rhizome Development
4.6. Transplantation and Survival of Plantlets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CW | Coconut water |
PE | Potato extract |
References
- POWO. Plants of the World Online. Available online: https://powo.science.kew.org (accessed on 27 July 2024).
- Peter, C.I.; Johnson, S.D. A pollinator shift explains floral divergence in an orchid species complex in South Africa. Ann. Bot. 2013, 113, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Norah, M.M. Conservation status of Eulophia species (Orchidaceae) in Uganda, East Africa. Asian J. Conserv. Biol. 2014, 3, 94–100. [Google Scholar]
- Chinsamy, M.; Finnie, J.F.; Van Staden, J. The ethnobotany of South African medicinal orchids. S. Afr. J. Bot. 2011, 77, 2–9. [Google Scholar] [CrossRef]
- Shriram, V.; Kumar, V. Eulophia spp.: In vitro generation, chemical constituents, and pharmacological activities. In Orchids: Phytochemistry, Biology, and Horticulture, 1st ed.; Merillon, J.M., Kodja, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 531–544. [Google Scholar] [CrossRef]
- WFO. World Flora Online. Available online: http://www.worldfloraonline.org (accessed on 2 March 2025).
- Ormerod, P. Orchidaceous additions to the Philippine flora (II). Taiwania 2008, 53, 157–164. [Google Scholar]
- Pedersen, H.Æ.; Kurzweil, H.; Suddee, S.; Vogel, E.F.; Cribb, P.J.; Chantanaorrapint, S.; Watthana, S.; Gale, S.W.; Seelanan, T. Flora of Thailand, Volume 12, Part 2: Orchidaceae 2 (Epidendroideae P.P.: Neotieae, Tropideae, Nervilieae, Gastrodieae, Thaieae, Calypsoeae, Arethuseae, Collabieae, Cymbidieae); Masalai Press: Oakland, CA, USA, 2014; Volume 12, pp. 303–670. [Google Scholar]
- Jalal, J.S.; Jayanthi, J. An annotated checklist of the orchids of Western Himalaya, India. Lankesteriana 2015, 15, 7–50. [Google Scholar] [CrossRef]
- Baro, D.; Bawri, A.; Adhikari, A.; Borthakur, S. Orchid flora of Manas National Park, India. Asian J. Conserv. Biol. 2019, 8, 143–148. [Google Scholar]
- Forest Herbarium. e-Flora of Thailand. Available online: https://botany.dnp.go.th (accessed on 12 March 2025).
- Barrett, R.L.; Barrett, M.D.; Clements, M.A. A revision of Orchidaceae from the Kimberley region of Western Australia with new species of tropical Calochilus and Dipodium. Telopea 2022, 25, 203–270. [Google Scholar] [CrossRef]
- Hossain, M.M. Ex vitro seedling development from in vitro rhizome-like bodies in Eulophia promensis Lindl.: A new technique for orchid propagation. J. Bot. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Available online: https://cites.org/eng/taxonomy/term/24273 (accessed on 2 March 2025).
- Kunakhonnuruk, B.; Inthima, P.; Kongbangkerd, A. In vitro propagation of Epipactis flava Seidenf., an endangered rheophytic orchid: A first study on factors affecting asymbiotic seed germination, seedling development and greenhouse acclimatization. Plant Cell Tissue Organ Cult. 2018, 135, 419–432. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.A.; Cruz-Cruz, C.A.; Atlahua-Temoxtle, J.; Bello-Bello, J.J. In vitro conservation and regeneration of Laelia anceps Lindl. S. Afr. J. Bot. 2019, 121, 219–223. [Google Scholar] [CrossRef]
- Bhowmik, T.K.; Rahman, M.M. Effect of different basal media and PGRs on in vitro seed germination and seedling development of medicinally important orchid Cymbidium aloifolium (L.) Sw. J. Pharmacogn. Phytochem. 2017, 6, 167–172. [Google Scholar]
- McAlister, B.G.; Van Staden, J. In vitro culture of Eulophia species. S. Afr. J. Bot. 1998, 64, 264–266. [Google Scholar] [CrossRef]
- Sorgato, J.C.; Soares, J.S.; Damiani, C.R.; Ribeiro, L.M. Effects of light, agar, activated charcoal, and culture medium on the germination and early development of Dendrobium seedlings. Aust. J. Crop Sci. 2020, 14, 557–564. [Google Scholar] [CrossRef]
- Utami, E.S.W.; Hariyanto, S. Organic compounds: Contents and their role in improving seed germination and protocorm development in orchids. Int. J. Agron. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Godo, T.; Fujiwara, K.; Guan, K.; Miyoshi, K. Effects of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotechnol. 2011, 28, 397–400. [Google Scholar] [CrossRef]
- Barrientos, B.A.B.; Fang, J.Y. Influence of photoperiod and culture medium on the speed of asymbiotic seed germination and seedling development in Spathoglottis plicata. Hortic. Sci. 2019, 54, 1570–1575. [Google Scholar] [CrossRef]
- Naderi Boldaji, H.; Dianati Daylami, S.; Vahdati, K. Use of light spectra for efficient production of PLBs in temperate terrestrial orchids. Horticulturae 2023, 9, 1007. [Google Scholar] [CrossRef]
- Fritsche, Y.; Pinheiro, M.V.M.; Guerra, M.P. Light quality and natural ventilation have different effects on protocorm development and plantlet growth stages of the in vitro propagation of Epidendrum fulgens (Orchidaceae). S. Afr. J. Bot. 2022, 146, 864–874. [Google Scholar] [CrossRef]
- Ahmadi Chashmi, K.; Ghasemi Omran, V.O.; Ebrahimi, R.; Moradi, H.; Abdosi, V. The effect of different light spectra and culture media on PLB growth parameters of an endangered orchid species (Phalaenopsis pulcherrima) in in vitro conditions. J. Plant Res. (Iran. J. Biol.) 2023, 36, 332–341. [Google Scholar] [CrossRef]
- Cervantes-Rodríguez, B.G.; Fernández-Villa, Z.E.; Iglesias-Andreu, L.G. In vitro germination of immature seeds under two lighting spectrums to obtain protocorms in Vanilla planifolia Jacks. Vegetos 2024, 1–7. [Google Scholar] [CrossRef]
- Fatahi, M.; Vafaee, Y.; Nazari, F.; Tahir, N.A.R. In vitro asymbiotic seed germination, protocorm formation, and plantlet development of Orchis simia Lam.: A threatened terrestrial orchid species. S. Afr. J. Bot. 2022, 151, 156–165. [Google Scholar] [CrossRef]
- Vendrame, W.A.; Xu, J.; Beleski, D. Evaluation of the effects of culture media and light sources on in vitro growth of Brassavola nodosa (L.) Lindl. hybrid. Horticulturae 2022, 8, 450. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Vacin, E.F.; Went, F.W. Some pH changes in nutrient solutions. Bot. Gaz. 1949, 110, 605–613. [Google Scholar] [CrossRef]
- Waes, V.; Debergh, P.C. In vitro germination of some western European orchids. Physiol. Plant. 1986, 67, 253–261. [Google Scholar] [CrossRef]
- Knudson, L. A new nutrient solution for the germination of orchid seed. Am. Orchid Soc. Bull. 1946, 15, 214–217. [Google Scholar]
- Malmgren, S. Orchid propagation: Theory and practice. In North American Native Orchids: Propagation and Production, 1st ed.; Allen, C., Ed.; North American Native Terrestrial Orchid Conference: Germantown, MD, USA, 1996; pp. 63–71. [Google Scholar]
- Vasupen, E.; Bundithya, W.; Potapohn, N. Effects of coconut water, benzylaminopurine, and naphthalene acetic acid on seed germination and rhizome food reserve: In vitro culture of Eulophia flava (Lindl.) Hook.f. Curr. Appl. Sci. Technol. 2022, 23, 1–12. [Google Scholar] [CrossRef]
- Chaipanich, V.V.; Roberts, D.L.; Yenchon, S.; Te-chato, S.; Divakaran, M. In vitro seed germination and plantlet regeneration of Vanilla siamensis: An endemic species in Thailand. Sci. Asia 2020, 46, 315–322. [Google Scholar] [CrossRef]
- Tokuhara, K.; Sato, H.; Abe, A.; Mii, M. In vitro optimization of seed germination and protocorm development in Gastrochilus japonicus (Makino) Schltr. (Orchidaceae). Plant Growth Regul. 2023, 101, 693–702. [Google Scholar] [CrossRef]
- Valadi, F.; Khorshidi, J.; Mozafari, A.A.; Vafaee, Y. Comparison of germination and primary growth of Ophrys schulzei Bornm. & Fleischm. seedlings in different culture media under in vitro conditions. J. Plant Prod. 2023, 46, 129–140. [Google Scholar] [CrossRef]
- Gnasekaran, P.; Poobathy, R.; Mahmood, M.; Samian, M.; Subramaniam, S. Effects of complex organic additives on improving the growth of PLBs of Vanda Kasem’s Delight. Aust. J. Crop Sci. 2012, 6, 1245–1248. [Google Scholar]
- Mayo-Mosqueda, A.; Maceda-López, L.F.; Andrade-Canto, S.B.; Noguera-Savelli, E.; Caamal-Velázquez, H.; Cano-Sosa, J.S.; Alatorre-Cobos, F. Efficient protocol for in vitro propagation of Laelia rubescens Lindl. from asymbiotic seed germination. S. Afr. J. Bot. 2020, 133, 264–272. [Google Scholar] [CrossRef]
- Supreeworakij, S.; Saetiew, K.; Rungkitwattananukul, T.; Phanchompoo, P.; Montri, N. Effects of organic compound and plant growth regulators on seed germination and growth of Doritis pulcherrima Lindl. in vitro. Acta Hortic. 2024, 1404, 363–368. [Google Scholar] [CrossRef]
- Werner, T.; Schmülling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, 12, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Strader, L.C. Interplay of auxin and cytokinin in lateral root development. Int. J. Mol. Sci. 2019, 20, 486. [Google Scholar] [CrossRef] [PubMed]
- Nabieva, A.Y. Asymbiotic seed germination and in vitro seedling development of Orchis militaris, an endangered orchid in Siberia. J. Genet. Eng. Biotechnol. 2021, 19, 122. [Google Scholar] [CrossRef] [PubMed]
- Ostojić, J.; Ljubojević, M.; Narandžić, T.; Pušić, M. In vitro culture conditions for asymbiotic germination and seedling development of Anacamptis pyramidalis (L.) Rich. and Gymnadenia conopsea (L.) R. Br. S. Afr. J. Bot. 2022, 150, 829–839. [Google Scholar] [CrossRef]
- Kalita, I.; Borah, A.; Barooah, C. In vitro propagation of threatened terrestrial orchids Phaius tankervillieae (L’Her) Blume and Geodorum densiflorum (Lam.) Schltr. via seed pod culture. Natl. J. Multidiscip. Res. 2023, 8, 95–102. [Google Scholar]
- Diengdoh, R.V.; Das, M.C.; Nongsiang, A.; Kumaria, S. Efficient utilization of phytohormones for the in vitro proliferation of Paphiopedilum villosum Lindl. Stein—A Lady’s Slipper orchid. S. Afr. J. Bot. 2023, 154, 387–393. [Google Scholar] [CrossRef]
- Panwar, G.S.; Joshi, B.; Joshi, R. Axenic rhizome culture and genetic fidelity assessment of Eulophia dabia (D. Don) Hochr: An endangered terrestrial orchid species. In Vitro Cell. Dev. Biol. Plant 2022, 58, 567–576. [Google Scholar] [CrossRef]
- Khumalo, S.I.; Khan, S.; Gitonga, L.N.; Mugwedi, L.; Reddy, V. Optimized in vitro rooting procedure for Eulophia streptopetala Lindl: An indigenous Southern African plant. Acta Hortic. 2018, 1201, 555–560. [Google Scholar] [CrossRef]
- Johnson, T.R.; Stewart, S.L.; Dutra, D.; Kane, M.E.; Richardson, L. Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)—Preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult. 2007, 90, 313–323. [Google Scholar] [CrossRef]
- Souza, D.; Fernandes, S.; Molinari, L.; Avelar, M.; Gonçalves, D.; Faria, J.; Teixeira, G.; Brondani, G. The influence of light quality in the in vitro cultivation of Cattleya crispata (Thunb.) Van den Berg. Nativa 2021, 9, 582–588. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Yang, L.; Qian, X.; Yang, A.; Liu, J.; Jacquemyn, H.; Li, T.; Xing, X. Metabolic shifts and nutrient transfer patterns in orchid seeds during symbiotic germination. Plant Cell Environ. 2025, 48, 6406–6420. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Larner, V.S.; Whitelam, G.C. The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 2005, 49, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Chen, M.; Chory, J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011, 21, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, V.; Pellegrino, A.; Muleo, R.; Forgione, I. Light and plant growth regulators on in vitro proliferation. Plants 2022, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Biswal, D.P.; Pradhan, B.; Jena, S.S.; Kumari, S.; Rao, A.S.; Nayak, N.R.; Panigrahi, K.C. Root growth in orchid Dendrobium cv. Sonia requires shade avoidance response of phytochromes along with regulation of auxin pathway genes. Plant Physiol. Rep. 2024, 29, 395–407. [Google Scholar] [CrossRef]
- Favetta, V.; Colombo, R.C.; Júnior, J.F.M.; de Faria, R.T. Light sources and culture media in the in vitro growth of the Brazilian orchid Microlaelia lundii. Semin. Cienc. Agrar. 2017, 38, 1775–1784. [Google Scholar] [CrossRef]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Mahdavi, Z.; Daylami, S.D.; Fadavi, A.; Vahdati, K. Artificial seed production of Phalaenopsis orchid: Effect of encapsulation materials, temperature, light spectra, and storage period. Plant Cell Tissue Organ Cult. 2023, 155, 797–808. [Google Scholar] [CrossRef]
- Hussien, M.; Molkanova, O.I.; Konovalova, T.Y.; Koval, V.A. Micropropagation and anatomical features of Dactylorhiza fuchsii (Druce) Soó under different cultivation conditions. Biol. Bull. 2025, 52, 26. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. The components of plant tissue culture media I: Macro- and micro-nutrients. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 65–113. [Google Scholar]
- Paul, S.; Kumaria, S.; Tandon, P. An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB Plants 2012, 2012, plr032. [Google Scholar] [CrossRef]
- Arditti, J.; Ernst, R. Micropropagation of Orchids; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Decruse, S.W.; Reny, N.; Shylajakumari, S.; Krishnan, P.N. In vitro propagation and field establishment of Eulophia cullenii (Wight) Bl., a critically endangered orchid of Western Ghats, India through culture of seeds and axenic seedling-derived rhizomes. In Vitro Cell. Dev. Biol. Plant 2013, 49, 520–528. [Google Scholar] [CrossRef]
- Romeida, A.; Ganefianti, D.W.; Marlin, M.; Sudjatmiko, S.; Hairani, P.M.; Herawati, R.; Rustikawati, R.; Supanjani, S. Protocorm Like Bodies (PLBs) Dendrobium Orchid “Gatton Sunray”. In E3S Web of Conferences, Proceedings of the E3S Web of Conferences, Online, 24 September 2022; EDP Sciences: Les Ulis, France, 2023; Volume 373, p. 03002. [Google Scholar]
- Stewart, S.L.; Kane, M.E. Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tiss. Organ Cult. 2006, 86, 147–158. [Google Scholar] [CrossRef]
- Arditti, J. Micropropagation of Orchids; Blackwell Publishing: Oxford, UK, 2009. [Google Scholar]
- Wang, Y.T.; Chang, Y.C.A. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis Orchid—A review. HortTechnology 2017, 27, 144–149. [Google Scholar] [CrossRef]
- Knudson, L. Non-symbiotic germination of orchid seeds. Bot. Gaz. 1922, 73, 1–25. [Google Scholar] [CrossRef]
- Yam, T.W.; Weatherhead, M.A. Germination and seedling development of some Hong Kong orchids. Lindleyana 1988, 3, 156–160. [Google Scholar]
- Romeida, A.; Supanjani; Sinaga, S.S. Low-cost media for in vitro multiplication and development of protocorm-like bodies (PLBs) of Eulophia graminea orchid. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 78. [Google Scholar] [CrossRef]
- de Oliveira, S.L.A.; Silva, K.L.F.; de Oliveira, R.J.; de Souza, M.J.; de Oliveira, J.R.G.; de Melo Ferreira, W. In vitro germination, initial development and acclimatization of Cattleya nobilior Rchb.f. (Orchidaceae): An approach to curb the eventual endangerment of this exuberant, near-threatened Cerrado species. Diversitas J. 2021, 6, 2167–2191. [Google Scholar] [CrossRef]
- Viana, J.C.; Cerqueira, P.R.A.; Alves, L.R.; Arrais, F.C.L.; Suzuki, R.M.; de Melo Ferreira, W. Germination and initial development in vitro, and acclimatization of Oeceoclades maculata (Orchidaceae), aiming at its reintroduction in natural environments. Acta Sci. Biol. Sci. 2022, 44, e59497. [Google Scholar] [CrossRef]
- Yong, J.W.; Ge, L.; Ng, Y.F.; Tan, S.N. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 2009, 14, 5144–5164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kan, J.; Liu, X.; Song, F.; Zhu, K.; Li, N.; Zhang, Y. Chemical components, nutritional value, volatile organic compounds and biological activities in vitro of coconut (Cocos nucifera L.) water with different maturities. Foods 2024, 13, 863. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, U.; Singh, A.K.; Godani, D.; Handa, S.; Gupta, P.S.; Patel, S.; Joshi, P. Some natural extracts from plants as low-cost alternatives for synthetic PGRs in rose micropropagation. J. Appl. Hortic. 2018, 20, 103–111. [Google Scholar] [CrossRef]
- Deeksha Raj, N.; Sathyanarayana, B.N.; Madegowda, J.; Venkatesha Murty, P.; Gowda, B.; Devakumar, A.; Bennur, P. Coconut water to the rescue of Dendrobium ovatum (L.) Kraenzl., a RET species of orchid through enhanced proliferation of shoots from PLBs under in vitro conditions. Pharma Innov. J. 2021, 10, 273–278. [Google Scholar]
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, bioactive non-nutrients, and anti-nutrients in potatoes. J. Food Compos. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Aung, W.T.; Bang, K.S.; Yoon, S.A.; Ko, B.; Bae, J.H. Effects of different natural extracts and plant growth regulators on plant regeneration and callus induction from pseudobulb explants through in vitro seed germination of endangered orchid Bulbophyllum auricomum Lindl. J. Bio-Environ. Control 2022, 31, 133–141. [Google Scholar] [CrossRef]
- Pal Bais, H.; Ravishankar, G.A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Organ Cult. 2002, 69, 1–34. [Google Scholar] [CrossRef]
- Baron, K.; Stasolla, C. The role of polyamines during in vivo and in vitro development. In Vitro Cell. Dev. Biol. Plant 2008, 44, 384–395. [Google Scholar] [CrossRef]
- Barua, K.N.; Singha, B.L.; Bora, B.; Bordoloi, S. In vitro seed propagation of endangered Dendrobium—Dendrobium lituiflorum Lindl. and D. aduncum Lindl. Int. J. Pharm. Biol. Sci. Arch. 2022, 3, 108–115. [Google Scholar] [CrossRef]
- Samala, S.; Thipwong, J. Influences of organic additives on asymbiotic seed germination of Dendrobium cruentum Rchb.f. for in vitro micropropagation. Trends Sci. 2023, 20, 4181. [Google Scholar] [CrossRef]
- Laily, A.N.; Maharijaya, A.; Wulandari, D.R.; Puspitaningtyas, D.M.; Ariati, S.R.; Martin, A.F.; Hapsari, B.W. Optimizing micropropagation of Indonesian conserved orchid Vanda celebica using organic compounds and a temporary immersion system. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 14065. [Google Scholar] [CrossRef]
- Emery, N.; Atkins, C. Cytokinins and seed development. In Handbook of Seed Science and Technology, 1st ed.; Singh, A., Ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 63–93. [Google Scholar]
- Bhattacharyya, S.; Banerjee, N. Influence of cytokinins on rhizome-mediated growth and morphogenesis of an endangered medicinal orchid Geodorum densiflorum (Lam.) Schltr. Plant Tissue Cult. Biotechnol. 2020, 30, 65–75. [Google Scholar] [CrossRef]
- Galuszka, P.; Spíchal, L.; Kopečný, D.; Tarkowski, P.; Frébortová, J.; Šebela, M.; Frébort, I. Metabolism of plant hormones cytokinins and their function in signaling, cell differentiation and plant development. Stud. Nat. Prod. Chem. 2008, 34, 203–264. [Google Scholar] [CrossRef]
- Hamed, M.S.; Al-Jubouri, M.T. The effect of BA and NAA on in vitro micropropagation of citrus rootstocks. Euphrates J. Agric. Sci. 2014, 6, 48–56. [Google Scholar]
- Chickarmane, V.S.; Gordon, S.P.; Tarr, P.T.; Heisler, M.G.; Meyerowitz, E.M. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. USA 2012, 109, 4002–4007. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhao, W.; Kong, S.; Li, L.; Lin, S. Overview of molecular mechanisms of plant leaf development: A systematic review. Front. Plant Sci. 2023, 14, 1293424. [Google Scholar] [CrossRef] [PubMed]
- Dawande, V.; Gurav, R. Effect of cytokinins on shoot induction from seed-derived rhizomes in Eulophia nuda Lindl. Int. J. Curr. Res. 2015, 7, 16383–16386. [Google Scholar]
- Sarmah, D.; Mohapatra, P.P.; Seleiman, M.F.; Mandal, T.; Mandal, N.; Pramanik, K.; Wasonga, D.O. Efficient regeneration of in vitro derived plants and genetic fidelity assessment of Phalaenopsis orchid. Front. Sustain. Food Syst. 2024, 8, 1359486. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, V.; Tyagi, P.K.; Gola, D.; Husen, A. Role of cytokinins in adventitious root formation. In Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings; Academic Press: London, UK, 2022; pp. 239–249. [Google Scholar]
- Nguyen, H.T.; Dinh, S.T.; Ninh, T.T.; Nong, H.T.; Dang, T.T.; Khuat, Q.V.; Kalashnikova, E.A. In vitro propagation of the Dendrobium anosmum Lindl. collected in Vietnam. Agronomy 2022, 12, 324. [Google Scholar] [CrossRef]
- Setyawati, A.; Samanhudi, S.H.; Gusniar, N.; Fathin, T.S.; Prihanto, J. In vitro application of kinetin and tomato extract on orchid growth of Dendrobium stratiotes. Ann. Biol. 2024, 40, 211–218. [Google Scholar]
- Sherif, N.A.; Kumar, T.S.; Rao, M.V. In vitro regeneration by callus culture of Anoectochilus elatus Lindley, an endangered terrestrial jewel orchid. In Vitro Cell. Dev. Biol. Plant 2016, 52, 72–80. [Google Scholar] [CrossRef]
- Handini, E.; Sianturi, R.U.D.; Aprilianti, P.; Isnaini, Y.; Semiarti, E.; Rianawati, S.; Solihah, S.M.A. Modification of in vitro culture method of Paphiopedilum glaucophyllum for callus induction. Plant Breed. Biotechnol. 2023, 11, 242–252. [Google Scholar] [CrossRef]
- Guo, B.; Chen, H.; Yin, Y.; Wang, W.; Zeng, S. Tissue culture via protocorm-like bodies in an orchid hybrid Paphiopedilum SCBG Huihuang90. Plants 2024, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, J.; Liu, Z.; Li, L.; Pan, R.; Jin, L. Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata (Willd.) Ohwi. Plant Growth Regul. 2002, 38, 37–43. [Google Scholar] [CrossRef]
- Wang, C.X.; Tian, M. Callus-mediated and direct protocorm-like body formation of Bletilla striata and assessment of clonal fidelity using ISSR markers. Acta Physiol. Plant. 2014, 36, 2321–2330. [Google Scholar] [CrossRef]
- Warner, J.; Camacho-Solís, Y.; Jiménez, V.M. Direct and indirect in vitro regeneration of Vanilla odorata C. Presl. and V. pompona Schiede, two aromatic species with potential relevance for future vanillin production. In Vitro Cell. Dev. Biol. Plant 2023, 59, 621–636. [Google Scholar] [CrossRef]
- Raghavan, V. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: Cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am. J. Bot. 2004, 91, 1743–1756. [Google Scholar] [CrossRef] [PubMed]
- Campanoni, P.; Nick, P. Auxin-dependent cell division and cell elongation: 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 2005, 137, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Patavardhan, S.S.; Ignatius, S.; Thiyam, R.; Lasrado, Q.; Karkala, S.; D’Souza, L.; Nivas, S.K. Asymbiotic seed germination and in vitro development of orchid Papilionanthe Miss Joaquim. Ornam. Hortic. 2022, 28, 246–255. [Google Scholar] [CrossRef]
- Manokari, M.; Priyadharshini, S.; Cokulraj, M.; Dey, A.; Faisal, M.; Alatar, A.A.; Shekhawat, M.S. Exogenous implications of silver nitrate on direct and indirect somatic embryogenesis and germination of cold stored synseeds of Vanilla planifolia Jacks. ex Andrews. S. Afr. J. Bot. 2022, 150, 129–138. [Google Scholar] [CrossRef]
- Hany, I.P.; Noli, Z.A.; Idris, M. Callus induction of Dendrobium discolor through the thin cell layer (TCL) technique added with 2,4-dichlorophenoxyacetic acid. J. Biol. Tropis 2023, 23, 75–80. [Google Scholar] [CrossRef]
- Kiaheirati, H.; Hashemabadi, D.; Kaviani, B. In vitro propagation of the orchid Phalaenopsis circus via organogenesis and somatic embryogenesis using protocorm and thin cell layer explants. Ital. Bot. 2024, 18, 29–50. [Google Scholar] [CrossRef]
- Garabrant, D.H.; Philbert, M.A. Review of 2,4-dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit. Rev. Toxicol. 2002, 32, 233–257. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.A.T.; Hossain, M.M.; Sharma, M.; Dobránszki, J.; Cardoso, J.C.; Zeng, S. Acclimatization of in vitro-derived Dendrobium. Hortic. Plant J. 2017, 3, 110–124. [Google Scholar] [CrossRef]
- Deb, C.R.; Pongener, A. In vitro propagation of Malaxis acuminata D. Don, a therapeutically important orchid via axillary bud culture. Indian J. Exp. Biol. 2011, 49, 769–775. [Google Scholar]
- Ferreira, W.D.M.; Oliveira, A.M.D.; Viana, J.C.; Suzuki, R.M.; Oliveira, J.R.G.D. Asymbiotic germination, initial development in vitro and acclimatization of Cyrtopodium paludicolum Hoehne, a Brazilian savanna orchid species. Rodriguésia 2022, 73, 1–14. [Google Scholar] [CrossRef]
Developmental Stage | Description |
---|---|
0 | Hyaline embryo with intact testa |
1 | Swollen embryo, ruptured testa, and emergence of rhizoids (germination) |
2 | Appearance of protomeristem |
3 | Formation of a scale leaf and a rhizome-like structure at the base of the promeristem in the protocorm |
4 | Continued enlargement of the rhizome-like structure and/or emergence of the first leaf from rhizome-like structure |
5 | Fully developed leaf from shoots-derived protocorms (seedling) |
Culture Media | Percentage (%) | ||||
---|---|---|---|---|---|
Survival | Shoot Formation | Rooting | Rhizome | Callus | |
½MS | 100.0 ± 0.0 ns | 93.3 ± 3.3 a | 96.7 ± 3.3 a | 100.0 ± 0.0 a | 0.0 ± 0.0 b |
MS | 90.0 ± 0.0 | 36.7 ± 8.8 b | 43.3 ± 8.8 bc | 50.0 ± 5.8 c | 26.7 ± 3.3 a |
VW | 86.7 ± 6.7 | 30.0 ± 0.0 b | 40.0 ± 5.8 c | 80.0 ± 0.0 ab | 0.0 ± 0.0 b |
BM-1 | 96.7 ± 3.3 | 0.0 ± 0.0 c | 43.3 ± 3.3 bc | 3.3 ± 3.3 d | 0.0 ± 0.0 b |
KC | 96.7 ± 3.3 | 30.0 ± 5.8 b | 63.3 ± 3.3 b | 90.0 ± 5.8 ab | 0.0 ± 0.0 b |
MM | 86.7 ± 6.7 | 0.0 ± 0.0 c | 63.3 ± 8.8 b | 66.7 ± 6.7 bc | 0.0 ± 0.0 b |
Culture Media | Number per Protocorm | |||
---|---|---|---|---|
Shoots | Leaves | Roots | Rhizome | |
½MS | 1.0 ± 0.0 a | 1.1 ± 0.1 a | 4.2 ± 0.1 a | 2.1 ± 0.4 ns |
MS | 0.5 ± 0.1 b | 0.5 ± 0.1 b | 1.9 ± 0.5 b | 1.6 ± 0.4 |
VW | 0.3 ± 0.0 b | 0.3 ± 0.0 b | 1.2 ± 0.1 bc | 2.2 ± 0.4 |
BM-1 | 0.0 ± 0.0 c | 0.0 ± 0.0 c | 0.6 ± 0.1 c | 2.3 ± 0.3 |
KC | 0.5 ± 0.2 b | 0.5 ± 0.1 b | 1.7 ± 0.2 b | 1.8 ± 0.2 |
MM | 0.0 ± 0.0 c | 0.0 ± 0.0 c | 1.3 ± 0.1 bc | 1.4 ± 0.0 |
CW 1 (mL L−1) | PE 2 (g L−1) | Survival Rate (%) | Shoot Formation (%) | Rooting (%) | Rhizome Formation (%) |
---|---|---|---|---|---|
0 | 0 | 86.7 ± 3.3 b | 46.7 ± 6.7 c–g | 53.3 ± 2.3 b–d | 80.0 ± 5.8 cd |
0 | 25 | 96.7 ± 3.3 ab | 80.0 ± 0.0 a | 90.0 ± 0.0 a | 96.7 ± 3.3 ab |
0 | 50 | 100.0 ± 0.0 a | 76.7 ± 8.8 ab | 90.0 ± 5.8 a | 100.0 ± 0.0 a |
0 | 100 | 100.0 ± 0.0 a | 43.3 ± 3.3 d–g | 53.3 ± 6.7 b–d | 96.7 ± 3.3 ab |
50 | 0 | 96.7 ± 3.3 ab | 63.3 ± 8.8 a–f | 63.3 ± 6.7 a–d | 90.0 ± 0.0 a–d |
100 | 0 | 86.7 ± 8.8 b | 40.0 ± 7.3 e–g | 36.7 ± 4.5 d | 83.3 ± 8.8 b–d |
150 | 0 | 93.3 ± 3.3 ab | 40.0 ± 5.3 e–g | 46.7 ± 3.3 cd | 90.0 ± 5.8 a–d |
200 | 0 | 96.7 ± 3.3 ab | 30.0 ± 2.3 g | 36.7 ± 2.3 d | 86.7 ± 8.8 a–d |
50 | 25 | 100.0 ± 0.0 a | 66.7 ± 3.3 a–e | 83.3 ± 2.0 ab | 96.7 ± 3.3 ab |
100 | 25 | 96.7 ± 3.3 ab | 73.3 ± 8.8 a–c | 83.3 ± 6.7 ab | 96.7 ± 3.3 ab |
150 | 25 | 100.0 ± 0.0 a | 70.0 ± 5.8 a–d | 83.3 ± 3.3 ab | 100.0 ± 0.0 a |
200 | 25 | 96.7 ± 3.3 ab | 63.3 ± 6.7 a–f | 66.7 ± 8.8 a–d | 93.3 ± 3.3 a–c |
50 | 50 | 96.7 ± 3.3 ab | 73.3 ± 6.7 a–c | 80.0 ± 5.8 ab | 96.7 ± 3.3 ab |
100 | 50 | 96.7 ± 3.3 ab | 53.3 ± 6.7 a–g | 60.0 ± 5.8 a–d | 90.0 ± 5.8 a–d |
150 | 50 | 100.0 ± 0.0 a | 76.7 ± 6.7 ab | 83.3 ± 8.8 ab | 96.7 ± 3.3 ab |
200 | 50 | 93.3 ± 3.3 ab | 70.0 ± 5.8 a–d | 70.0 ± 5.8 a–c | 93.3 ± 3.3 a–c |
50 | 100 | 100.0 ± 0.0 a | 50.0 ± 0.0 b–g | 60.0 ± 0.0 a–d | 100.0 ± 0.0 a |
100 | 100 | 93.3 ± 3.3 ab | 40.0 ± 5.8 e–g | 56.7 ± 3.3 b–d | 86.7 ± 3.3 a–d |
150 | 100 | 100.0 ± 0.0 a | 36.7 ± 6.7 fg | 40.0 ± 5.8 cd | 96.7 ± 3.3 ab |
200 | 100 | 86.7 ± 3.3 b | 43.3 ± 2.0 d–g | 46.7 ± 3.6 cd | 76.7 ± 6.7 d |
CW 1 (mL L−1) | PE 2 (g L−1) | Number per Protocorm | |||
---|---|---|---|---|---|
Shoots | Leaves | Roots | Rhizomes | ||
0 | 0 | 0.9 ± 0.2 b–e | 1.0 ± 0.2 b–e | 3.3 ± 0.8 def | 1.2 ± 0.4 e |
0 | 25 | 1.3 ± 0.1 a–e | 1.1 ± 0.1 b–e | 5.8 ± 0.2 a–e | 1.7 ± 0.3 b–e |
0 | 50 | 1.0 ± 0.2 b–e | 1.0 ± 0.2 b–e | 5.9 ± 0.8 a–d | 1.4 ± 0.1 de |
0 | 100 | 0.6 ± 0.1 e | 0.6 ± 0.1 e | 2.3 ± 0.4 f | 1.6 ± 0.2 cde |
50 | 0 | 1.3 ± 0.2 a–e | 1.0 ± 0.3 b–e | 3.8 ± 0.3 c–f | 2.3 ± 0.2 abc |
100 | 0 | 0.9 ± 0.4 cde | 0.8 ± 0.3 de | 2.5 ± 1.1 f | 2.5 ± 0.4 abc |
150 | 0 | 0.9 ± 0.3 cde | 0.8 ± 0.2 cde | 2.7 ± 0.9 ef | 2.8 ± 0.5 a |
200 | 0 | 0.7 ± 0.4 de | 0.8 ± 0.5 de | 2.6 ± 1.6 f | 2.5 ± 0.1 ab |
50 | 25 | 1.2 ± 0.1 a–e | 1.4 ± 0.2 a–e | 7.0 ± 1.3 ab | 2.1 ± 0.1 a–d |
100 | 25 | 1.5 ± 0.2 abc | 1.6 ± 0.2 a–d | 7.2 ± 1.1 ab | 2.3 ± 0.2 abc |
150 | 25 | 1.4 ± 0.2 a–d | 1.7 ± 0.2 ab | 6.7 ± 0.6 abc | 2.7 ± 0.6 a |
200 | 25 | 1.5 ± 0.2 abc | 1.8 ± 0.4 ab | 6.6 ± 1.7 abc | 2.6 ± 0.2 ab |
50 | 50 | 1.3 ± 0.1 a–e | 1.6 ± 0.3 abc | 5.9 ± 0.5 a–d | 2.7 ± 0.1 a |
100 | 50 | 0.9 ± 0.2 cde | 1.0 ± 0.3 b–f | 4.7 ± 1.0 b–f | 2.2 ± 0.1 a–d |
150 | 50 | 1.6 ± 0.1 ab | 1.9 ± 0.1 a | 8.8 ± 1.0 a | 2.6 ± 0.2 ab |
200 | 50 | 1.7 ± 0.1 a | 1.7 ± 0.1 ab | 7.3 ± 0.7 ab | 2.7 ± 0.1 a |
50 | 100 | 0.8 ± 0.1 de | 0.9 ± 0.1 cde | 4.4 ± 0.2 b–f | 2.2 ± 0.1 a–d |
100 | 100 | 0.8 ± 0.1 de | 0.8 ± 0.1 cde | 3.7 ± 0.4 c–f | 2.4 ± 0.2 abc |
150 | 100 | 0.7 ± 0.1 de | 0.7 ± 0.1 e | 2.5 ± 0.4 f | 2.4 ± 0.3 abc |
200 | 100 | 0.9 ± 0.4 cde | 0.8 ± 0.4 cde | 4.1 ± 1.7 b–f | 2.5 ± 0.3 abc |
Cytokinin | Concentration (mg L−1) | Survival Rate (%) | Callus Induction (%) | Shoot Formation (%) | Rooting (%) | Rhizome Formation (%) |
---|---|---|---|---|---|---|
Control | 0.0 | 73.0 ± 4.0 d | 0.0 ± 0.0 c | 79.0 ± 2.0 b | 60.3 ± 7.5 ab | 77.0 ± 4.0 ab |
BA | 0.1 | 96.0 ± 2.0 a | 0.0 ± 0.0 c | 87.7 ± 9.5 ab | 45.7 ± 10.3 bc | 81.3 ± 7.2 a |
0.5 | 85.3 ± 4.3 a–d | 0.0 ± 0.0 c | 92.0 ± 2.0 a | 56.3 ± 3.8 ab | 73.0 ± 5.3 ab | |
1.0 | 92.0 ± 2.0 ab | 0.0 ± 0.0 c | 93.0 ± 3.3 a | 62.7 ± 3.8 a | 69.0 ± 0.0 abc | |
2.0 | 77.3 ± 5.6 cd | 0.0 ± 0.0 c | 77.3 ± 5.6 b | 35.3 ± 7.5 c | 45.7 ± 7.5 d | |
Kinetin | 0.1 | 89.7 ± 4.3 abc | 0.0 ± 0.0 c | 87.7 ± 3.8 ab | 67.0 ± 4.0 a | 73.0 ± 4.0 ab |
0.5 | 88.0 ± 0.0 abc | 0.0 ± 0.0 c | 88.0 ± 0.0 ab | 58.7 ± 7.5 ab | 73.0 ± 5.3 ab | |
1.0 | 85.7 ± 2.3 abc | 0.0 ± 0.0 c | 83.3 ± 2.3 ab | 57.3 ± 1.3 ab | 54.3 ± 11.8 cd | |
2.0 | 83.3 ± 2.3 bcd | 0.0 ± 0.0 c | 85.7 ± 2.3 ab | 54.0 ± 2.0 ab | 60.0 ± 5.5 bcd | |
TDZ | 0.1 | 85.3 ± 4.3 a–d | 90.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 e |
0.5 | 81.3 ± 7.2 bcd | 90.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 e | |
1.0 | 83.3 ± 2.3 bcd | 93.3 ± 3.3 a | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 e | |
2.0 | 79.0 ± 2.0 cd | 90.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 d | 0.0 ± 0.0 e |
Cytokinin | Concentration (mg L−1) | Number per Protocorm | |||
---|---|---|---|---|---|
Shoots | Leaves | Roots | Rhizome | ||
Control | 0.0 | 0.9 ± 0.1 bc | 1.0 ± 0.2 ab | 2.3 ± 0.5 bcd | 1.4 ± 0.3 a |
BA | 0.1 | 0.8 ± 0.2 bc | 0.8 ± 0.1 c | 1.4 ± 0.9 cde | 0.9 ± 0.3 abc |
0.5 | 1.3 ± 0.2 b | 1.5 ± 0.2 b | 1.9 ± 0.2 cd | 1.0 ± 0.1 abc | |
1.0 | 2.3 ± 0.3 a | 2.5 ± 0.2 a | 2.8 ± 0.5 abc | 1.2 ± 0.1 abc | |
2.0 | 0.9 ± 0.0 bc | 0.7 ± 0.3 c | 0.8 ± 0.3 de | 0.8 ± 0.1 c | |
Kinetin | 0.1 | 1.0 ± 0.3 bc | 1.1 ± 0.3 ab | 4.0 ± 0.7 a | 1.3 ± 0.3 ab |
0.5 | 0.9 ± 0.1 bc | 1.0 ± 0.1 ab | 4.0 ± 0.4 a | 0.9 ± 0.0 bc | |
1.0 | 0.8 ± 0.2 bc | 0.9 ± 0.2 ab | 4.2 ± 0.7 a | 1.0 ± 0.0 abc | |
2.0 | 0.7 ± 0.2 bc | 0.9 ± 0.2 ab | 3.6 ±0.6 ab | 0.8 ± 0.1 c | |
TDZ | 0.1 | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d |
0.5 | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d | |
1.0 | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d | |
2.0 | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d |
Auxin | Concentration (mg L−1) | Survival Rate (%) | Callus Induction (%) | Shoot Formation (%) | Rooting (%) | Rhizome Formation (%) |
---|---|---|---|---|---|---|
Control | 0.0 | 79.0 ± 2.0 cd | 0.0 ± 0.0 c | 55.0 ± 3.8 ab | 6.3 ± 0.3 ab | 0.0 ± 0.0 e |
IAA | 0.1 | 96.0 ± 2.0 a | 0.0 ± 0.0 c | 47.5 ± 6.5 abc | 0.0 ± 0.0 b | 0.0 ± 0.0 e |
0.5 | 85.3 ± 4.3 a–d | 0.0 ± 0.0 c | 51.7 ± 2.1 abc | 8.4 ± 2.1 ab | 16.7 ± 2.1 cde | |
1.0 | 92.0 ± 2.0 ab | 0.0 ± 0.0 c | 55.8 ± 5.0 ab | 6.3 ± 0.6 ab | 41.7 ± 1.0 a | |
2.0 | 77.3 ± 5.6 cd | 0.0 ± 0.0 c | 41.3 ± 3.6 abc | 6.3 ± 0.7 ab | 31.3 ± 6.2 abc | |
IBA | 0.1 | 89.7 ± 4.3 a–c | 0.0 ± 0.0 c | 39.2 ± 2.1 abc | 0.0 ± 0.0 b | 0.0 ± 0.0 e |
0.5 | 88.0 ± 0.0 a–c | 0.0 ± 0.0 c | 60.0 ± 4.2 a | 12.5 ± 2.2 a | 22.9 ± 3.1 bcd | |
1.0 | 85.7 ± 2.3 a–c | 0.0 ± 0.0 c | 41.3 ± 3.5 abc | 12.5 ± 3.6 a | 35.4 ± 2.7 ab | |
2.0 | 83.3 ± 2.3 b–d | 0.0 ± 0.0 c | 30.8 ± 2.1 bcd | 2.1 ± 2.1 ab | 22.9 ± 2.1 bcd | |
NAA | 0.1 | 73.0 ± 4.0 d | 0.0 ± 0.0 c | 43.3 ± 2.1 abc | 2.1 ± 0.5 ab | 0.0± 0.0 e |
0.5 | 81.3 ± 7.2 b–d | 0.0 ± 0.0 c | 43.3 ± 5.3 abc | 12.5 ± 2.3 a | 23.0 ± 4.2 bcd | |
1.0 | 85.3 ± 4.3 a–d | 0.0 ± 0.0 c | 45.4 ± 4.1 abc | 8.3 ± 1.2 ab | 8.4 ± 2.1 de | |
2.0 | 83.3 ± 2.3 b–d | 0.0 ± 0.0 c | 28.8 ± 7.2 cd | 2.1 ± 2.1 ab | 4.2 ± 4.2 e | |
2,4–D | 0.1 | 60.0 ± 3.6 a–c | 100.0 ± 0.0 a | 0.0 ± 0.0 d | 0.0 ± 0.0 b | 0.0 ± 0.0 e |
0.5 | 78.8 ± 10.8 a–c | 83.3 ± 1.5 ab | 0.0 ± 0.0 d | 0.0 ± 0.0 b | 0.0 ± 0.0 e | |
1.0 | 49.6 ± 16.3 cd | 76.7 ± 0.6 b | 0.0 ± 0.0 d | 0.0 ± 0.0 b | 0.0 ± 0.0 e | |
2.0 | 33.3 ± 1.6 d | 73.3 ± 0.6 b | 0.0 ± 0.0 d | 0.0 ± 0.0 b | 0.0 ± 0.0 e |
Auxin | Concentration (mg L−1) | Number per Protocorm | ||
---|---|---|---|---|
Shoots | Roots | Rhizomes | ||
Control | 0.0 | 0.7 ± 0.1 bc | 3.2 ± 0.7 a | 0.8 ± 0.1 b |
IAA | 0.1 | 1.1 ± 0.1 a | 3.0 ± 1.2 ab | 1.5 ± 0.4 a |
0.5 | 0.5 ± 0.1 bcd | 2.1 ± 0.4 abc | 1.5 ± 0.4 a | |
1.0 | 0.6 ± 0.2 bc | 4.2 ± 1.6 a | 0.6 ± 0.2 bc | |
2.0 | 0.6 ± 0.1 bcd | 2.6 ± 0.3 abc | 0.5 ± 0.2 bc | |
IBA | 0.1 | 0.6 ± 0.1 bc | 2.4 ± 0.3 abc | 0.2 ± 0.2 bc |
0.5 | 0.9 ± 0.1 ab | 4.1 ± 0.2 a | 0.6 ± 0.2 bc | |
1.0 | 0.7 ± 0.2 bc | 2.8 ± 1.0 ab | 0.3 ± 0.1 bc | |
2.0 | 0.6 ± 0.1 bc | 2.9 ± 0.7 ab | 0.4 ± 0.2 bc | |
NAA | 0.1 | 0.4 ± 0.0 cde | 2.2 ± 0.6 abc | 0.3 ± 0.1 bc |
0.5 | 0.5 ± 0.2 bcd | 2.1 ± 0.4 abc | 0.3 ± 0.1 bc | |
1.0 | 0.5 ± 0.1 bcd | 1.0 ± 0.4 bcd | 0.4 ± 0.1 bc | |
2.0 | 0.2 ± 0.2 def | 0.6 ± 0.4 cd | 0.2 ± 0.1 bc | |
2,4–D | 0.1 | 0.1 ± 0.1 ef | 0.1 ± 0.1 d | 0.5 ± 0.3 bc |
0.5 | 0.0 ± 0.0 f | 0.0 ± 0.0 d | 0.7 ± 0.1 bc | |
1.0 | 0.0 ± 0.0 f | 0.0 ± 0.0 d | 0.6 ± 0.4 bc | |
2.0 | 0.0 ± 0.0 f | 0.0 ± 0.0 d | 0.0 ± 0.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongsa, T.; Piapukiew, J.; Kuenkaew, K.; Somsanook, C.; Sapatee, O.; Linjikao, J.; Kunakhonnuruk, B.; Kongbangkerd, A. Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh. Plants 2025, 14, 2212. https://doi.org/10.3390/plants14142212
Wongsa T, Piapukiew J, Kuenkaew K, Somsanook C, Sapatee O, Linjikao J, Kunakhonnuruk B, Kongbangkerd A. Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh. Plants. 2025; 14(14):2212. https://doi.org/10.3390/plants14142212
Chicago/Turabian StyleWongsa, Thanakorn, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk, and Anupan Kongbangkerd. 2025. "Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh." Plants 14, no. 14: 2212. https://doi.org/10.3390/plants14142212
APA StyleWongsa, T., Piapukiew, J., Kuenkaew, K., Somsanook, C., Sapatee, O., Linjikao, J., Kunakhonnuruk, B., & Kongbangkerd, A. (2025). Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh. Plants, 14(14), 2212. https://doi.org/10.3390/plants14142212