The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production
Abstract
:1. Introduction
2. Background
3. Methods
- No distinction is made between direct and diffuse solar radiation when calculating solar power.
- The effects of wavelength-dependent scattering and absorption of sunlight are not included.
- Wind turbine power output is assumed to be proportional to the cube of wind velocity.
- The effects of large-scale energy storage are not assessed.
4. Results
5. Discussion
5.1. Heating and Cooling
5.2. Food Production
- Seaweed: Seaweed farming could provide additional food in a catastrophe [66]. Seaweed production requires approximately 70 MJ per kg of dry carbohydrate equivalent (4000 kcal/kg) (dominated by drying energy) [67], so feeding the global population with seaweed would consume 21% of global primary energy.
- Cellulosic sugar: Biorefineries, paper factories, and breweries could be repurposed to convert agricultural residues into cellulosic sugar [68]. Boilers could burn lignin and other waste products to produce additional electricity. These factories could potentially also produce leaf protein concentrate to contribute to nutritional needs [69].
- Single-cell protein: Natural gas or biomethane could be used to grow single-cell protein (SCP) for human and animal consumption [70]. The energy intensity of methane SCP is 90–130 MJ (natural gas)/dry kg or 15.8 MJ (electricity)/dry kg, requiring a total of 3800–4800 billion cubic meters of natural gas and 870–910 GWh of electricity to feed everyone, equivalent to 90–115% and 34–36% of global natural gas and electricity consumption, respectively, or 31% of total primary energy. Hydrogen SCP [71], potentially more available in a 100% renewable energy system [72], would consume 6.5 TWh of electricity, equivalent to 21.5% of 2019 global electricity consumption (230% of primary energy), to feed everyone.
- Edible fat from petroleum wax: Petroleum wax could be converted to edible fat, requiring 740–1000 TWh of electricity and 28,000–34,000 TWh of fuels per year, or 3.3–4.6% of the 2019 global electricity consumption and 42–51% of 2019 global coal production to feed everyone [73]. Since coal is 35% of primary energy [74], fat from wax would take 17% of primary energy. However, current paraffin wax production capacities would be insufficient for these requirements [73] and production would be smaller in a low-carbon scenario.
- Artificial light for food production: Algae could be grown in bioreactors, or vegetables in vertical farms, with artificial light [77]. Spirulina microalgae require 140–500 MJ (electricity)/kg dry [78], while artificial light-grown vegetables require about 4100 MJ (electricity)/kg dry (carbohydrate equivalent) at 0.4% electricity to calorie efficiency [79]. Thus, to feed everyone, spirulina would require 6.8–23.9 TWh of electricity (230–930% of 2019 global consumption). This is 40–160% of primary energy, even the lower bound of which would be infeasible in an ASRS because of other energy needs. Artificial light-grown vegetables would require 190 TWh (~1300% of primary energy) to feed everyone. Thus, only small amounts of these energy-intensive resilient foods could be produced post-ASRS.
5.3. Increasing Energy Production
5.4. Summary and Key Takeaways
5.5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- He Pou a Rangi Climate Change Commission. Ināia tonu nei: A Low Emissions Future for Aotearoa; He Pou a Rangi Climate Change Commission: Wellington, New Zealand, 2021. [Google Scholar]
- Dalala, Z.; Al-Omari, M.; Al-Addous, M.; Bdour, M.; Al-Khasawneh, Y.; Alkasrawi, M. Increased renewable energy penetration in national electrical grids constraints and solutions. Energy 2022, 246, 123361. [Google Scholar] [CrossRef]
- Joskow, P.L. Challenges for wholesale electricity markets with intermittent renewable generation at scale: The US experience. Oxf. Rev. Econ. Policy 2019, 35, 291–331. [Google Scholar] [CrossRef]
- Mia, N.; Das, S.; Hossain, M.; Ahmed, N. A Review on Feasibility of Solar Based Renewable Energy: A Projection Up to 2050. In Proceedings of the 2020 IEEE International Conference on Technology, Engineering, Management for Societal Impact Using Marketing, Entrepreneurship and Talent (TEMSMET), Bengaluru, India, 10 December 2020; pp. 1–6. [Google Scholar]
- Lowe, R.J.; Drummond, P. Solar, wind and logistic substitution in global energy supply to 2050–Barriers and implications. Renew. Sustain. Energy Rev. 2022, 153, 111720. [Google Scholar] [CrossRef]
- Viviescas, C.; Lima, L.; Diuana, F.A.; Vasquez, E.; Ludovique, C.; Silva, G.N.; Huback, V.; Magalar, L.; Szklo, A.; Lucena, A.F.; et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew. Sustain. Energy Rev. 2019, 113, 109232. [Google Scholar] [CrossRef]
- Pincelli, I.P.; Brent, A.C.; Hinkley, J.T.; Sutherland, R. Scaling up solar and wind electricity: Empirical modelling and a disruptive scenario for their deployments in Aotearoa New Zealand. J. R. Soc. N. Z. 2024, 1–23. [Google Scholar] [CrossRef]
- Lowery, C.; O’Malley, M. Optimizing wind farm locations to reduce variability and increase generation. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Ribeiro, A.E.D.; Arouca, M.C.; Coelho, D.M. Electric energy generation from small-scale solar and wind power in Brazil: The influence of location, area and shape. Renew. Energy 2016, 85, 554–563. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montávez, J.P.; López-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef]
- Gernaat, D.E.H.J.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate change impacts on renewable energy supply. Nat. Clim. Chang. 2021, 11, 119–125. [Google Scholar] [CrossRef]
- Russo, M.A.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the inevitable: A review on the impacts of climate change on renewable energy resources. Sustain. Energy Technol. Assess. 2022, 52, 102283. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Berardi, G.; Green, R.; Hammond, B. Stability, sustainability, and catastrophe: Applying resilience thinking to US agriculture. Hum. Ecol. Rev. 2011, 18, 115–125. [Google Scholar]
- Fiksel, J. Sustainability and resilience: Toward a systems approach. Sustain. Sci. Pract. Policy 2006, 2, 14–21. [Google Scholar] [CrossRef]
- Maher, J.M., Jr.; Baum, S.D. Adaptation to and recovery from global catastrophe. Sustainability 2013, 5, 1461–1479. [Google Scholar] [CrossRef]
- Gasparini, P.; Manfredi, G.; Asprone, D. Resilience and Sustainability in Relation to Natural Disasters—A Challenge for Future Cities; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Robock, A. Nuclear winter. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 418–427. [Google Scholar] [CrossRef]
- Boyd, M.; Wilson, N. Island refuges for surviving nuclear winter and other abrupt sun-reducing catastrophes. Risk Anal. 2023, 43, 1824–1842. [Google Scholar] [CrossRef]
- Robock, A.; Oman, L.; Stenchikov, G.L. Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences. J. Geophys. Res. Atmos. 2007, 112, D13. [Google Scholar] [CrossRef]
- Xia, L.; Robock, A.; Scherrer, K.; Harrison, C.; Jaegermeyr, J.; Bardeen, C.; Toon, O.; Heneghan, R. Global Famine after Nuclear War. Res. Square 2021. [Google Scholar] [CrossRef]
- Harwell, M.A. Nuclear Winter: The Human and Environmental Consequences of Nuclear War; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Mlilo, N.; Brown, J.; Ahfock, T. Impact of intermittent renewable energy generation penetration on the power system networks–A review. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 25. [Google Scholar] [CrossRef]
- Rad, M.A.V.; Kasaeian, A.; Niu, X.; Zhang, K.; Mahian, O. Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renew. Energy 2023, 212, 538–560. [Google Scholar]
- Wagner, F. Surplus from and storage of electricity generated by intermittent sources. Eur. Phys. J. Plus 2016, 131, 445. [Google Scholar] [CrossRef]
- Clerjon, A.; Perdu, F. Matching intermittent electricity supply and demand with electricity storage-An optimization based on a time scale analysis. Energy 2022, 241, 122799. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Bishop, D.; Nankivell, T.; Williams, B. Peak loads vs. cold showers: The impact of existing and emerging hot water controllers on load management. J. R. Soc. N. Z. 2023, 1–26. [Google Scholar] [CrossRef]
- Williams, B.; Bishop, D.; Hooper, G.; Chase, J.G. Driving change: Electric vehicle charging behavior and peak loading. Renew. Sustain. Energy Rev. 2024, 189, 113953. [Google Scholar] [CrossRef]
- Dallinger, D.; Wietschel, M. Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles. Renew. Sustain. Energy Rev. 2012, 16, 3370–3382. [Google Scholar] [CrossRef]
- Mal, S.; Chattopadhyay, A.; Yang, A.; Gadh, R. Electric vehicle smart charging and vehicle-to-grid operation. Int. J. Parallel Emergent Distrib. Syst. 2013, 28, 249–265. [Google Scholar] [CrossRef]
- Moghaddam, Z.; Ahmad, I.; Habibi, D.; Phung, Q.V. Smart charging strategy for electric vehicle charging stations. IEEE Trans. Transp. Electrif. 2017, 4, 76–88. [Google Scholar] [CrossRef]
- Gellings, C.W.; Chamberlin, J.H. Demand-Side Management: Concepts and Methods; Fairmont Press: Atlanta, GA, USA, 1987. [Google Scholar]
- Williams, B.; Bishop, D.; Gallardo, P.; Chase, J.G. Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations. Energies 2023, 16, 5155. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A.R.; Abas, N. Review of energy storage and transportation of energy. Energy Storage 2019, 1, e49. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Zohuri, B. Energy Storage Technologies and Their Role in Renewable Integration. In Hybrid Energy Systems: Driving Reliable Renewable Sources of Energy Storage; Zohuri, B., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 213–255. [Google Scholar] [CrossRef]
- Gelazanskas, L.; Gamage, K.A.A. Managing renewable intermittency in smart grid: Use of residential hot water heaters as a form of energy storage. In Proceedings of the 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 29 May–1 June 2016; pp. 1–4. [Google Scholar]
- Perez-Arriaga, I.J.; Batlle, C. Impacts of intermittent renewables on electricity generation system operation. Econ. Energy Environ. Policy 2012, 1, 3–18. [Google Scholar] [CrossRef]
- Summerbell, D.L.; Khripko, D.; Barlow, C.; Hesselbach, J. Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant. Appl. Energy 2017, 197, 100–113. [Google Scholar] [CrossRef]
- Warren, P. A review of demand-side management policy in the UK. Renew. Sustain. Energy Rev. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-side management in industrial sector: A review of heavy industries. Renew. Sustain. Energy Rev. 2022, 156, 111963. [Google Scholar] [CrossRef]
- Kazmi, H.; Mehmood, F.; Lodeweyckx, S.; Driesen, J. Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems. Energy 2018, 144, 159–168. [Google Scholar] [CrossRef]
- Williams, B.; Gallardo, P.; Bishop, D.; Chase, J.G. Impacts of electric vehicle policy on the New Zealand energy system: A retro-analysis. Energy Rep. 2023, 9, 3861–3871. [Google Scholar] [CrossRef]
- Osorio-Aravena, J.C.; Aghahosseini, A.; Bogdanov, D.; Caldera, U.; Muñoz-Cerón, E.; Breyer, C. The role of solar PV, wind energy, and storage technologies in the transition toward a fully sustainable energy system in Chile by 2050 across power, heat, transport and desalination sectors. Int. J. Sustain. Energy Plan. Manag. 2020, 25, 2020. [Google Scholar]
- Kiriakidis, P.; Christoudias, T.; Kushta, J.; Lelieveld, J. Projected wind and solar energy potential in the eastern Mediterranean and Middle East in 2050. Sci. Total Environ. 2024, 927, 172120. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Virguez, E.; Shan, R.; Tian, J.; Gao, S.; Patiño-Echeverri, D. High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system. Appl. Energy 2022, 306, 117996. [Google Scholar] [CrossRef]
- Global Energy Monitor. Global Solar Power Tracker. Available online: https://globalenergymonitor.org/ (accessed on 19 May 2024).
- Hannah, R.; Rosado, P.; Roser, M. Energy Production and Consumption; Our World in Data: Oxford, UK, 2020. [Google Scholar]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Miller, C.F.; Wark, D.A. Supervolcanoes and their explosive supereruptions. Elements 2008, 4, 11–15. [Google Scholar] [CrossRef]
- Wellerstein, A.; Patton, T.; Kutt, M.; Glaser, A. Plan A. 2019. Available online: https://sgs.princeton.edu/the-lab/plan-a (accessed on 10 October 2024).
- Mizokami, K. 335 Million Dead? Or Double That? Here’s How People Would Die in the First Three Days of Nuclear War. 2020. Available online: https://nationalinterest.org/blog/buzz/335-million-dead-or-double-heres-how-people-would-die-first-three-days-nuclear-war-114761 (accessed on 10 October 2024).
- Johns, L.; Sharfman, P.; Medalia, J.; Vining, R.; Lewis, K.; Proctor, G. The Effects of Nuclear War. United States. Congress; Office of Technology Assessment: Washington, DC, USA, 1979; Available online: https://ota.fas.org/reports/7906.pdf (accessed on 11 October 2024).
- International Energy Agency. Space Heating Dashboard. 2023. Available online: https://www.iea.org/reports/space-heating#dashboard (accessed on 19 May 2024).
- International Energy Agency. Space Cooling Dashboard. 2023. Available online: https://www.iea.org/reports/space-cooling#dashboard (accessed on 19 May 2024).
- Day, F. Energy-Smart Food for People and Climate; FAO: Rome, Italy, 2011. [Google Scholar]
- Xia, L.; Robock, A.; Scherrer, K.; Harrison, C.S.; Bodirsky, B.L.; Weindl, I.; Jägermeyr, J.; Bardeen, C.G.; Toon, O.B.; Heneghan, R. Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection. Nat. Food 2022, 3, 586–596. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Rome. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 19 May 2024).
- Rivers, M.; Hinge, M.; Rassool, K.; Blouin, S.; Jehn, F.U.; Martínez, J.B.G.; Grilo, V.A.; Jaeck, V.; Tieman, R.J.; Mulhall, J.; et al. Food System Adaptation and Maintaining Trade Could Mitigate Global Famine in Abrupt Sunlight Reduction Scenarios. Glob. Food Secur. 2024, 43, 100807. [Google Scholar] [CrossRef]
- Alvarado, K.A.; Mill, A.; Pearce, J.M.; Vocaet, A.; Denkenberger, D. Scaling of greenhouse crop production in low sunlight scenarios. Sci. Total Environ. 2020, 707, 136012. [Google Scholar] [CrossRef]
- Jehn, F.U.; Dingal, F.J.; Mill, A.; Harrison, C.; Ilin, E.; Roleda, M.Y.; James, S.C.; Denkenberger, D. Seaweed as a resilient food solution after a nuclear war. Earths Future 2024, 12, e2023EF003710. [Google Scholar] [CrossRef]
- World Bank Group. Seaweed Aquaculture for Food Security, Income Generation and Environmental Health in Tropical Developing Countries; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Throup, J.; Martínez, J.B.G.; Bals, B.; Cates, J.; Pearce, J.M.; Denkenberger, D.C. Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes. Food Bioprod. Process. 2022, 131, 22–39. [Google Scholar] [CrossRef]
- Donovan, A.; Oppenheimer, C. Imagining the unimaginable: Communicating extreme volcanic risk. In Observing the Volcano World: Volcano Crisis Communication; Springer: Berlin/Heidelberg, Germany, 2018; pp. 149–163. [Google Scholar]
- Martínez, J.B.G.; Pearce, J.M.; Throup, J.; Cates, J.; Lackner, M.; Denkenberger, D.C. Methane single cell protein: Potential to secure a global protein supply against catastrophic food shocks. Front. Bioeng. Biotechnol. 2022, 10, 906704. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.B.G.; Egbejimba, J.; Throup, J.; Matassa, S.; Pearce, J.M.; Denkenberger, D.C. Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios. Sustain. Prod. Consum. 2021, 25, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Martínez, J.B.G.; Alvarado, K.A.; Denkenberger, D.C. Synthetic fat from petroleum as a resilient food for global catastrophes: Preliminary techno-economic assessment and technology roadmap. Chem. Eng. Res. Des. 2022, 177, 255–272. [Google Scholar] [CrossRef]
- Energy Institute. Insights by Source. 2023. Available online: https://www.energyinst.org/statistical-review/insights-by-source (accessed on 19 May 2024).
- Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. Eco-Efficiency in Mushroom Production: A Study on HVAC Equipment to Reduce Energy Consumption and CO2 Emissions. Appl. Sci. 2023, 13, 6129. [Google Scholar] [CrossRef]
- U.S Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html (accessed on 19 May 2024).
- Denkenberger, D.; Pearce, J.; Taylor, A.R.; Black, R. Food without sun: Price and life-saving potential. Foresight 2019, 21, 118–129. [Google Scholar] [CrossRef]
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental impacts of large-scale Spirulina (Arthrospira platensis) production in hellisheidi geothermal park iceland: Life cycle assessment. Mar. Biotechnol. 2022, 24, 991–1001. [Google Scholar] [CrossRef]
- Nord, M.; Bryson, S. Dark food: Feeding people in space without photosynthesis. New Space 2022, 10, 187–192. [Google Scholar] [CrossRef]
- De Decker, K. Wood gas vehicles: Firewood in the fuel tank. Low-Tech Magazine, 18 January 2010. [Google Scholar]
- Jose, L.; Raxworthy, M.; Williams, B.L.M.; Denkenberger, D. Be clever or be cold: Repurposed ovens for space heating following global catastrophic infrastructure loss. EarthArXiv 2024. [Google Scholar] [CrossRef]
- Surek, T.; Cameron, C. Energy Payback: Clean Energy from PV; PV FAQs; NREL/Sandia: Albuquerque, NM, USA, 1999. [Google Scholar]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Kessler, W. Comparing energy payback and simple payback period for solar photovoltaic systems. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2017; p. 00080. [Google Scholar]
- Marimuthu, C.; Kirubakaran, V. Carbon pay back period for solar and wind energy project installed in India: A critical review. Renew. Sustain. Energy Rev. 2013, 23, 80–90. [Google Scholar] [CrossRef]
- Smith, C.; Blink, J.A.; Fratoni, M.; Greenberg, H.R.; Halsey, W.; Simon, A.J.; Sutton, M. Nuclear Energy Return on Energy Investment; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2012. [Google Scholar]
- FAO Joint. Energy and protein requirements: Report of a joint FAO/WHO/UNU Expert Consultation. In Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO: Rome, Italy, 1985; p. 206. [Google Scholar]
- Kumler, A.; Carreño, I.L.; Craig, M.T.; Hodge, B.-M.; Cole, W.; Brancucci, C. Inter-annual variability of wind and solar electricity generation and capacity values in Texas. Environ. Res. Lett. 2019, 14, 044032. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Cohan, D.S. Interannual variability and seasonal predictability of wind and solar resources. Resources 2017, 6, 29. [Google Scholar] [CrossRef]
- International Energy Agency. Managing Seasonal and Interannual Variability of Renewables. April 2023. Available online: https://www.iea.org/reports/managing-seasonal-and-interannual-variability-of-renewables (accessed on 19 May 2024).
- Eoltech. World & Europe Onshore Wind Power Portfolio: Interannual Variation of Wind Power Production. 2023. Available online: https://www.eoltech.fr/media/pdfs/202403_Eoltech_Global_Portfolio_Energy_Index.pdf (accessed on 19 May 2024).
- Calabrò, E. An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation. J. Renew. Energy 2013, 2013, 307547. [Google Scholar] [CrossRef]
- Masili, M.; Ventura, L. Local tilt optimization of photovoltaic solar panels for maximum radiation absorption. Int. J. Photoenergy 2019, 2019, 3254780. [Google Scholar] [CrossRef]
- Coupe, J.; Bardeen, C.G.; Robock, A.; Toon, O.B. Nuclear winter responses to nuclear war between the United States and Russia in the whole atmosphere community climate model version 4 and the Goddard Institute for Space Studies ModelE. J. Geophys. Res. Atmos. 2019, 124, 8522–8543. [Google Scholar] [CrossRef]
- Liu, C.; Chung, C.E.; Yin, Y.; Schnaiter, M. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos. Chem. Phys. 2018, 18, 6259–6273. [Google Scholar] [CrossRef]
- Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Robock, A.; Elliott, J.; Müller, C.; Xia, L.; Khabarov, N.; Folberth, C.; Schmid, E.; Liu, W.; Zabel, F.; et al. A regional nuclear conflict would compromise global food security. Proc. Natl. Acad. Sci. USA 2020, 117, 7071–7081. [Google Scholar] [CrossRef]
- Fant, C.; Schlosser, C.A.; Strzepek, K. The impact of climate change on wind and solar resources in southern Africa. Appl. Energy 2016, 161, 556–564. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, K.; Liu, Z. Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system. Energy 2022, 244, 123224. [Google Scholar] [CrossRef]
- Tutuncuoglu, K.; Yener, A. Optimal power policy for energy harvesting transmitters with inefficient energy storage. In Proceedings of the 2012 46th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 21–23 March 2012; pp. 1–6. [Google Scholar]
- Stanelyte, D.; Radziukyniene, N.; Radziukynas, V. Overview of demand-response services: A review. Energies 2022, 15, 1659. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varne, A.R.; Blouin, S.; Williams, B.L.M.; Denkenberger, D. The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production. Energies 2024, 17, 5147. https://doi.org/10.3390/en17205147
Varne AR, Blouin S, Williams BLM, Denkenberger D. The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production. Energies. 2024; 17(20):5147. https://doi.org/10.3390/en17205147
Chicago/Turabian StyleVarne, Ashitosh Rajesh, Simon Blouin, Baxter Lorenzo McIntosh Williams, and David Denkenberger. 2024. "The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production" Energies 17, no. 20: 5147. https://doi.org/10.3390/en17205147
APA StyleVarne, A. R., Blouin, S., Williams, B. L. M., & Denkenberger, D. (2024). The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production. Energies, 17(20), 5147. https://doi.org/10.3390/en17205147