Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = hydropower energy recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1455 KB  
Review
Review of Hydropower Technology and Potential for Energy Recovery from Water Distribution Networks Towards Improvement of Their Sustainability
by Nikolaos Stamos, Ioannis Kogioumtzidis, Kyriakos Vafiadis and Antonios Tourlidakis
Energies 2026, 19(2), 320; https://doi.org/10.3390/en19020320 - 8 Jan 2026
Viewed by 115
Abstract
The supply and treatment of water is a highly energy-intensive process and is responsible for large amounts of greenhouse gas emissions and economic costs. There is a worldwide recognition of the requirement for more sustainable water supply systems, and the use of small [...] Read more.
The supply and treatment of water is a highly energy-intensive process and is responsible for large amounts of greenhouse gas emissions and economic costs. There is a worldwide recognition of the requirement for more sustainable water supply systems, and the use of small hydropower turbines within water supply networks offers a viable option for electricity generation in water distribution networks at locations of excessively high flow or pressure without compromising the level of service to consumers. This paper presents a critical review of the current state of the art and knowledge regarding the available energy potential, the hydropower technology options that are under current use and development, existing implementation projects, research activities and economic aspects of this new technological field. The challenges for the improvement of sustainability of water distribution networks through the implementation of small-scale hydropower turbines within water supply networks will be also presented and analysed. Full article
28 pages, 39423 KB  
Article
Experimental Development and Field Validation of an Advanced Penstock Repair Process for Extending Service Life in a Hydropower Plant
by David A. del Río, Johann A. Caballero, Jessica T. Muñoz, Leonardo Rojas, Gerardo Galvis-Romero, Nhora Cecilia Parra-Rodriguez, Laidi Morales-Cruz, Alejandro Morales-Ortiz, Andrés F. Duque, Daniel Hincapié, Camilo Seifert-Yepes, Sebastián Acuña-Carmona, Wilber Silva-López, César Nieto-Londoño and Rafael E. Vásquez
Water 2025, 17(24), 3495; https://doi.org/10.3390/w17243495 - 10 Dec 2025
Viewed by 554
Abstract
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to [...] Read more.
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to affordable, reliable, sustainable, and modern energy systems is essential for long-term energy security. This paper presents a field-validated, non-thermal repair methodology developed for the Chivor II hydropower penstock, a critical water conduction tunnel used for energy production in Colombia, that has been affected by a circumferential fatigue crack. Due to the geometric confinement of the penstock within the rock mass, conventional thermal or stress-relief treatments were unfeasible. Therefore, the proposed methodology uses controlled material removal with a welding sequence designed to release stored elastic energy and induce compressive stresses through the Poisson effect. Its main contribution is demonstrated through pilot-scale validation and full-scale implementation under real operating conditions, achieving 50% reduction in tensile stresses and left 99% of the examined surface under compression, which represents effective residual-stress stabilization, structural recovery, and hydraulic reliability. The methodology ensures reliable water conveyance for hydropower generation and can be applied to other pressurized conduits and pipelines where accessibility and heat treatment are constrained, strengthening SDGs 7 and 9 on clean energy, water sustainability, and resilient infrastructure. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

33 pages, 2419 KB  
Article
Hybrid Hydropower–PV with Mining Flexibility and Heat Recovery: Article 6-Ready Mitigation Pathways in Central Asia
by Seung-Jun Lee, Tae-Yun Kim, Jun-Sik Cho, Ji-Sung Kim and Hong-Sik Yun
Sustainability 2025, 17(21), 9488; https://doi.org/10.3390/su17219488 - 24 Oct 2025
Viewed by 1088
Abstract
The global transition to renewable energy requires hybrid solutions that address variability while delivering tangible co-benefits and verifiable mitigation outcomes. This study evaluates a novel small hydropower–photovoltaic (SHP–PV) hybrid system in the Kyrgyz Republic that integrates flexible Bitcoin mining loads and waste-heat recovery [...] Read more.
The global transition to renewable energy requires hybrid solutions that address variability while delivering tangible co-benefits and verifiable mitigation outcomes. This study evaluates a novel small hydropower–photovoltaic (SHP–PV) hybrid system in the Kyrgyz Republic that integrates flexible Bitcoin mining loads and waste-heat recovery for greenhouse heating. A techno-economic model was developed for a 10 MW configuration, allocating annual net generation of 57.34 GWh between grid export and on-site mining through a single decision parameter. Mitigation accounting applies a combined margin grid factor of 0.4–0.7 tCO2/MWh for exported electricity and a diesel factor of 0.26–0.27 tCO2/MWh_fuel for heat displacement, yielding Article 6–eligible reductions from both electricity and recovered heat. Waste-heat recovery from mining supplies ≈15 MWh_th/year to a 50 m2 greenhouse, displacing diesel use and demonstrating visible sustainable development co-benefits. Economic analysis reproduces annual revenues of ≈$1.9 million, with a levelized cost of electricity of $48/MWh and an indicative IRR of ~6%, consistent with positive but modest returns under merchant operation and uplift potential under mixed allocations. This study concludes that componentized accounting—exported electricity credited under grid displacement and diesel displacement credited from recovered heat—ensures Article 6 integrity and positions SHP–PV hybrids as replicable, multi-service renewable models for Central Asia. Unlike prior hybrid studies that treat generation, economics, and mitigation separately, our framework integrates allocation (α), financial outcomes, and Article 6 carbon accounting within a unified structure, while explicitly modeling Bitcoin mining as an endogenous flexible load with thermal recovery—advancing methodological approaches for multi-service renewable systems in climate policy contexts. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 1949 KB  
Article
Batch-Process Approach to Osmotic Power Generation: Modeling and Performance Assessment
by Daniel Ruiz-Navas, Edgar Quiñones-Bolaños and Mostafa H. Sharqawy
Processes 2025, 13(11), 3410; https://doi.org/10.3390/pr13113410 - 24 Oct 2025
Viewed by 640
Abstract
This paper presents a novel batch Forward Osmosis (FO) process for hydropower generation. It focuses on analyzing the parameters needed to make the proposed osmotic power plant implementable with currently available technology. Starting from the solution–diffusion model and using flow and mass balance [...] Read more.
This paper presents a novel batch Forward Osmosis (FO) process for hydropower generation. It focuses on analyzing the parameters needed to make the proposed osmotic power plant implementable with currently available technology. Starting from the solution–diffusion model and using flow and mass balance equations, the equations that describe the behavior of the system over time are obtained. Membrane orientation, concentration polarization, reverse solute flux, and membrane fouling are not considered. The equations for calculating the operation time for the charging and discharging stages are obtained. Also, an equation for calculating the required membrane area to make the duration of the two stages the same is obtained. The results indicate that a volume of approximately 30.4 m3 discharging through a 0.84 inch diameter outflow jet towards a turbine could generate an energy of 25 kw·h. The discharging stage would take 12 h, and with a membrane with a water permeability constant Am=1.763·1012 m/(s·Pa), the charging stage would require a membrane superficial area Arm=1·104 m2 to have the same duration. The proposed osmotic power plant, whose working principle is based on volume change over time, contrary to pressure retarded osmosis, whose working principle requires expending energy to extract energy from the salinity gradient, could deliver greater net produced energy with comparatively lower operational costs as it does not require high-pressure pumps or energy recovery devices as are required in pressure-retarded osmosis. The use of several tanks that charge and discharge alternatively can make the system generate energy as if it were a continuous process. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 13587 KB  
Article
Numerical Study of the Flow Around Twin Straight-Bladed Darrieus Hydrokinetic Turbines
by Santiago Laín, Miguel Viveros, Aldo Benavides-Morán and Pablo Ouro
J. Mar. Sci. Eng. 2025, 13(10), 1947; https://doi.org/10.3390/jmse13101947 - 11 Oct 2025
Viewed by 622
Abstract
Nowadays, the potential of hydrokinetic turbines as a sustainable alternative to complement traditional hydropower is widely recognized. This study presents a comprehensive numerical analysis of twin straight-bladed Darrieus hydrokinetic turbines, characterizing their hydrodynamic interactions and performance characteristics. The influence of turbine configuration spacing [...] Read more.
Nowadays, the potential of hydrokinetic turbines as a sustainable alternative to complement traditional hydropower is widely recognized. This study presents a comprehensive numerical analysis of twin straight-bladed Darrieus hydrokinetic turbines, characterizing their hydrodynamic interactions and performance characteristics. The influence of turbine configuration spacing and flow parameters on efficiency and wake dynamics are investigated. The employed 3D computational approach combines the overset mesh technique, used to capture the unsteady flow around the turbines, with the URANS k-ω Shear Stress Transport (SST) turbulence model. Results show that turbine spacing improves power coefficients and overall efficiency, albeit at the cost of slower wake recovery. A noticeable performance increase is observed when the turbines are spaced between 1.5 and 2 diameters apart, which is predicted to reach up to 40% regarding the single turbine. Furthermore, the effect of flow interaction between the turbines is examined by analyzing the influence of turbine spacing on flow structures as well as pressure and skin friction coefficients on the blades. The performed analysis reveals that vortex detachment is delayed in the twin-turbine configuration compared to the isolated case, which partially explains the observed performance enhancement. The insights gained from this work are expected to contribute to the advancement of renewable hydrokinetic energy technologies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2478 KB  
Article
Research on Primary Frequency Regulation Control Strategy of the Joint Hydropower and Battery Energy Storage System Based on Refined Model
by Yifeng Gu, Fangqing Zhang, Youping Li, Youhan Deng, Xiaojun Hua, Jiang Guo and Tingji Yang
Energies 2025, 18(19), 5249; https://doi.org/10.3390/en18195249 - 2 Oct 2025
Viewed by 785
Abstract
This study aims to reduce reverse power and improve frequency regulation performance in hydropower systems. To achieve this objective, a refined hydropower plant (HPP) simulation model is developed and coupled with a battery energy storage system (BESS), implementing an Integrated Adaptive Virtual Droop [...] Read more.
This study aims to reduce reverse power and improve frequency regulation performance in hydropower systems. To achieve this objective, a refined hydropower plant (HPP) simulation model is developed and coupled with a battery energy storage system (BESS), implementing an Integrated Adaptive Virtual Droop Control (IAVDC) strategy. The refined HPP model achieves a simulation accuracy of 98.5%, representing a 26.2% improvement over conventional simplified models. With the BESS integrated under the IAVDC strategy, reverse power is completely eliminated, and frequency regulation time is substantially shortened. The results demonstrate that the joint HPP-BESS frequency regulation effectively mitigates the adverse impact of water hammer, while the proposed IAVDC strategy enhances system responsiveness and reduces frequency recovery time, thereby improving the quality of primary frequency control. Full article
(This article belongs to the Special Issue Improvements of the Electricity Power System: 3rd Edition)
Show Figures

Figure 1

18 pages, 2677 KB  
Article
Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea
by Kyoungwon Min, Hyunjung Kim, Gyumin Lee and Doosun Kang
Water 2025, 17(17), 2511; https://doi.org/10.3390/w17172511 - 22 Aug 2025
Viewed by 1709
Abstract
Water supply systems (WSSs) are energy-intensive infrastructure that present significant opportunities for decarbonization through the integration of renewable energy (RE). This study evaluated the RE generation potential within the WSSs of Incheon Metropolitan City (IMC), Republic of Korea, using a site-specific, data-driven approach. [...] Read more.
Water supply systems (WSSs) are energy-intensive infrastructure that present significant opportunities for decarbonization through the integration of renewable energy (RE). This study evaluated the RE generation potential within the WSSs of Incheon Metropolitan City (IMC), Republic of Korea, using a site-specific, data-driven approach. Three RE technologies were considered: solar photovoltaic (PV) systems installed in water-treatment plants (WTPs), micro-hydropower (MHP) utilizing the residual head at the inlet chamber of a WTP, and in-pipe MHP recovery using the discharge from water supply tanks in water distribution networks. Actual facility data, hydraulic simulations, and spatial analyses were used to estimate an annual RE generation potential of 32,811 MWh in the WSSs of IMC, including 18,830 MWh from solar PV in WTPs, 4938 MWh from MHP in WTPs, and 9043 MWh from in-pipe MHP. This corresponds to an energy self-sufficiency rate of approximately 22.3%, relative to the IMC WSS total annual electricity consumption of 147,293 MWh in 2022. The results demonstrated that decentralized RE deployment within existing WSSs can significantly reduce grid dependency and carbon emissions. This study provides a rare empirical benchmark for RE integration in large-scale WSSs and offers practical insights for municipalities seeking energy-resilient and climate-aligned infrastructure transitions. Full article
(This article belongs to the Special Issue Security and Management of Water and Renewable Energy)
Show Figures

Figure 1

13 pages, 6786 KB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 1260
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

33 pages, 13278 KB  
Article
Effect of Blade Profile on Flow Characteristics and Efficiency of Cross-Flow Turbines
by Ephrem Yohannes Assefa and Asfafaw Haileselassie Tesfay
Energies 2025, 18(12), 3203; https://doi.org/10.3390/en18123203 - 18 Jun 2025
Cited by 3 | Viewed by 1911
Abstract
This study presents a comprehensive numerical investigation into the influence of blade profile geometry on the internal flow dynamics and hydraulic performance of Cross-Flow Turbines (CFTs) under varying runner speeds. Four blade configurations, flat, round, sharp, and aerodynamic, were systematically evaluated using steady-state, [...] Read more.
This study presents a comprehensive numerical investigation into the influence of blade profile geometry on the internal flow dynamics and hydraulic performance of Cross-Flow Turbines (CFTs) under varying runner speeds. Four blade configurations, flat, round, sharp, and aerodynamic, were systematically evaluated using steady-state, two-dimensional Computational Fluid Dynamics (CFD) simulations. The Shear Stress Transport (SST) k–ω turbulence model was employed to resolve the flow separation, recirculation, and turbulence across both energy conversion stages of the turbine. The simulations were performed across runner speeds ranging from 270 to 940 rpm under a constant head of 10 m. The performance metrics, including the torque, hydraulic efficiency, water volume fraction, pressure distribution, and velocity field characteristics, were analyzed in detail. The aerodynamic blade consistently outperformed the other geometries, achieving a peak efficiency of 83.5% at 800 rpm, with improved flow attachment, reduced vortex shedding, and lower exit pressure. Sharp blades also demonstrated competitive efficiency within a narrower optimal speed range. In contrast, the flat and round blades exhibited higher turbulence and recirculation, particularly at off-optimal speeds. The results underscore the pivotal role of blade edge geometry in enhancing energy recovery, suppressing flow instabilities, and optimizing the stage-wise performance in CFTs. These findings offer valuable insights for the design of high-efficiency, site-adapted turbines suitable for micro-hydropower applications. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

21 pages, 2977 KB  
Article
Research on Typical Market Mode of Regulating Hydropower Stations Participating in Spot Market
by Mengfei Xie, Xiangrui Liu, Huaxiang Cai, Dianning Wu and Yanhe Xu
Water 2025, 17(9), 1288; https://doi.org/10.3390/w17091288 - 25 Apr 2025
Cited by 1 | Viewed by 651
Abstract
As the second largest power source in the world, hydropower plays a crucial role in the operation of power systems. This paper focuses on the key issues of regulating hydropower stations participating in the spot market. It aims at the core challenges, such [...] Read more.
As the second largest power source in the world, hydropower plays a crucial role in the operation of power systems. This paper focuses on the key issues of regulating hydropower stations participating in the spot market. It aims at the core challenges, such as the conflict of cascade hydro plants’ joint clearing, the lack of adaptability for different types of power supply bidding on the same platform, and the contradiction between long-term operation and the spot market. Through the construction of a water spillage management strategy and settlement compensation mechanism, the competitive abandoned water problem caused by mismatched quotations of cascade hydro plants can be solved. In order to achieve reasonable recovery of the power cost, a separate bidding mechanism and capacity cost recovery model are designed. Subsequently, the sufficient electricity supply constraint of the remaining period is integrated into the spot-clearing model, which can coordinate short-term hydropower dispatch with long-term energy storage demand. The operation of the Yunnan electricity spot market is being simulated to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

35 pages, 5075 KB  
Article
Variable-Speed Hydropower Control and Ancillary Services: A Remedy for Enhancing Grid Stability and Flexibility
by Cagatay Cebeci, Max Parker, Luis Recalde-Camacho, David Campos-Gaona and Olimpo Anaya-Lara
Energies 2025, 18(3), 642; https://doi.org/10.3390/en18030642 - 30 Jan 2025
Cited by 5 | Viewed by 1825
Abstract
Variable-Speed Hydropower Plants (VSHP) are becoming more promising for stabilising power grids with the increasing integration of renewable energy sources. This research focuses on improving fault ride-through capabilities and delivering efficient ancillary services for VSHPs to support the grid by developing a comprehensive [...] Read more.
Variable-Speed Hydropower Plants (VSHP) are becoming more promising for stabilising power grids with the increasing integration of renewable energy sources. This research focuses on improving fault ride-through capabilities and delivering efficient ancillary services for VSHPs to support the grid by developing a comprehensive control strategy. The control system proposed integrates a machine-side controller, a Frequency Support Controller (FSC), a Virtual Synchronous Machine (VSM), a Vector Current Controller (VCC) for the grid-side converter, a turbine governor for regulating turbine speed, and a DC-link controller. PID with an anti-windup scheme and a Model Predictive Controller (MPC) were employed for the turbine governor. The MPC turbine governor results demonstrate the potential of advanced control methods for enhanced performance of the VSHP. A benchmarking between the MPC and the PID governor was made. The benchmarking results have reported that the MPC can achieve reference tracking improvements up to 99.42%. Tests on a diverse set of grid scenarios were conducted, and the graphical results showed significant improvements in mitigating the frequency drops through the effective governor response. The synthetic inertia provision is swift, completing within seconds of a frequency drop. Compared to the fixed-speed approach, the VSHP improves the grid’s overall stability by minimising frequency dipping and achieving steady-state recovery remarkably faster. The fixed-speed approach only begins to recover minutes after the VSHP reaches the settling time. By effectively providing critical ancillary services such as frequency support, synthetic inertia, and smooth fault ride-through capability, the VSHP can become a transformative solution for future power grids, which are estimated to be more reliant on renewable energy sources. Full article
(This article belongs to the Special Issue Low Carbon Energy Generation and Utilization Technologies)
Show Figures

Figure 1

16 pages, 2751 KB  
Article
The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production
by Ashitosh Rajesh Varne, Simon Blouin, Baxter Lorenzo McIntosh Williams and David Denkenberger
Energies 2024, 17(20), 5147; https://doi.org/10.3390/en17205147 - 16 Oct 2024
Cited by 5 | Viewed by 3091
Abstract
To combat global warming, energy systems are transitioning to generation from renewable sources, such as wind and solar, which are sensitive to climate conditions. While their output is expected to be little affected by global warming, wind, and solar electricity generation could be [...] Read more.
To combat global warming, energy systems are transitioning to generation from renewable sources, such as wind and solar, which are sensitive to climate conditions. While their output is expected to be little affected by global warming, wind, and solar electricity generation could be affected by more drastic climatic changes, such as abrupt sunlight reduction scenarios (ASRSs) caused by nuclear war (“nuclear winter”) or supervolcanic eruptions (“volcanic winter”). This paper assesses the impacts of an ASRS on global energy supply and security in a 100% renewable energy scenario. National generation mixes are determined according to roadmaps for a global transition to renewable energy, with wind and solar contributing a combined 94% of the global energy supply. Wind and solar generation are determined for a baseline climate and an ASRS following a large-scale nuclear exchange. While effects vary by country, overall wind and solar generation are expected to reduce by 59% in the first year following an ASRS, requiring over a decade for full recovery. Ensuring sufficient energy for everyone’s critical needs, including water, food, and building heating/cooling, would require international trade, resilient food production, and/or resilient energy sources, such as wood, geothermal, nuclear power, tidal power, and hydropower. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 5637 KB  
Review
Comprehensive Review for Energy Recovery Technologies Used in Water Distribution Systems Considering Their Performance, Technical Challenges, and Economic Viability
by Admitos A. Bideris-Davos and Panagis N. Vovos
Water 2024, 16(15), 2129; https://doi.org/10.3390/w16152129 - 27 Jul 2024
Cited by 6 | Viewed by 4929
Abstract
Urban water distribution systems (WDSs) exhibit significant energy potential that is currently dissipated in the form of excess pressure, either at brake-pressure tanks (BPTs) or pressure reduction valves (PRVs). Recent research focuses on the implementation of energy harvesting methods within WDSs in order [...] Read more.
Urban water distribution systems (WDSs) exhibit significant energy potential that is currently dissipated in the form of excess pressure, either at brake-pressure tanks (BPTs) or pressure reduction valves (PRVs). Recent research focuses on the implementation of energy harvesting methods within WDSs in order to improve the energy efficiency of such systems. This paper provides a systematic review of the technologies developed for energy exploitation in WDSs, covering both their technical and economic aspects, while considering their reliability in providing water pressure regulation. Drawn from the existing literature and state of the art, a systematic analysis was carried out that specifies and categorizes the most essential parameters that impact the implementation of energy recovery turbines into WDSs. Different turbine types, design parameters, and performance properties, such as generation efficiency and pressure regulation precision, were considered. Finally, practical challenges and consequences emerging from the joint optimization of water and power systems are addressed. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

20 pages, 3317 KB  
Article
The Strategy of Continuous Commutation Failure Suppression by Combining Turn-off Angle Compensation and Dynamic Nonlinear VDCOL
by Hewei Liu and Guobin Jin
Sustainability 2024, 16(5), 2145; https://doi.org/10.3390/su16052145 - 5 Mar 2024
Viewed by 1950
Abstract
In recent years, with the continuous growth in China’s economy, the continuous advancement of urbanization and industrialization, the contradiction between rapid economic development and the continuous reduction in traditional fossil energy reserves such as coal, oil, and natural gas, the continuous aggravation of [...] Read more.
In recent years, with the continuous growth in China’s economy, the continuous advancement of urbanization and industrialization, the contradiction between rapid economic development and the continuous reduction in traditional fossil energy reserves such as coal, oil, and natural gas, the continuous aggravation of environmental pollution has become increasingly prominent. In this era, clean energy power generation technologies such as hydropower, wind power, and solar power generation, which have the advantages of renewability, environmental protection, and economy, have developed rapidly. However, wind and photovoltaic power plants are often located in remote areas, which means significant losses in the transmission process. High-voltage direct current (HVDC) transmission technology becomes the best choice to solve this problem. The HVDC transmission system based on a grid commutator is widely used in China’s AC-DC hybrid power grid. When an AC fault occurs on the inverter side, the line-commutated converter high-voltage direct current (LCC-HVDC) system is more prone to continuous commutation failure, which brings serious harm to system operation. To better suppress the problem of continuous commutation failure on the contravariant side, this paper analyzes the mechanism of continuous commutation failure from multiple angles. The DC current command sensitivity of a voltage-dependent current order limiter (VDCOL) in the LCC-HVDC system is low, which will lead to different degrees of continuous commutation failure. In addition, the rapid rise in DC current and the drop in commutation voltage during the fault will cause the turn-off angle to drop, and the probability of continuous commutation failure of the system will increase significantly. Based on the above theoretical analysis, a new control strategy combining the dynamic compensation of the turn-off angle of a virtual inductor and the suppression of continuous commutation failure by dynamic nonlinear VDCOL is proposed. A dynamic nonlinear VDCOL control strategy is proposed for the low sensitivity of current command adjustment under conventional VDCOL control. Secondly, two concepts of virtual inductance and DC current change rate are introduced, and a control strategy based on virtual inductance is proposed to comprehensively ensure that the switching angle has sufficient commutation margin during fault recovery. Finally, based on the CIGRE standard test model in PSCAD/EMTDC, the accuracy of the correlation mechanism analysis and the effectiveness of the suppression method are verified. Full article
Show Figures

Figure 1

19 pages, 905 KB  
Review
A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement
by Ahmed G. Abo-Khalil and Mohammad Alobaid
Sustainability 2023, 15(20), 14680; https://doi.org/10.3390/su152014680 - 10 Oct 2023
Cited by 11 | Viewed by 5396
Abstract
The increasing peak electricity demand and the growth of renewable energy sources with high variability underscore the need for effective electrical energy storage (EES). While conventional systems like hydropower storage remain crucial, innovative technologies such as lithium batteries are gaining traction due to [...] Read more.
The increasing peak electricity demand and the growth of renewable energy sources with high variability underscore the need for effective electrical energy storage (EES). While conventional systems like hydropower storage remain crucial, innovative technologies such as lithium batteries are gaining traction due to falling costs. This paper examines the diverse applications of energy storage, spanning from grid connectivity to end-user solutions, and emphasizes large-scale energy recovery and system stability. The integration of EES with various energy infrastructures and consumer strategies is explored, highlighting the use of tariffs and peak pricing systems for energy cost savings. Country-specific priorities shape EES deployment, with the U.S focusing on grid stability, Japan on emergency power, and South Korea, still in the demonstration phase, prioritizing peak demand reduction. Our analysis of the UK, U.S., and South Korea reveals the pivotal role of energy storage in achieving flexible and efficient energy systems. The industry shows promising growth, with significant commercial expansion expected around 2035, presenting profound policy and deployment implications for the future. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop